
Chapter 15

Container Classes

Simple data structures are found at the heart of almost all nontrivial computer
programs. Example data structures include vectors, linked lists, stacks, queues,
binary trees, sets, and dictionaries. Because data structures are so common, one
would expect them to be ideal for development as reusable components. Indeed,
it is possible to create such components, but there are subtle issues involved that
can trap the unwary programmer.

An exploration of the problems in developing reusable container classes is for
this reason a good illustration of how the features of a programming language
inuence the style of development, as well as a demonstration of some of the
powers and some of the limitations of object-oriented techniques.

15.1 Containers in Dynamically Typed Languages

Producing reusable container abstractions is considerably easier in a dynamically
typed language, such as Smalltalk, Clos or Objective-C, than they are in a
statically typed language. Indeed, dynamically typed languages usually come
with a large collection of data abstractions already developed, thus freeing the
programmer from having to address the container problem.

As we saw in our earlier discussion on binding times, in a dynamically typed
language it is a value itself that retains knowledge of its type, not the variable by
which it is accessed. Thus any object can be placed into a container, and when it
is removed it can be assigned to any variable. The following, for example, shows
an integer and a string being placed into a Smalltalk array, and later removed:

anArray <- Array new: 2.

anArray at: 1 put: abc.

anArray at: 2 put: 12.3.

theString <- anArray at: 1.

theNumber <- anArray at: 2.

theString <- theString characterAt: 2.

271

272 CHAPTER 15. CONTAINER CLASSES

:::

removeKey: key
at: key
at: key put: value

Dictionary

4

:::

remove: anObject
add: anObject

Set

4

:::

do: action
isEmpty
size
remove: anObject

add: anObject
Collection

:::

occurrencesOf: anObject
remove: anObject
add: anObject

Bag

Figure 15.1 A Portion of the Collection Inheritance Hierarchy in Smalltalk-80

theNumber <- theNumber � 7.

Notice how a dynamic language permits values of di�erent classes to be held
in the same container. Such a collection is sometimes termed a hetrogeneous

collection, as opposed to a homogeneous collection where values are all of the
same type. Statically typed languages have di�culty forming truly hetrogeneous
collections, although they can approximate them through the use of the principle
of substitution.

15.1.1 Containers in Smalltalk-80

The software reuse techniques of inheritance and composition can be used to ad-
vantage in the creation of collection classes. To illustrate, consider the Smalltalk-
80 classes Collection, Set, Bag and Dictionary. These four classes are linked in
the inheritance hierarchy shown in Figure 15.1.

The parent class Collection is shown as abstract, since some of the methods
(those shown in italics) must be rede�ned in child classes. The subclass Set

represents an unordered collection of unique elements. It rede�nes the abstract
methods for addition and removal that were inherited from Collection, as well as

15.2. CONTAINERS IN STATICALLY-TYPED LANGUAGES 273

adding new functionality (not shown).
The class Dictionary represents a collection of key/value pairs. Elements can

be inserted into the dictionary using a speci�c key, and the user can search for
the element associated with a key. The dictionary is implemented as a Set where
each element of the set is an Association representing a single key/value pair.
By de�ning Dictionary as a subclass of Set, the methods that do not deal with
the keys directly can be inherited without change from the parent. (Using the
categories from Chapter ?? this is subclassing for construction).

:::

occurrencesOf: anObject
remove: anObject
add: anObject

elements
Bag

:::

removeKey: key
at: key
at: key put: value

Dictionary3 -
maintains

A third type of collection is a Bag. Conceptually, a Bag is similar to a Set, only
values are allowed to be entered into the collection more than once. To implement
this behavior, the class Bag uses composition, maintaining an internal value of
type Dictionary. The keys in the dictionary represent the elements inserted into
the Bag, whereas the value associated with the key is the number of times the
item appears in the Bag. In this fashion only one instance of each element is
actually stored in the container, but as items are inserted and removed the counts
are updated appropriately.

15.2 Containers in Statically-Typed Languages

It is clear from the countless data structure textbooks that have appeared over
the years that container abstractions can be written in almost any language, in-
cluding statically-typed languages. The problem with statically typed languages
is not that they preclude the development of container classes, but that static
typing interfeers with software reuse. That is, it is di�cult to write a container
class in such a way that it can be easily carried from one project to the next and
still retain the bene�ts of static typing.

In the following section we will �rst describe in detail the origin of this tension
between static typing and software reuse. After considering the problem, we will
then explore how object-oriented software techniques have been used to overcome
this di�culty. In particular, we will consider three di�erent solutions:

� Using the principle of substitution to store values in a container, and com-
bine with downcasting (reverse polymorphism) when values are removed.

� Again using the principle of substitution, but avoiding downcasting through
the use overriding.

