
Part I

Understanding the

Object-Oriented World View

11

Chapter 1

Object-Oriented Thinking

This is a book about object-oriented programming. In particular, this is a book that explores
the principle ideas of object-oriented programming in the context of the Java programming
language. Object-oriented programming has been a hot topic for over a decade, and more
recently Java has become the commonly perceived embodiment of object-oriented ideas.
This book will help you understand Java. It makes no pretensions to being a language
reference manual; there are many other books that fall into that category. But knowing the
syntax for a language should not be confused with an understanding of why the language
has been developed in the way it has, why certain things are done the way they are, or why
Java programs look the way they do. This book explores this issue of why.

Object-oriented programming is frequently referred to as a new programming paradigm.
The word paradigm originally meant example, or model. For example, a paradigm sentence
would help you remember how to conjugate a verb in a foreign language. More generally,
a model is an example that helps you understand how the world works. For example, the
Newtonian model of physics explains why apples fall to the ground. In computer science, a
paradigm explains how the elements that go into making a computer program are organized
and how they interact with each other. For this reason the �rst step in understanding Java
is appreciating the object-oriented world view.

1.1 A Way of Viewing the World

To illustrate the major ideas in object-oriented programming, let us consider how we might
go about handling a real-world situation and then ask how we could make the computer
more closely model the techniques employed. Suppose I wish to send owers to a friend who
lives in a city many miles away. Let me call my friend Sally. Because of the distance, there is
no possibility of my picking the owers and carrying them to her door myself. Nevertheless,
sending her the owers is an easy enough task; I merely go down to my local orist (who

13

14 CHAPTER 1. OBJECT-ORIENTED THINKING

ME Flora

@
@

Sally's Florist

 Wholesaler

Flower Arranger

�
�

E
E
E
E
E
E

Delivery PersonSally

Grower

�
�

Gardeners

C
C

Figure 1.1: The community of agents helping me

happens to be named Flora), tell her the variety and quantity of owers I wish to send and
give her Sally's address, and I can be assured the owers will be delivered expediently and
automatically.

1.1.1 Agents and Communities

At the risk of belaboring a point, let me emphasize that the mechanism I used to solve my
problem was to �nd an appropriate agent (namely, Flora) and to pass to her a message

containing my request. It is the responsibility of Flora to satisfy my request. There is some
method{some algorithm or set of operations{used by Flora to do this. I do not need to know
the particular method she will use to satisfy my request; indeed, often I do not want to
know the details. This information is usually hidden from my inspection.

If I investigated however, I might discover that Flora delivers a slightly di�erent message
to another orist in my friend's city. That orist, in turn, perhaps has a subordinate who
makes the ower arrangement. The orist then passes the owers, along with yet another
message, to a delivery person, and so on. Earlier, the orist in Sally's city had obtained
her owers from a ower wholesaler who, in turn, had interactions with the ower growers,
each of whom had to manage a team of gardeners.

So, our �rst observation of object-oriented problem solving is that the solution to my
problem required the help of many other individuals (Figure 1.1). Without their help, my
problem could not be easily solved. We phrase this in a general fashion as the following:

An object oriented program is structured as a community of interacting agents,
called objects. Each object has a role to play. Each object provides a service, or
performs an action, that is used by other members of the community.

1.1. A WAY OF VIEWING THE WORLD 15

1.1.2 Messages and Methods

The chain reaction that ultimately resulted in the solution to my program began with my
request to Flora. This request lead to other requests, which lead to still more requests,
until my owers ultimately reached my friend. We see, therefore, that members of this
community interact with each other by making requests. So, our next principle of object-
oriented problem solving is the vehicle by which activities are initiated:

Action is initiated in object-oriented programming by the transmission of a mes-

sage to an agent (an object) responsible for the action. The message encodes the
request for an action and is accompanied by any additional information (argu-
ments) needed to carry out the request. The receiver is the object to whom the
message is sent. If the receiver accepts the message, it accepts the responsibility
to carry out the indicated action. In response to a message, the receiver will
perform some method to satisfy the request.

We have noted the important principle of information hiding in regard to message
passing{that is, the client sending the request need not know the actual means by which the
request will be honored. There is another principle, all too human, that we see is implicit in
message passing. If there is a task to perform, the �rst thought of the client is to �nd some-
body else he or she can ask to do the work. This second reaction often becomes atrophied
in many programmers with extensive experience in conventional techniques. Frequently,
a di�cult hurdle to overcome is the idea in the programmer's mind that he or she must
write everything and not use the services of others. An important part of object-oriented
programming is the development of reusable components, and an important �rst step in the
use of reusable components is a willingness to trust software written by others.

