
Chapter 5

The Class De�nition

The most obvious area of similarity between Java and C++ is in the structure of a class
de�nition. However, although there are obvious super�cial similarities between the two,
there are behind these a host of both syntactic and subtle semantic di�erences. In this
chapter, and in subsequent chapters, we will explore some of these di�erences.

5.1 Obvious Similarities

A class de�nition in Java (Figure 5.1) is similar to a class de�nition in C++ (Figure 5.2) in
that they both begin with the keyword class, and they are both demarcated by a pair of
curly braces.

Then there are di�erences. Some di�erences are reasonably minor. Class de�nitions
in C++ are statements, and must end with a semicolon. Class de�nitions in Java have no
semicolon. Class de�nitions in C++ are divided into major sections by the keywords private,
protected and public, which are sectioning commands followed by a colon. Java applies
these modi�ers to each data �eld or method individually, omitting the colon. Java uses
the keyword extends to indicate inheritance from a parent class, C++ uses a colon and the

class box f

public box (int v) f val = v; g
public int value() f return val; g

private int val;

g

Figure 5.1: A Typical Class De�nition in Java

71

72 CHAPTER 5. THE CLASS DEFINITION

class box f
public:

box (int v) f val = v; g
int value() f return val; g

private:

int val;

g;

Figure 5.2: A Typical Class De�nition in C++

keyword public. (In Chapter 6 we will point out that the keywords private or protected could
also be used here, although the meaning is then slightly di�erent). Java permits the modi�er
public to be applied to an entire class, whereas all classes in C++ have this attribute. (The
more important di�erence is between classes that are not declared as public in Java. The
closest C++ equivalent to these is produced using a non-public namespace, a relatively recent
addition to the C++ language. See Section 12.7 for a discussion of namespaces.)

Once past the minor di�erences, we enter the realm of more substantive issues. The
following sections will explore many of these.

5.2 Separation of Class and Implementation

A class de�nition in Java is a single unit, and everything related to the class is found between
the opening and closing curly brace. In C++, on the other hand, the class de�nition is only
the starting point, de�ning only the structure and interface for the class. Many features
associated with the class will be found outside the class de�nition, sometimes even outside
the �le in which the class de�nition appears.

In Java all methods are de�ned within the class itself. In C++ this is true only for the
smallest methods. Furthermore, there is a semantic di�erence between methods de�ned
within a class and those not.

A method that is provided with a de�nition as part of the class body is called an inlineDefine

Invoking an

inline method

does not gen-

erate a func-

tion call, but

rather

expands the

body at the

point of call

method. Such a method may (at the discretion of the C++ compiler) be expanded in-line
at the point of call. That is, when the method function is invoked, rather than issuing a
function call instruction, the compiler may elect to expand the body of the method directly
into the code being produced for the caller.

The advantage of expanding a method in-line is one of speed, as such a function avoids
the overhead of a procedure call statement. This advantage is purchased at a price of space
and complexity. The code for the caller may become larger, and the code is (internally to
the compiler at least, if not for the programmer) more complex. For this reason, in-line
de�nitions should only be used for short method bodies. A good rule of thumb is to only

Rule Only

use

in-line de�ni-

tions for

methods that

are short

use in-line de�nitions for assignment statements and return statements, or at most a single

5.2. SEPARATION OF CLASS AND IMPLEMENTATION 73

conditional statement. Never use an in-line de�nition for a code fragment that contains a
loop or a recursive function call.

When methods are not de�ned in-line, they must be provided with a de�nition elsewhere. Note
Method

de�nitions in

C++ can be

separate from

the class de�-

nition

Since methods in di�erent classes may have the same name, the method de�nition must be
tied to the appropriate class. This is accomplished by de�ning a method using a fully

quali�ed function name. The following illustrates this:

void Link::addBefore (int val, List � theList)

f
// create a new link

Link � newLink = new Link(val, this, backwardLink);

// put it into the appropriate place

if (backwardLink == 0) // replacing �rst element in list

theList->firstLink = newLink;

else f // inserting into the middle of the list

backwardLink->forwardLink = newLink;

backwardLink = newLink;

g
g

The double colon indicates that full quali�cation is being employed. The pre�x indicates
the class (Link, in this example) while the text after the double colon indicates the function
name (addBefore). This method de�nition appears outside the class de�nition itself. The
quali�ed name can be thought of as similar to a persons full name; the name Tom Smith
identi�es a unique individual better than simply the �rst name Tom, which may have many
di�erent associations.