� Using generics or templates.

274 CHAPTER 15. CONTAINER CLASSES

15.2.1 The Tension between Typing and Reuse

To place the problem in perspective, we must �rst consider how data structures
are typically implemented in a conventional language, such as C or Pascal. We
will use a linked list of integers as our example abstraction. In Pascal a linked
list might be formed out of two types of records. The �rst is the list header itself,
which maintains a pointer to the �rst link:

type

List = Record

firstLink : " Link;

end;

A list header can be statically allocated, as the amount of storage it maintains
(namely, one pointer) remains �xed throughout execution. The second record is
used to maintain the actual values themselves. Each Link node maintains one
integer value and a pointer to the next link:

type

Link = Record

value : integer;

nextElement : " Link;

end;

Link nodes must be dynamically allocated and released, although such details
can be largely hidden from the user of the list abstraction through the develop-
ment of functions, such as a function to add a new value to the front of the list,
return and remove the �rst element in a list, and so on.

procedure addToList (var aList : List, newVal : integer);

var (� add a new value to a list �)
newLink : " Link;

begin

(� create and initialize a new link �)
new (newLink);

newLink".value := newVal;

(� place it at the front of the list �)
newLink".nextElement := aList.firstLink;

aList.firstLink = newLink;

end;

function firstElement (var aList : List) : integer;

var (� remove and return �rst element from a list �)
firstNode : " Link;

begin

15.2. CONTAINERS IN STATICALLY-TYPED LANGUAGES 275

firstNode := aList.firstLink;

firstElement := firstNode".value;
aList.firstLink := firstNode".nextElement;
dispose (firstNode);

end;

Our concern here is not with the details of how a linked list might be imple-
mented (such details can be found in any data structure textbook) but with the
question of reusability. Suppose our programmer has implemented the linked-list
abstraction given above and now wishes to maintain, in addition to a linked list
of integers, a linked list of real numbers.

The problem is that the programming language is too strongly typed. The
data type integer used for the value being held by the link is an intrinsic part of
the de�nition. The only way it can be replaced by a di�erent type is through the
creation of a totally new data type, for example RealLink, as well as a totally new
list header, RealList, and totally new routines for accessing and manipulating the
data structures (addToRealList and �rstElementInRealList, for example).

Now, it is true that something like a variant record (called a union in C)
could be used to permit a single list abstraction to hold both integers and real
numbers. Indeed, a variant record would permit one to de�ne a heterogeneous
list that contains both integers and real numbers. But variant records solve only
part of the problem. It is not possible to de�ne a function that returns a variant
record, for example, so one still needs to write separate functions for returning
the �rst element in a list. Furthermore, a variant record can have only a �nite
number of possible alternatives. What happens when the next project requires
a totally new type of list, such as a list of characters?

In short, a language that is too strongly typed does not provide the facil-
ities necessary to create and manipulate truly reusable container abstractions.
The question then is, do the additional facilities provided by object-oriented
languages yield any new way to overcome this problem? The principle new tool
found in an object-oriented language that is not found in a conventional lan-
guage is the principle of substitution. And indeed, the principle of substitution
can be used in at least two di�erent ways to overcome the problem of overly
strong typing.

15.2.2 Substitution and Downcasting

It is tempting to think that substitutability by itself can solve the container class
problem for statically typed languages. Recall from Chapter 6 that the principle
of substitution claims that a variable declared as maintaining some object type
can, in fact, be assigned a value derived from a subclass of the variable's declared
class.

The principle of substitution is most valuable in languages that have a single
class at the root of the inheritance hierarchy. Recall that this was true for both
Java (the root class is Object) and Delphi (the root class is TObject). So we

276 CHAPTER 15. CONTAINER CLASSES

see that in both of these languages containers are provided that store elements
in variables declared as the root class. A Java Vector, for example, stores its
elements in an array of Object values.

While this purposeful supression of typing information solves one problem, it
comes only at the cost of introducing another. As we have noted, any value can
be assigned to a variable of type Object (in Java) or TObject (in Delphi). But
when values are removed from the container the programmer typically wants
them restored to their original type. Since the removal method can only declare
its result as an Object, a casting expression must be used to restore the original
data type, as in the following code fragment in Java:

Vector aVector = new Vector();

Cat felice = new Cat();

aVector.addElement(felice);

...

