212
11.6 Covariance and Contravariance

Frequently it seems as if it would be useful if the type signature of a method in
a child class could be different from that found in the parent class. A common
example, one we will explore in a subsequent section, is a method equals used
to compare two objects. Since normally one is only interested in comparing
objects of the same type, it would seem to make sense that the argument in the
child class should be the child class type. Unfortunately, the whole concept of
changing type signatures is fraught with subtle difficulties, as we will explore in
this section.

One seldom wants to change the type signatures arbitrarily, but typically
move either up or down the type hierarchy. The term covariant change is used
when a type moves down the type hierarchy, in the same direction as the child
class. The term contravariant is used for the opposite, when a type moves
up the class hierarchy, in the opposite direction as subclassing. These two are
shown in the following class hierarchy, where in the child class the first argument
(named covar) moves from Mammal to the more specific type Cat, while the
second argument is changed in a contravariant fashion to the more general type
Animal:

Parent
test (covar : Mammal, contra : Mammal) : boolean

i

Child
test (covar : Cat, contra : Animal) : boolean

The impact of covariant or contravariant change is complicated by the fact
that types can be used in a variety of different ways. The effect of changing
a pass-by-value parameter is different from the effect of changing a pass-by-
reference parameter, which is in turn different from the effect of changing the
return type for a procedure. For this reason it is slightly easier to think about
the problem using sets, and consider the relationships between the set of values
are are acceptable (for example, as an argument) to the parent in relationship
to the set of values that are acceptable to the child.

We first consider what can happen if the set of values acceptable to the child
is smaller than the set of values acceptable to the parent. This can happen,
for example, in a covariant change to a pass-by-value parameter. (The parent
class has a parameter of type Mammal, and the child class restricts the same
parameter to the type Cat).

11.6. COVARIANCE AND CONTRAVARIANCE 213

~

acceptable to parent

acceptable to child

_ %

A problem occurs when this covariant change runs into the principle of sub-
stitution. According to the principle of substitution, we should be able to create
a value using as declaration the parent type, but assign it a value from the child
class:

Parent aValue = new Child();
aValue.test(new Dog(), new Mammal()); // note type of first argument

As far as the compiler is concerned, the first argument is perfectly accept-
able, since the declaration insists only that the value be type Mammal. But the
invocation will bind the message to the method in the child class, which is pre-
pared only to accept values of type Cat. The result will almost certainly result
in completely erroneous and catastrophic results.

It is occasionally proposed that run-time checks could be used to detect this
condition, allowing at least a graceful error reporting, albeit at run-time rather
than at compile time. However, note that such checks are never necessary when
the child is being used as an instance of the child class, but are only necessary
when the child is being used as an instance of the parent class. Thus, in a
large percentage, perhaps the majority, of cases such run-time checks would be
superfluous.

An error will not occur in the opposite case, where a contravariant change
to a by-value parameter increases the range of values the child class is willing
to handle. In this case neither the parent class nor the child class can pass an
unacceptable value to the method.

acceptable to child

acceptable to parent

\ /

214

However, that is only true for pass-by-value parameters. When we consider
a change to the result type of a method the situation is exactly the reverse.
Suppose a method in the parent class returns a value of type Mammal, and the
child class includes a contravariant change that extends this to Animal, thereby
making the set of values acceptable to the child larger than the set of values
acceptable to the parent. Once again we run into problems with the principle of
substitution. It would be perfectly legal for the child class to return a value of
type Bird, since locally a bird satisfies the typing restrictions.

class Parent {
Mammal test () {
return new Cat();
}

}

class Child extends Parent {
Animal test (O {
return new Bird();
}

But it is also legal for a variable of the parent class to hold an instance of the
child class, and for the result of executing the method in question to be assigned
to a variable of type Mammal, since as far as the compiler is concerned the result
of the method fits that class designation.

Parent aValue = new Child();
Mammal result = aValue.test();

The consequence will be the variable of type Mammal holding a non-mammal
value, with no typing error having been reported.

A pass-by-reference parameter can be used to pass information both into
and out of a procedure. Therefore both of these errors could arise if any change
whatsoever is permitted in such a value.

It is possible to specify a language so that both covariant and contravariant
overriding is permitted in certain situations. Example of languages that permit
this include Eiffel [Rist 1995] and Sather [?]. However, most language designers
have opted to avoid this problem altogether by using a rule that might be termed
novariance, namely, that a child class is not allowed to change the type signature
of an overridden method in any fashion.

Equality Testing

The example where covariant modification of type signatures often seems most
compelling is in the implementation of equality and comparison tests. Examining

11.6. COVARIANCE AND CONTRAVARIANCE 215

this situation will provide a concrete illustration of the problems that can arize.

Imagine we have the following class hierarchy, where the equals method in
the parent class always returns false, whereas the overridden method in the child
classes correctly handle the comparison of triangles to triangle and of squares to
squares.

Shape
equals (arg : Shape)

Square Triangle
equals (arg : Square) equals (arg : Triangle)

In the imaginary language we envision here, consider what meaning might
be assigned to an attempt to compare a triangle to a square:

Triangle aTriangle;
Square aSquare;

if aTriangle.equals(aSquare)

There are two possibilities:

e The search for a method is based solely on the receiver, a triangle, and
yields the trangle method, which requires a triangle as argument. Thus,
the use of a square as argument results in a compiler error.

e The search for a method is based both on the receiver and on the argument
type signatures. Since the argument does not match the method in class
Triangle, the method in the parent class Shape is then invoked.

Selecting either interpretation leads to trouble as soon as we consider the
principle of substitution. Suppose we create a shape variable and assign it the
triangle value. Comparing the triangle and the shape is then effectively com-
paring a value to itself. But the first interpretation results in an error, and the
second interpretation results in the nonsensical result that the value is not equal
to itself.

Shape aShape = aTriangle;
if aTriangle.equals(aShape)

A similar incongruity occurs if the parent variable is used as the receiver.
Since the only reasonable method to use is the one defined in the parent class,
the test yields an unexpected false value:

216

if aShape.equals(aShape)

Both because the implementation of either covariant or contravariant overrid-
ing is complex and because the semantics are cloudy, almost all object-oriented
languages prohibit any modification of argument types in overridden methods.
To get around this restriction, programmers most often result to explicit tests
and casts, as in the following C++ example:

boolean Triangle.equals (Shape & aShape)
{
Triangle & right = dynamic_cast<Triangle>(aShape) ;
if (right) { // it was a triangle
// ... do triangle comparison
} else // it was not a triangle
return false;

It is important to point out that we have been here discussing overriding,
where there is a polymorphic relationship between the methods in the parent
and child classes. Some languages, such as C++ and Java, permit function
overloading, wherein the programmer is allowed to write two functions using the
same name, as long as the function signatures are different. The disambiguation
of a function call on an overloaded method uses an entirely different mecha-
nism from the object-oriented disambiguation of an overridden method. We will
consider overloading in more detail in Chapter 77.