5.2.1 Interface and Implementation Files

A further form of separation in C++ involves the division of a program into multiple �les. Note Im-

plementa-

tions will of-

ten be in a

di�erent �le

than the class

de�nition

A class that is used in many �les is normally described in an interface �le. Traditionally
the extension .h is used in the interface �le name. The interface �le describes just the bare
bones information concerning the services provided by a class, but not how the class goes
about implementing that behavior. Method bodies are found in a separate �le, called the
implementation �le. Traditionally implementation �les are named by �le names ending in
.cpp or .c++.

C++ is much less concerned than Java with the relationship between class and �le names. Warning

In C++ a

class need not

be de�ned in

a �le with the

same name

It is not necessary that a class be de�ned in a �le of the same name, although adopting this
as a convention certainly makes �le management a little bit easier.

Every �le that must use a class will include the appropriate interface �le, using a state-
ment such as the following:

74 CHAPTER 5. THE CLASS DEFINITION

include <libClass.h>

include "myClass.h"

The brackets surrounding the �le name are used to indicate where the requested interface
�le is to be found. Angle brackets indicate \system" interface �les, those that are provided as
part of standard libraries, and are found in the designated location for such libraries. Quote
marks are used for immediate interface �les, those that are found in the same directory as
the program being compiled.

The include statement di�ers from the import statement in Java, in that the include
statement performs a textual inclusion of the given �le at the point where the include
statement is written. Note also that there is no semicolon following an include statement,
while a semicolon is necessary following an import statement in Java.

5.2.2 The inline directive

Normally class de�nitions are found in an interface �le, and methods are found in an im-
plementation �le. For classes an exception is made if a class is used in only one �le, when
it can simply be written in the implementation �le. Similarly, method implementations will
occasionally be written in an interface �le. When they are, an inline directive can be used
to indicate that the function can be expanded in-line at a point of call, exactly as if the
method had been written in a class description.

Inline methods are most often necessary to overcome the more stringent naming restric-
tions in C++. Names in general in C++ must be known to the compiler at the �rst point they
are used. In Java, on the other hand, names can often be de�ned subsequent to their �rst
use. Often a method may need to access another feature that is not known at the time the
class de�nition is processed, but is known shortly thereafter. In such cases the de�nition
of the name is given between the class de�nition and the description of the method body.
If the method body is su�ciently short, it can then be marked as inline. We will see an
example of this later in this chapter.

Template methods (see Chapter 9) are also normally found in an interface �le, regardless
of their size.

Virtual methods (see Chapter 4) should not be declared as inline, as the compiler is not
able to produce in-line code even if requested by the user.

5.2.3 Prototypes

Another common feature found in an interface �le is a list of function prototypes. In order
to perform strong type checking, function type signatures must be known before a function
can be invoked. A function type signature is a description of the types of all the arguments,Define

A type signa-

ture describes

the argument

and re-

turn types of

a function

as well as the return type for a function.
A function prototype is simply a function heading, with the function body and, option-

ally, the argument names removed. Thus, the only information conveyed by the prototype

5.2. SEPARATION OF CLASS AND IMPLEMENTATION 75

is the function name, the argument types and the result type. The following are some
examples:

int max (int, int);

int min (int a, int b); // argument names are optional

complex abs (complex &); // can use user de�ned types

bool operator < (distance &, distance &); // prototype for operator

Some C++ compilers will issue warnings if a function is de�ned without a prior prototype
directive.