// cast used to convert Object value to Cat

Cat animal = (Cat) aVector.elementAt(0);

A problem with this approach is the detection of typing errors. Suppose a
programmer creates a container that they think will maintain values of a certain
type, for example class Cat. By accident a value of the wrong type, for example
a Dog, is placed into the container. The error cannot be discovered by any static
compile time analysis of the program. Worse, the resulting run-time error will
not be discovered at the point of insertion (which is where the logic error is
being committed) but at the point of removal, when the attempt to perform the
downcast will result in an casting exception being thrown:

// make a collection of Cat values

Vector catCollection = new Vector();

Cat aCat = new Cat();

Dog aDog = new Dog();

catCollection.addElement(aCat); // no problem

// although the following incorrectly inserts

// a value of type Dog into the collection,

// no compiler error will ensue

catCollection.addElement(aDog);

...

// it is only here, when the element is removed and an

// attempt is made to convert to type Cat, that

// a run-time error is detected.

Cat newCat = (Cat) catCollection.elementAt(1);

15.2. CONTAINERS IN STATICALLY-TYPED LANGUAGES 277

Heterogenous Collections

Because Java collections store their values in variables declared as type Object,
in principle it is easy to create heterogenous collections. But in practice the
problem is not placing the values into the collections, but taking them back out
again. As we have noted, normally a value must be down cast to a more speci�c
type after it is removed from the container. In a hetergeneous collection this type
must �rst be tested before it can be cast, as shown in the following example:

// make a stack that contains both cats and dogs

Stack stk = new Stack();

stk.addElement(new Cat());

stk.addElement(new Dog());

// ... adding more values

// now do something with Cat values

if (stk.peep() instanceof Cat) f
// do conversion to Cat

Cat aCat = (Cat) stk.pop();

// .. also do something with cat values

// now do something with Dog values

g else if (stk.peep() instanceof Dog) f
// do conversion to Dog

Dog aDog = (Dog) stk.pop();

// .. do something with Dog value

g

Container Classes in Delphi

A popular container collection in Delphi, the Spider classes destributed by Inter-
val Software, has an interesting solution to the error detection problem. Although
values are still stored internally in variables of type TObject, a class value can
be given as argument to the constructor when the collection is created. As each
element is inserted, the class value is used to ensure the element matches the
desired type. If it is not, an error exception is raised. Since this error occurs
at the point of insertion, not at the point of removal, it makes the discovery of
logic errors much easier:

var

stack : Tstack;

aCat : TCat;

aDog : TDog;

begin

// create a stack that can hold only TCat values

stack := TStack.Create (TCat);

278 CHAPTER 15. CONTAINER CLASSES

stack.push (aCat); // ok

stack.push (aDog); // will raise exception

...

end

Heterogeneous collections can be accomodated by using a more general class
value. For example, if both cats and dogs must be held in the same list, the
collection can be created using the class value TMammal (or TAnimal).

Although a check was performed as the value was inserted into the container,
it is still necessary to cast the value back to the correct type when it is accessed
or removed, as the declared results of these operations is only TObject. Delphi
provides two di�erent ways to peform this operation. The as operator performs
a check to ensure that the conversion is valid:

aCat := stack.Pop as TCat;

The alternative syntax uses the name of the child class as if it were a function
call. This form, however, does not check the veracity of the cast, and so should
only be used when you are abolutely certain no errors can occur:

aCat := TCat(stack.Pop);

Storing Non-Object Data in Containers

Java containers can store any value that is ultimately derived from class Object.
The Spider container classes in Delphi can store any value that is ultimately
derived from TObject. Unforunately, in both of these languages the primitive
values, such as integers and oating point numbers, are not objects in the tech-
nical sense. Thus, primitive values cannot be stored directly in a container in
these languages.

In both cases the solution is to provide a series of auxillary classes that do
little more than act as a box that can hold a single primitive value. In Java
these are called Wrapper classes, while in the Spider Delphi containers these are
called Bucket classes. The following illustrates how a double precision number
can be stored and later removed from a Java Vector:

Vector aVector = new Vector();

// create a wrapper to hold a real number

aVector add: (new Double(12.34));

// ...

// later we �rst �nd the Double object

Double dwrap = (Double) aVector.elementAt(0);

// then unwrap to get original value

double dval = dwrap.doubleValue();

15.2. CONTAINERS IN STATICALLY-TYPED LANGUAGES 279

Java Delphi
boolean Boolean TBooleanBucket

byte Byte TByteBucket

char Character TCharBucket

double Double TRealBucket

int Integer TIntegerBucket

long integer Long TLongIntBucket

short integer Short TShortIntBucket

Table 15.1 Auxillary classes used to store primitive types

Table 15.1 gives the wrapper classes for Java and for the Spider data structure
classes in Delphi associated with the more common primitive types.

15.2.3 Using Substitution and Overriding

A cast expression is often considered to be not truly object-oriented, since it
requires the programmer to name an explicit type in the code. In many situations
explicit casts can be avoided through the use of substitution combined with
method overriding. However, in the case of container classes this is possible only
when the original developer knows how an object will be used, even if they do
not know what type of value will be stored in the container. Thus, this technique
is applicable only in a few restricted situations.