Information hiding is also an important aspect of programming in conventional lan-
guages. In what sense is a message di�erent from, say, a procedure call? In both cases,
there is a set of well-de�ned steps that will be initiated following the request. But, there
are two important distinctions.

The �rst is that in a message there is a designated receiver for that message; the receiver
is some object to which the message is sent. In a procedure call, there is no designated
receiver.

The second is that the interpretation of the message (that is, the method used to respond
to the message) is dependent on the receiver and can vary with di�erent receivers. I can give
a message to my wife Elizabeth, for example, and she will understand it and a satisfactory
outcome will be produced (that is, owers will be delivered to my friend). However, the
method Elizabeth uses to satisfy the request (in all likelihood, simply passing the request on
to Flora) will be di�erent from that used by Flora in response to the same request. If I ask
Kenneth, my dentist, to send owers to my friend, he may not have a method for solving
that problem. If he understands the request at all, he will probably issue an appropriate
error diagnostic.

16 CHAPTER 1. OBJECT-ORIENTED THINKING

Let us move our discussion back to the level of computers and programs. There, the
distinction between message passing and procedure calling is that, in message passing, there
is a designated receiver, and the interpretation{the selection of a method to execute in
response to the message{may vary with di�erent receivers. Usually, the speci�c receiver
for any given message will not be known until run time, so the determination of which
method to invoke cannot be made until then. Thus, we say there is late binding between
the message (function or procedure name) and the code fragment (method) used to respond
to the message. This situation is in contrast to the very early (compile-time or link-time)
binding of name to code fragment in conventional procedure calls.

1.1.3 Responsibilities

A fundamental concept in object-oriented programming is to describe behavior in terms of
responsibilities. My request for action indicates only the desired outcome (owers for my
friend). Flora is free to pursue any technique that achieves the desired objective and is not
hampered by interference on my part.

By discussing a problem in terms of responsibilities we increase the level of abstraction.
This permits greater independence between objects, a critical factor in solving complex
problems. The entire collection of responsibilities associated with an object is often described
by the term protocol.

A traditional program often operates by acting on data structures, for example chang-
ing �elds in an array or record. In contrast, an object oriented program requests data
structures (that is, objects) to perform a service. This di�erence between viewing software
in traditional, structured terms and viewing it from an object-oriented perspective can be
summarized by a twist on a well-known quote:

Ask not what you can do to your data structures,
but rather ask what your data structures can do for you.

1.1.4 Classes and Instances

Although I have only dealt with Flora a few times, I have a rough idea of the behavior I can
expect when I go into her shop and present her with my request. I am able to make certain
assumptions because I have information about orists in general, and I expect that Flora,
being an instance of this category, will �t the general pattern. We can use the term Florist
to represent the category (or class) of all orists. Let us incorporate these notions into our
next principle of object-oriented programming:

All objects are instances of a class. The method invoked by an object in response
to a message is determined by the class of the receiver. All objects of a given
class use the same method in response to similar messages.

1.1. A WAY OF VIEWING THE WORLD 17

'

&

$

%

Material Object'

&

$

%

Animal'

&

$

%

Mammal'

&

$

%

Human'

&

$

%

Shopkeeper'
&
$
%

Florist

Flora

Figure 1.2: { The categories surrounding Flora.

1.1.5 Class Hierarchies{Inheritance

I have more information about Flora{not necessarily because she is a orist but because
she is a shopkeeper. I know, for example, that I probably will be asked for money as part
of the transaction, and that in return for payment I will be given a receipt. These actions
are true of grocers, stationers, and other shopkeepers. Since the category Florist is a more
specialized form of the category Shopkeeper, any knowledge I have of Shopkeepers is also
true of Florists and hence of Flora.

One way to think about how I have organized my knowledge of Flora is in terms of a
hierarchy of categories (see Figure 1.2). Flora is a Florist, but Florist is a specialized form
of Shopkeeper. Furthermore, a Shopkeeper is also a Human; so I know, for example, that
Flora is probably bipedal. A Human is a Mammal (therefore they nurse their young and
have hair), and a Mammal is an Animal (therefore it breathes oxygen), and an Animal is a

18 CHAPTER 1. OBJECT-ORIENTED THINKING

Material Objects
������������

Animal Plant

Mammal Flower

Dog Human Platypus

HHHHHHHHHHHH

Shopkeeper Artist Dentist

�
�

��

@
@
@@

XXXXXXXXXXXXXX

Carnation

�
�
��

B
B
BB

HHHHHHH

Florist Potter

Flash Flora Elizabeth Kenneth Phyl Sally's owers

Figure 1.3: { A class hierarchy for various material objects.