A curious holdover from the C world is occasionally encountered. In earlier versions of
C a prototype with an empty argument list, such as the following:

int fun ();

only indicated the existence of a function by the given name. No information concerning the
arguments, if any, was implied. Instead, to indicate that the function took no arguments,
it was necessary to explicitly indicate the fact, using the keyword void:

int fun (void); // no arguments, returns an int

The language C++ recognizes both declarations, but unlike C assumes that if no argu-
ments are given, none are required.

5.2.4 External Declarations

The extern modi�er to a declaration indicates that a global variable is de�ned in another Note A

variable that

is used in two

or more �les

must be de-

clared exter-

nal

�le, but will be used in the current �le:

extern int size;

extern char buffer[]; // array limits don't have to be given

extern ObjectType anObject;

The declaration informs the linker that the value being named is used in two or more
�les, but should nevertheless refer to only one object. Such declarations are most generally
found in header �les, although there is no restriction on their appearing in implementation
�les.

Another form of the statement is used to indicate that a C++ program is being linked
with a function written in a di�erent language.

// declare strcmp is written in C, not C++

extern "C" int strcmp (const char �, const char �);

76 CHAPTER 5. THE CLASS DEFINITION

5.3 Forward References

The C++ language resolves names at the point they are used. This means that when aNote Both

func-

tion and class

names must

be de�ned be-

fore they can

be used

class name is used, say in a declaration, the name must already be known to be a class.
Similarly when a function is invoked, a declaration (in prototype at least) for the function
must already have been seen. In Java, on the other hand, references are resolved only after
an entire �le has been processed.

Prototypes are used to get around the problem of function de�nitions. For classes the
language permits a forward declaration. A forward declaration asserts that a particular name
represents a class, but gives no further information. Such a declaration permits pointers to
be declared to the class, but not invoke methods de�ned by the class nor the creation of
instances of the class.

To illustrate, assume we wish to implement a linked list abstraction, using two classes,
List and Link. Instances of Listwill simply reference the �rst Link in the collection. Thereafter
each link will point to the next, and to the previous:

a list

link link link link

?

- - -
� � �

The class List must include a pointer to a Link, however the class Link might also want
to reference features in List. In the example we illustrate this possibility by writing the
method addBefore, which adds a new value immediately before a given link. The code for
this method was presented earlier. The solution to the referencing problem is to �rst provide
a forward declaration for the Link class before the de�nition of List. The forward de�nition
is su�cient to permit the declaration of a data �eld holding a pointer to an object of type
Link, although not the execution of any methods associated with the class:

class Link; // forward declaration

class List f
public:

...

private:

Link � firstLink; // permitted, since class Link is declared

5.4. CONSTRUCTORS AND INITIALIZATION 77

void push front (int val);

g;

class Link f // now provide the full link implementation

public:

// data �elds are public

int value;

Link � forwardLink;

Link � backwardLink;

// constructor de�ned in-line

Link (int v, Link � f, Link � b)

f
value = v;

forwardLink = f;

backwardLink = b;

g

// prototype, de�nition given elsewhere

// requires knowledge of class List

void addBefore (int val, List � theList);

g;

This situation, where we have a pair of mutually recursive classes, is a common places
where an explicitly inline method de�nition is appropriate. For example, the method
push front in class List is a suitable candidate for inlining, but can only be written once
the class de�nition for Link has been seen, since it uses methods from that class:

inline void List::push front (int val)

f
if (firstElement == 0) // adding to empty list

firstElement = new Link(val, 0, 0);

else // else add before �rst element

firstElement->addBefore(val, this);

g

5.4 Constructors and Initialization

Constructors in Java and in C++ are designed to serve the same purpose, namely to tie Define

Constructors

tie together

the tasks of

creation and

initialization

together the two tasks of creation and initialization, thereby ensuring that no value is

78 CHAPTER 5. THE CLASS DEFINITION

created without being initialized, and that no value is initialized more than once. In both
languages a constructor is written as a method that shares the same name as a class. Beyond
these similarities, there are a number of important di�erences.