One example is found in the code in Java used to respond to user initiated
events, such as mouse presses. In Java events are handled by creating a listener

object and attaching it to a window. When an event occurs in the given window,
all the registered listeners are noti�ed of the event. A listener must match
a �xed speci�cation. There are a number of di�erent types of speci�cations,
corresponding to the variety of events that can occur:

ActionListener change in graphical component state
ItemListener changes to selected item component
KeyListener key press events
MouseListener mouse presses and releases
MouseMotionListener mouse motions
TextListener text component changes
WindowListener window actions

Because many listeners are used for a large number of di�erent actions, the
Java library also provides a collection of adapters that implement the interface,
and de�ne an empty action for each possibility. To create a listener the Java
programmer de�nes a class that implements this interface, and overrides key

280 CHAPTER 15. CONTAINER CLASSES

methods. An example is the following, which subclasses from theWindowAdapter

class (which in turn implements the WindowListener interface) and overrides the
method windowClosing.

public class CloseQuit extends WindowAdapter f
// execute when the user clicks in the close box

public void windowClosing (WindowEvent e) f
System.exit(0); // halt the program

g
g

All the listeners attached to a window are stored in a linked list. TheWindow

class maintains the view that these values are all instances of WindowListener (or
one of the other listener hierarhcies). In reality, they are instances of user-
de�ned classes that implement the WindowListener interface and are only stored
on the list through the principle of substitution. When an event occurs, the
Window passes a message to each listener, \thinking" that it is an instance of
WindowListener. But the method is overridden, and the message is actually
handled by the user de�ned class.

aWindow -
:::

windowClosing
WindowListener

-
:::

windowClosing
WindowListener

windowClosing
CloseQuit

6implements

Notice how this achives the desired e�ect without the need to explictly cast
the listener value to a new type. On the negative side, this technique is only
applicable when the programmer has precise information concerning how a value
stored in the container will be used, even if they do not know the type for the
value.

15.2.4 Parameterized Classes

The previous two solutions to the container abstraction problem both employed
the principle of substitution. However, this technique is only suitable if there is
a parent class that can be used as the basis for the substitution. If a language
has a single root as the ultimate ancestor of all classes, as does Java, then that
is the logical candidate for the parent type. But what about a language such as
C++, where there is no single root class?

The language C++ gets around this di�culty by introducting a new language
feature, which in turn permits an entirely di�erent solution to the container class
problem. This new feature is the ability to de�ne classes that are parameterized

15.2. CONTAINERS IN STATICALLY-TYPED LANGUAGES 281

by type arguments. Such classes are called templates in C++, and generics in
some other languages. (Generics are also found in the object-oriented language
Ei�el, and in some non-object-oriented langauges, such as Ada).

A class template gives the programmer the ability to de�ne a data type
in which some type information is purposely left unspeci�ed, to be �lled in at
a later time. One way to think of this is that the class de�nition has been
parameterized in a manner similar to a procedure or function. Just as several
di�erent calls on the same function can all pass di�erent argument values through
the parameter list, di�erent instantiations of a parameterized class can �ll in the
type information in di�erent ways.

A parameterized class de�nition for a linked list abstraction might be written
in C++ in the following way:

template<class T> class List f
public:

void addElement (T newValue);

T firstElement ();

ListIterator<T> iterator();

private:

Link<T> � firstLink;

g;

template<class T> class Link f
public:

T value;

Link � nextLink;

Link (T, Link �);
g;

Within the class template, the template argument (T, in this case) can be used
as a type name. Thus, one can declare variables of type T, have functions return
values of type T, and so on.

Member functions that de�ne template operations must also be declared as
template:

template<class T>

void List<T>::addElement (T newValue)

f
firstLink = new Link<T> (newValue, firstLink);

g

template<class T>

T List<T>::firstElement ()

f

282 CHAPTER 15. CONTAINER CLASSES

Link � first = firstLink;

T result = first->value;

firstLink = first->nextLink;

delete first;

return result;

g

template<class T>

Link<T>::Link(T v, Link � n) : value(v), nextLink(n)

f g

The user creates di�erent types of lists by �lling in the parameterized type
values with speci�c types. For example, the following creates a list of integer
values as well as a list of real numbers.