Material Object (therefore it has mass and weight). Thus, quite a lot of knowledge that I
have that is applicable to Flora is not directly associated with her, or even with her category
Florist.

The principle that knowledge of a more general category is also applicable to a more
speci�c category is called inheritance. We say that the class Florist will inherit attributes of
the class (or category) Shopkeeper.

There is an alternative graphical technique often used to illustrate this relationship,
particularly when there are many individuals with di�ering lineage's. This technique shows
classes listed in a hierarchical tree-like structure, with more abstract classes (such asMaterial
Object or Animal) listed near the top of the tree, and more speci�c classes, and �nally
individuals, are listed near the bottom. Figure 1.3 shows this class hierarchy for Flora. This

1.1. A WAY OF VIEWING THE WORLD 19

same hierarchy also includes Elizabeth, my dog Flash, Phyl the platypus who lives at the
zoo, and the owers I am sending to my friend.

Information that I possess about Flora because she is an instance of class Human is also
applicable to my wife Elizabeth, for example. Information that I have about her because
she is a Mammal is applicable to Flash as well. Information about all members of Material
Object is equally applicable to Flora and to her owers. We capture this in the idea of
inheritance:

Classes can be organized into a hierarchical inheritance structure. A child class

(or subclass) will inherit attributes from a parent class higher in the tree. An
abstract parent class is a class (such as Mammal) for which there are no direct
instances; it is used only to create subclasses.

1.1.6 Method Binding, Overriding, and Exceptions

Phyl the platypus presents a problem for our simple organizing structure. I know that
mammals give birth to live children, and Phyl is certainly a Mammal, yet Phyl (or rather
his mate Phyllis) lays eggs. To accommodate this, we need to �nd a technique to encode
exceptions to a general rule.

We do this by decreeing that information contained in a subclass can override information
inherited from a parent class. Most often, implementations of this approach takes the form
of a method in a subclass having the same name as a method in the parent class, combined
with a rule for how the search for a method to match a speci�c message is conducted:

The search for a method to invoke in response to a given message begins with the
class of the receiver. If no appropriate method is found, the search is conducted
in the parent class of this class. The search continues up the parent class chain
until either a method is found or the parent class chain is exhausted. In the
former case the method is executed; in the latter case, an error message is issued.
If methods with the same name can be found higher in the class hierarchy, the
method executed is said to override the inherited behavior.

Even if the compiler cannot determine which method will be invoked at run time, in
many object-oriented languages, such as Java, it can determine whether there will be an
appropriate method and issue an error message as a compile-time error diagnostic rather
than as a run-time message.

That my wife Elizabeth and my orist Flora will respond to my message by di�erent
methods is an example of one form of polymorphism. We will discuss this important part
of object-oriented programming in Chapter 12. As explained, that I do not, and need not,
know exactly what method Flora will use to honor my message is an example of information

hiding.

20 CHAPTER 1. OBJECT-ORIENTED THINKING

1.1.7 Summary of Object-Oriented Concepts

Alan Kay, considered by some to be the father of object-oriented programming, identi�ed
the following characteristics as fundamental to OOP [Kay 1993]:

1. Everything is an object.

2. Computation is performed by objects communicating with each other, requesting that
other objects perform actions. Objects communicate by sending and receiving mes-

sages. A message is a request for action bundled with whatever arguments may be
necessary to complete the task.

3. Each object has its own memory, which consists of other objects.

4. Every object is an instance of a class. A class simply represents a grouping of similar
objects, such as integers or lists.

5. The class is the repository for behavior associated with an object. That is, all objects
that are instances of the same class can perform the same actions.

6. Classes are organized into a singly rooted tree structure, called the inheritance hier-

archy. Memory and behavior associated with instances of a class are automatically
available to any class associated with a descendant in this tree structure.

1.2 Computation as Simulation

The view of programming represented by the example of sending owers to my friend is very
di�erent from the conventional conception of a computer. The traditional model describing
the behavior of a computer executing a program is a process-state or pigeon-hole model. In
this view, the computer is a data manager, following some pattern of instructions, wandering
through memory, pulling values out of various slots (memory addresses), transforming them
in some manner, and pushing the results back into other slots (see Figure 1.4). By examining
the values in the slots, we can determine the state of the machine or the results produced by
a computation. Although this model may be a more or less accurate picture of what takes
place inside a computer, it does little to help us understand how to solve problems using the
computer, and it is certainly not the way most people (pigeon handlers and postal workers
excepted) go about solving problems.