List<int> integerList;

List<double> doubleList;

In this fashion, homogeneous lists of any type can be created.
A template is an elegant solution to the container class problem. It allows

truly reusable, general-purpose components to be created and manipulated with
a minimum of di�culty and yet still retain the type safety, which is the goal
of statically typed languages. On the other hand, there are drawbacks to the
use of templates. They do not permit the de�nition of heterogeneous lists, as
all elements must match the declared type. More importantly, implementations
of the template mechanism vary greatly in their ease of use and the quality of
code they generate. Most implementations act as little more than sophisticated
macros, generating for each new type of element an entirely new class de�nition
as well as entirely new method bodies. Needless to say, if several di�erent element
types are used in the same program, this can result in a considerable growth in
code size.

Nevertheless, because templates free the programmer from so much concep-
tual drudgery (namely, rewriting data structure classes in every new program),
their appeal is widespread. In the next chapter we will examine one such library.

Bounded Genericity

Templates as they are implemented in C++ do not place any explicit restriction
on the template argument values, instead type restrictions are de�ned implicitly
by the method body. This is illustrated by the following example:

template <class A, class B>

int countAll (A value, B collection)

f
int count = 0;

15.3. RESTRICTING ELEMENT TYPES 283

A element = B.firstValue();

while (element != null) f
if (value.equals(element))

count++;

element = B.nextValue();

g
g

A careful examination of the body of the function will reveal that instances
of the class A need to understand the method equals, while instances of the class
B need to implement the methods �rstValue and nextValue. However, it is only
the statements in the code, and nothing in the function header that indicates
this fact.

Other programming langauges that support genericity, such as the program-
ming language Ei�el, allow the programmer to place restrictions on the type
parameters, in much the same way that value parameters can be typed. For
example, in Ei�el a hash table might be described as follows:

class

HASH TABLE [H -> HASHABLE]

...

The arrow indicates that the argument can only be �lled with a subtype of
HASHABLE (that is, a class that inherits from HASHABLE if it is a class, or
implements the HASHABLE interface if it is an interface.) Bounding the type
arguments allows for slightly better type checking, as the legality of argument
values can be determined at compile time.

15.3 Restricting Element Types

Container classes can be divided into three major groups that are di�erentiated
by the requirements they place on their element types. The simplest are con-
tainers such as linked lists or vectors. These require only that elements have
the ability to be compared against other elements for equality. Slightly more
complicated are the ordered containers, such as binary search trees or sorted
lists. These require that elements have the ability to be compared against other
elements for ordering. A third category of container are hash tables. These re-
quire that every element have the ability to determine an integer value, called
the hash of the element.

Once again we have the situation where there is a simple interface (the re-
lational test or the hash function) and a wide range of implementations (the
technique used to determine a hash value for a character, for example, will be
very di�erent from that used to compute the hash value for a complex number).
Languages and libraries exhibit a wide range of solutions to this problem.

284 CHAPTER 15. CONTAINER CLASSES

In languages, such as Smalltalk or Java, that have a single root class at the
top of the inheritance hierarchy, it is common for operations to have a default
implementation in the root class, and allow for this default implementation to
be overridden in child classes. Thus in Smalltalk, for example, the class Object
contains the methods == and hash. In Java the corresponding methods are equals
and hashValue. Since these methods are de�ned in Object they can be applied to
every object value. Since they can be overridden, classes can supply their own
specialized meaning.

Nevertheless, it is useful to allow the programmer to supply their own com-
parison algorithm for sorting elements in an ordered container. In Smalltalk this
is accomplished by passing a block to the instance creation method:

aCollection <- SortedCollection sortBlock: [:a :b j a <= b]

In Java, the progrmmer can specify ordering by de�ning a class that imple-
ments the Comparator interface:

public interface Comparator f
public int compare (Object left, Object right);

g

The method compare returns the integer �1 if the left argument is smaller
than the right, 0 if they are equal, and 1 if the left is larger than the right.
The user must create a class that implements this interface. The following, for
example, is a comparator that will test two instances of the wrapper class Double.
Note how the arguments are declared as Object, and must be down cast to the
appropriate type before the actual comparison can be performed.

public class DoubleCompare implements Comparator f
public int compare (Object left, Object right) f

// �rst down cast the arguments

Double dleft = (Double) left;

Double dright = (Double) right;

// then do the comparison

if (dleft.doubleValue() == dright.doubleValue())

return 0;

if (dleft.doubleValue() < dright.doubleValue())

return -1;

return 1;

g
g

A comparator object is then passed to the constructor when an ordered col-
lection is created:

15.4. ITERATION 285

// create a new ordered collection

SortedSet aCollection = new TreeSet(new DoubleCompare());

The Delphi Spider classes use a similar technique.
In the previous section we saw how template container classes also restrict

the type of values they can handle. Unbounded template classes, such as those
found in C++, de�ne implicitly the requirements for element types. This implicit
requirement derives from the functions used in the body of the methods for
the container. Bounded generics, such as are found in Ei�el, explicitly place
restrictions on the types of elements that containers can hold.

Some developers of data structure classes perfer to place responsibility for
comparisons and hash values in the objects themselves, rather than in the con-
tainer. This is made more di�cult if there is no single root class or if, as in
Delphi, the root class does not provide all the necessary functionality. A devel-
oper of data structure classes in Delphi, for example, might insist that to be held
elements must implement an interface such as the following:

type

TContainable = interface

public

function compareTo (const right : TContainable) : integer;

function hashValue : integer;

end;

This is in some respects a combination of the techniques described in Sec-
tions 15.2.2 and 15.2.3. The container itself can invoke the methods compareTo
and hashValue without needing to execute a cast. However, the user must still
cast values to their correct type when they are accessed or removed from the
container.

15.4 Iteration

Regardless of whether a language is statically typed or dynamically typed, an-
other di�cult problem that must be handled in order to create truly useful
container abstractions is the task of iteration. The problem of iteration is best
understood in the context of a multi-person development project. Suppose there
are two programmers, named programmer-one and programmer-two. Program-
mer one must create a data abstraction, for example a set implemented using a
red-black tree, and programmer two is going to use the abstraction. Programmer
two need only know the interface in order to add elements to the container and
remove elements from the container. But now imagine that programmer two
wants to write a loop that will iterate over the elements of the container. How
can programmer two perform this task without any explicit knowledge of the
internal structure of the container class?

286 CHAPTER 15. CONTAINER CLASSES

We can see the problem in concerete terms by again considering the Pascal
linked list data type we introduced earlier in Section 15.2.1. A typical loop that
prints the values in a list might be written as follows:

var

aList : List; (� the list being manipulated �)
p : Link; (� a pointer for the loop �)

begin

...

p := aList.firstLink;

while (p <> nil) do begin

writeln (p.value);

p := p^.nextElement;

end;

Note that to create a loop it was necessary to introduce an extraneous variable,
here named p. Furthermore, this variable had to be of type Link, a data type we
were taking pains to hide, and the loop itself required access to the link �elds in
the list, which we were also attempting to hide.

Once again we can ask whether the new mechanisms provided by object-
oriented languages permit a solution to this problem that was not available in
more conventional languages. And once again, the answer is yes. There are two
solutions we will examine.

� An iterator makes use of the property that in an object-oriented language
it is possible to have many di�erent implementations for the same interface.
An iterator is an object that implements an interface designed speci�cally
for forming a loop.

� A visitor is an alternative approach that is possible when the programmer
language provides an easy way to encapsulate a series of actions and hand
them to the container.

15.4.1 Iterator loops

The concept of an iterator relies on the ability to have many di�erent imple-
mentations match the same interface. The iterator interface is designed to be
easy to remember, and exible enough to work with a wide variety of containers.
In Java, for example, the iterator interface (called an Enumeration) consists of
just two methods. The method hasMoreElements returns true if the loop should
continue, and the method nextElement yields the next element in the sequence.
A typical loop looks like the following:

// create the iterator object

Enumeration e = aList.elements();

15.4. ITERATION 287

// then do the loop

while (e.hasMoreElements()) f
Object obj = e.nextElement();

// ... do something with obj

g

Every container class in the Java library implements a method named ele-

ments, which returns a value that matches the speci�cation de�ned by the class
Enumeration. In fact, however, the actual value returned will di�er from one
collection to another, as each di�erent type of collection requires its own set of
actions to perform an enumeration. Thus a LinkedList, for example, will return
a ListIterator, which is a data type that is derived from Enumeration. Because
many di�erent implementations can match the same speci�cation, the loop used
to access the elements in a container will look exactly the same, regardless of
the type of container being examined.

The language C++ also uses the concept of an iterator. However, iterators
in C++ are manipulated in pairs, in much the same fashion as pointers. (This
is perhaps to be expected, since pointers are such an important part of the
language). The �rst iterator value speci�es the current element, while the second
iterator speci�es the end of the loop. The interface for iterators includes the
following three operators:

operation purpose example
== compare two iterators for equality start == stop
++ advance iterator to next element start++
* return value referenced by iterator *start

A typical iterator loop looks something like the following:

// create starting and stopping iterators

list<string>::iterator start = aList.begin();

list<string>::iterator stop = aList.end();

// then do the loop

for (; start != stop; start++) f
string value = �start; // get the value

// ... do something with the value

g

Although the interfaces are di�erent, in both languages the key idea is that
each container can provide an implementation of the iterator iterface that is
speci�c to the container. A method in the container class returns a value that
is more specialized than its type signature might indicate. The methods begin
and end in each of the C++ STL containers returns an iterator appropriate to
the container.