In contrast, in the object-oriented framework we never mention memory addresses, vari-
ables, assignments, or any of the conventional programming terms. Instead, we speak of
objects, messages, and responsibility for some action. In Dan Ingalls's memorable phrase:

Instead of a bit-grinding processor...plundering data structures, we have a uni-
verse of well-behaved objects that courteously ask each other to carry out their
various desires [Ingalls 1981].

1.2. COMPUTATION AS SIMULATION 21

"!

��� "!

���

a[1]: a[2]: a[3]: a[4]:
4 6 2 4

x:

47

i: j:
2 3

Figure 1.4: { Visualization of imperative programming.

Another author has described object-oriented programming as \animistic": a process of
creating a host of helpers that form a community and assist the programmer in the solution
of a problem [Actor 1987].

This view of programming as creating a \universe" is in many ways similar to a style
of computer simulation called \discrete event-driven simulation." In brief, in a discrete
event-driven simulation the user creates computer models of the various elements of the
simulation, describes how they will interact with one another, and sets them moving. This
is almost identical to the average object-oriented program, in which the user describes what
the various entities in the universe for the program are, and how they will interact with one
another, and �nally sets them in motion. Thus, in object-oriented programming, we have
the view that computation is simulation [Kay 1977].

1.2.1 The Power of Metaphor

An easily overlooked bene�t to the use of object-oriented techniques is the power ofmetaphor.
When programmers think about problems in terms of behaviors and responsibilities of ob-
jects, they bring with them a wealth of intuition, ideas, and understanding from their ev-
eryday experience. When envisioned as pigeon holes, mailboxes, or slots containing values,
there is little in the programmer's background to provide insight into how problems should
be structured.

Although anthropomorphic descriptions such as the quote by Ingalls may strike some
people as odd, in fact they are a reection of the great expositive power of metaphor.
Journalists make use of metaphor every day, as in the following description of object-oriented
programming from Newsweek:

22 CHAPTER 1. OBJECT-ORIENTED THINKING

Unlike the usual programming method{writing software one line at a time{
NeXT's \object-oriented" system o�ers larger building blocks that developers
can quickly assemble the way a kid builds faces on Mr. Potato Head.

Possibly it is this power of metaphor, more than any other feature, that is responsible
for the frequent observation that it is often easier to teach object-oriented programming
concepts to computer novices than to computer professionals. Novice users quickly adapt
the metaphors with which they are already comfortable from their everyday life, whereas
seasoned computer professionals are blinded by an adherence to more traditional ways of
viewing computation.

As you start to examine the Java programs presented in the book, as well as creating
your own Java programs, you may �nd it useful to envision the process of programming as
similar to the task of \training" a universe of agents to interact smoothly with each other,
each providing a certain small and well de�ned service to the others, each contributing to
the e�ective execution of the whole. Think about how you have organized communities
of individuals, such as a club or committee. Each member of the group is given certain
responsibilities, and the achivement of the goals for the organization depend upon each
member ful�lling their role.

1.3 Chapter Summary

� Object-oriented programming is not simply a few new features added to programming
languages. Rather, it is a new way of thinking about the process of decomposing
problems and developing programming solutions.

� Object-oriented programming views a program as a collection of loosely connected
agents, termed objects. Each object is responsible for speci�c tasks. It is by the
interaction of objects that computation proceeds. In a certain sense, therefore, pro-
gramming is nothing more or less than the simulation of a model universe.

� An object is an encapsulation of state (data values) and behavior (operations). Thus,
an object is in many ways similar to a module or an abstract data type.

� The behavior of objects is dictated by the object class. Every object is an instance of
some class. All instances of the same class will behave in a similar fashion (that is,
invoke the same method) in response to a similar request.

� An object will exhibit its behavior by invoking a method (similar to executing a
procedure) in response to a message. The interpretation of the message (that is, the
speci�c method used) is decided by the object and may di�er from one class of objects
to another.

Further Reading 23

� Objects and classes extend the concept of abstract data types by adding the notion
of inheritance. Classes can be organized into a hierarchical inheritance tree. Data
and behavior associated with classes higher in the tree can also be accessed and used
by classes lower in the tree. Such classes are said to inherit their behavior from the
parent classes.

� Designing an object oriented program is like organizing a community of individuals.
Each member of the community is given certain responsibilities. The achivement of
the goals for the community as a whole come about through the work of each member,
and the interactions of members with each other.