It is indeed true that these more specialized classes must have intimate knowl-
edge of the container over which they are looping. An iterator for a linked list, for

288 CHAPTER 15. CONTAINER CLASSES

example, must know about the link classes that are used in the implementation.
But as the iterator classes are written by the same programmer who developed
the abstraction, and these internal details are not exposed by the interface, the
key principle of information hiding is not being voilated. (Frequently techniques
such as friends or inner classes, both of which are discussed in Chapter xx, are
necessary in order to link a container and its iterator).

15.4.2 The Visitor Approach

An alternative solution to the problem of iteration is possible if the programming
language provides a way to bundle a sequence of actions and hand them to the
container, for example in the form of a function. The container can then take
the bundle, and execute the actions on each element of the collection in turn.

This technique is used in the language Smalltalk. A Block in Smalltalk is a
series of statements enclosed in square brackets, which can optionally begin with
a sequence of argument values. In essence, a block is a simple way to create
an unnamed function. To iterate over a collection, the programmer uses the
method do:, passing as argument a one-argument block containing the action to
be performed:

aList do: [:x j (element is + x) print]

The container executes the block repeatedly, passing each element in the
collection as argument in turn.

The same idea is also possible in C++, as an alternative to the use of iterators
in that language. A function object is an object that implements the parenthesis
operator, and hence can be used both as an object (for example, it can be stored
in a variable) and as a function. For example, a simple function object might
just print its argument:

class printingObject f
public:

void operator () (int x)

f
cout << "value is " << x << endl;

g
g;

The generic function for each takes a pair of iterators and a function object.
It executes the function object on each element speci�ed by the iterator:

printingObject printer; // create an instance of the function object

for each (aList.begin(), aList.end(), printer);

Often the argument will be speci�ed by a nameless temporary, using the

15.4. ITERATION 289

ability in C++ to create a new value by simply naming the class:

for each (aList.begin(), aList.end(), printingObject());

In the Spider classes in Delphi looping is performed in a similar fashion, using
the method ForEachCallMethod. The following is an example:

var aList : LinkedList;

procedure PrintingObject

(const Obj : TObject, const additionalData : LongInt);

begin

writeln("Value is ", Obj);

end

begin

...

aList.ForEachCallMethod (TObject, LongInt(0));

end;

The second argument can be used to pass additional data from one invoca-
tion to the next. Use of this argument frequently eliminates the necessity of
introducing global variables.

Premature Termination and Parallel Looping

It is natual to compare the two di�erent approachs to looping (iterators and
visitors) and to ask if there are problems that are more easily addressed using one
form than with the other. And indeed two common problems can be identi�ed
that are both more easily addressed using the iterator approach than using the
visitor technique.

The �rst situation arizes when it is desirable to halt a loop before it has
enumerated the entire range of values. This might occur, for example, if one
wanted to �nd the �rst element in a collection that satis�ed a given condition.
Such a loop is easy to write using an enumerator and the ability to break a loop
before it has completed:

Enumeration e = aList.elements();

while (e.hasMoreElements()) f
Object obj = e.nextElement();

if (... obj satifies condition ...)

break; // break out of loop

g

None of the visitor mechanisms allow the user to halt an iteration prema-

290 CHAPTER 15. CONTAINER CLASSES

turely, although the C++ STL library does provide a specialized form of visitor
designed for just this type of search (see following section).

The second common situation in which iterators seem to have an edge over
visitors occurrs when it is necessary to iterate over two collections in parellel,
operating on them element by element. This is easily accomplished by simply
combining the ending conditions for two iterators:

Enumeration e = listOne.elements();

Enumeration f = listTwo.elements();

while (e.hasMoreElements() && f.hasMoreElements()) f
Object objOne = e.nextElement();

Object objTwo = f.nextElement();

// ... operate on objOne and objTwo

g

The equivalent action cannot be achived using visitors without writing a
special-purpose parallel visitor routine.

Other Loop-like Activities

Languages that use the visitor mechanism, such as Smalltalk and C++, fre-
quently extend the model to provide other functionality that is based on looping.
For example, in Smalltalk it is simple to create a computation in which every
element is operated on in turn to produce a single �nal result. An example of
such a computation might be a summation of the elements of the collection. To
form this expression, the base element (the identity, such as zero for a summa-
tion) is combined with a two-argument block that de�nes the computation used
to generate the intermediate values:

sum <- aList inject: 0 into: [:x :y j x + y].

Each element if the collection (here, a list) is considered in turn. The block
is evaluated using the current result (initially, the identity argument) and the
collection element. The �nal result will be the value yielded by the block after
the last element is considered.

Another example, this time from C++, is the generic function �nd if. Just
as with for each, this function takes as argument a pair of iterators and a func-
tion object. This time, however, the function object must return a boolean
(true/false) value. Each element of the collection is tested in turn. When the
�rst element for which the function object returns true is encountered the func-
tion will halt and the corresponding iterator will be returned. In this way the
�rst element that satis�es a property can be found. If no element satisfying the
property is found the ending iterator is returned.

class BiggerThan12 f

15.4. ITERATION 291

// function object that �nds a value larger than 12

public:

bool operator () (int x)

f
return x > 12;

g
g

list<int>::iterator start = aList.begin();

list<int>::iterator stop = aList.end();

start = find if (start, stop, BiggerThan12());

if (start != stop) // found it

...

Summary

The development of reusable container abstractions illustrates both the power
and the limitation of object-oriented techniques. Container classes are relatively
easy to de�ne in dynamically typed languages, but as is true of many other
features of such languages the dynamic typing hinders the detection of typing
errors at compile time. Statically typed languages have better static error de-
tection abilities, but the static typing interfers with the development of reusable
abstractions.

advantages disadvantages
dynamically easy to de�ne poor static
typed language reusable classes error detection
statically good static strong typing complicates
typed language error detection developing reusable abstractions

One way to resolve the conict between static typing and reusability is to
use the principle of substitution. In this chapter we have examined two di�erent
approaches that both make use of this mechanism. The �rst stores values in
variables of type Object (or TObject in Delphi) which is the root of the inheritance
hierarhcy. By the principle of substitution any object value can be stored in
such a variable, but must be downcast to the correct type when it is accessed or
removed from the container. The second approach stores elements in a speci�c
class type, and uses substitution combined with method overriding to specialize
the behavior.

advantages disadvantages
Substitution and Works for most Speci�c types required
down casting objects in cast expressions
Substitution and No cast Only works with
method overriding expressions methods known in advance

292 CHAPTER 15. CONTAINER CLASSES

There are negatives to both approaches. Cast expressions, required for down-
casting, require putting explicit types into code. Having to name explicit types
is often considered to violate the spirit of the object-oriented philosophy. On
the other hand, using method overriding is only possible if the developer of the
container abstraction can predict ahead of time how the objects stored in the
container will be used.

An alternative approach that does not use the principle of substitution is the
mechanism of template, or generic classes. A template can be thought of as a
type parameter. Using templates the developer of a container abstraction need
not know the type of elements that will be stored in the container. The �nal
element types must then be speci�ed by the user of the containers. Conceptually
templates provide an elegant solution to the container class problem, however in
practice the implementation of the template mechanism tends to be exceedingly
complex, and the error messages that result from incorrect usage are often cryptic
and misleading.

advantages disadvantages
Template works with all implementation is complex
(or generic) data types error messages often cryptic

An entirely di�erent problem that must be addressed in the creation of
reusable container abstractions is the issue of iteration. How can the devel-
oper of a container class allow users to form a loop that will iterate over the
elements in the container without exposing the inner implementation details for
the container.

In the object-oriented languages we are considering there are two broad cat-
egories of solution to this problem. The �rst is to form iterators. An iterator
is a specialized object whose sole purpose is to provide a means of forming a
loop. Using the fact that many di�erent implementations can be provided for
the same interface, containers can each de�ne a specialized iterator that imple-
ments a common interface in a unique way. The same type of loop can then be
written for any container.

An alternative to an iterator is a visitor. The visitor mechanism bundles
the actions to be performed, and passes them to the container, which in turn
executes the actions using each element as argument in turn. The visitor is not
as general as an iterator, and requires the ability to encapsulate a sequence of
statements into a bundle.

Further Information

The data structure textbooks in C++ and in Java that I am most familiar with
are [Budd 1998] and [Budd 2000], respectively. Collection classes in Smalltalk-
80 are described in [Goldberg 1983]. A discussion of how bounded generics are
used in Ei�el data structures is presented in [Meyer 1994].

EXERCISES 293

Study Questions

Exercises

1. Argue whether container classes represent a success or a failure of object-
oriented programming techniques.

2. Data structures can be divided into those that are characterized by their
implementation (linked lists, trees) and those that are characterized by
their purpose (stacks, sets). Describe how object-oriented programming
techniques can be used to simplify the latter, hiding the implementation
details. Give an illustration of a data structure with one interface and two
very di�erent implementations.

3. Give an example application of a heterogeneous container{that is, one with
many di�erent types of values.

4. The Smalltalk approach to iteration is to bundle the action to be performed
and hand it to the data structure; in contrast, an iterator is a data structure
that hands values one by one back to a statement performing a certain
action. Would it be possible to implement the Smalltalk approach in a
di�erent programming language, such as Object Pascal or C++? Does
static typing get in the way?

5. Give an example application for templates that is not associated with con-
tainer classes.