� By reducing the interdependency among software components, object-oriented pro-
gramming permits the development of reusable software systems. Such components
can be created and tested as independent units, in isolation from other portions of a
software application.

� Reusable software components permit the programmer to deal with problems on a
higher level of abstraction. We can de�ne and manipulate objects simply in terms of
the messages they understand and a description of the tasks they perform, ignoring
implementation details.

Further Reading

I said at the beginning of the chapter that this is not a reference manual. The reference
manual written by the developers of the language is [Gosling 96]. But perhaps even more
useful for most programmers is the annotated description of the Java class library pre-
sented by [Chan 96]. Information on the internal workings of the Java system is presented
by [Lindholm 97].

I noted earlier that many consider Alan Kay to be the father of object-oriented pro-
gramming. Like most simple assertions, this one is only somewhat supportable. Kay
himself [Kay 1993] traces much of the inuence on his development of Smalltalk to the
earlier computer programming language Simula, developed in Scandinavia in the early
1960s [Dahl 1966]. A more accurate history would be that most of the principles of object-
oriented programming were fully worked out by the developers of Simula, but that these
would have been largely ignored by the profession had they not been rediscovered by Kay
in the creation of the Smalltalk programming language. I will discuss the history of OOP
in more detail in the next chapter.

Like most terms that have found their way into the popular jargon, object-oriented is used
more often than it is de�ned. Thus, the question What is object-oriented programming?
is surprisingly di�cult to answer. Bjarne Stroustrup has quipped that many arguments
appear to boil down to the following syllogism:

� X is good.

24 CHAPTER 1. OBJECT-ORIENTED THINKING

� Object-oriented is good.

� Ergo, X is object-oriented [Stroustrup 1988].

Roger King argued [Kim 1989], that his cat is object-oriented. After all, a cat exhibits char-
acteristic behavior, responds to messages, is heir to a long tradition of inherited responses,
and manages its own quite independent internal state.

Many authors have tried to provide a precise description of the properties a program-
ming language must possess to be called object-oriented. I myself have written an earlier
book ([Budd 97]) that tries to explain object-oriented concepts in a language-indepent fash-
ion. See also, for example, the analysis by Josephine Micallef [Micallef 1988], or Peter
Wegner [Wegner 1986]. Wegner, distinguishes object-based languages, which support only
abstraction (such as Ada), from object-oriented languages, which must also support inheri-
tance.

Other authors{notably Brad Cox [Cox 1990]{de�ne the term much more broadly. To
Cox, object-oriented programming represents the objective of programming by assembling
solutions from collections of o�-the-shelf subcomponents, rather than any particular tech-

nology we may use to achieve this objective. Rather than drawing lines that are divisive, we
should embrace any and all means that show promise in leading to a new software Industrial
Revolution. Cox's book on OOP [Cox 1986], although written early in the development of
object-oriented programming and now somewhat dated in details, is nevertheless one of the
most readable manifestos of the object-oriented movement.

Study Questions

1. What is the original meaning of the word paradigm?

2. How do objects interact with each other?

3. How are messages di�erent from procedure calls?

4. What is the name applied to describe an algorithm an object uses to respond to a
request?

5. Why does the object-oriented approach naturally imply a high degree of information
hiding?

6. What is a class? How are classes linked to behavior?

7. What is a class inheritance hierarchy? How is it linked to classes and behavior?

8. What does it mean for one method to override another method from a parent class?

9. What are the basic elements of the process-state model of computation?

Further Reading 25

10. How does the object-oriented model of computation di�er from the process-state
model?

11. In what way is a object oriented program like a simulation?

Exercises

1. In an object-oriented inheritance hierarchy, each level is a more specialized form of
the preceding level. Give an example of a hierarchy found in everyday life that has
this property. Some types of hierarchy found in everyday life are not inheritance
hierarchies. Give an example of a hierarchy that is not an inheritance hierarchy.

2. Look up the de�nition of paradigm in at least three dictionaries. Relate these de�ni-
tions to computer programming languages.

3. Take a real-world problem, such as the task of sending owers described earlier, and
describe its solution in terms of agents (objects) and responsibilities.

4. Consider an object in the real world, such as a pet animal. Describe some of the
classes, or categories, to which the object belongs. Can you organize these categories
into an inheritance hierarchy? What knowledge concerning the object is represented
in each category?

5. If you are familiar with two or more distinct computer programming languages, give
an example of a problem showing how one language would direct the programmer to
one type of solution, and a di�erent language would encourage an alternative solution.

6. Argue either for or against the position that computing is basically simulation. (You
may want to read the article by Alan Kay in Scienti�c American [Kay 1977].)