5.4.1 Default and Copy constructors

In C++ two types of constructors are used not only for explicit initialization associated with
a declaration statement, but also implicitly for a variety of situations that occur during the
course of execution. These two constructor patterns are given special names.Rule All

class de�ni-

tions should

include

both a default

and copy con-

structor

A default constructor is a constructor that does not take any arguments. The constructor
is invoked with a declaration of an object values does not specify argument values. It is also
used to initialize object data �elds, when no other arguments are speci�ed.

A copy constructor is a constructor that takes an instance of the same class as a constant
reference argument. Copy constructors are used to make a copy, or clone, of an object value,
a task that in Java is often performed using the clone method. Copy constructors are used
internally in the processing of parameters that are passed by-value. The copy constructor
will be invoked to create the temporary value that will be passed to the function, leaving
the original value immune to modi�cation. Copy constructors are also used to create a
temporary value when a function returns an object value, and (as are all constructors) in
the initialization of values newly created by either a declaration or a new operation.

The following class description illustrates both a default and a copy constructor:

class box f
public:

box () // default constructor

f i = 1; g // give data �eld some default value

box (int x) // ordinary constructor

f i = x; g

box (const box & a) // copy constructor

f i = a.i; g // clone argument value

private:

int i;

g;

The following three declarations will implicitly invoke the three forms of constructor:

box one; // default constructor

box two(7); // ordinary constructor

box three(two); // copy constructor

5.4. CONSTRUCTORS AND INITIALIZATION 79

5.4.2 Initializers

Data members in Java are initialized in one of two ways. If a data member is initialized with
a value that is independent of the constructor arguments, it is often simply written as an
initial assignment at the point of declaration. Otherwise, an explicit assignment statement
appears in the constructor function de�nition.

With one minor exception (to be discussed in Section 5.8) the C++ language does not al-
low the initialization of data members at the point of declaration. Instead, all data members
must be initialized in a constructor function. This can be performed either in an explicit as-
signment statement, or in an initializer. The following class de�nition illustrates the syntax
used for initializers, by rewriting the Link constructor presented earlier to use initializers,
rather than assignment statements:

class Link f
public:

Link(int v, Link � f, Link � b)

: value(v), forwardLink(f), backwardLink(b) f g
...

g;

For primitive data types, such as integers or pointers, an initializer is exactly equivalent
to an assignment. For more complex types, such as user de�ned types, the situation is
di�erent. The rule is that data members are all initialized before the body of the constructor
is executed, either by initializer or, if no initializers are known, using the default rules.

Imagine a class box that de�nes both a default constructor (a constructor with no ar-
gument), a copy constructor (a constructor that creates a clone of another value), and an
assignment operation. Now consider the following class de�nition:

class A f // class with initialization error

public:

void A (box & aBox) : boxOne(aBox) f boxTwo = aBox; g
private:

box boxOne;

box boxTwo;

g;

The data �eld boxOne will be initialized using the copy constructor, in one step. The Rule

Use initializ-

ers when pos-

sible

data �eld boxTwo, on the other hand, has no initializer �eld, and will thus �rst be initialized
using the default constructor. After both the data members have been initialized, the body
of the constructor is executed. In there, the assignment statement is used to alter the value
of boxTwo to match the argument value. Thus, the �eld boxTwo is modi�ed twice, once by
the default constructor and once by the assignment operator.

80 CHAPTER 5. THE CLASS DEFINITION

Data members that are declared to be const and data �elds that are references are never
permitted to be targets of assignment statements. Thus both of these types of objects must
be initialized using initializers, instead of in the body of the constructor.

class B f
public:

void B (box & aBox) : boxOne(aBox), boxTwo(aBox) f g
private:

box & boxOne;

const box boxTwo;

g

The last category of initializer is the initialization of parent classes in the constructors
associated with child classes. Assume that the constructor for a parent class requires an
argument value. In Java, the constructor for the child supplies the value by invoking theNote The

language C++

does not use

the keyword

super

function super in the constructor:

class bigBox extends box f // Java code

public bigBox (int x, double d)

f
super(x); // initialize parent

dvalue = d; // initialize self

g

private double dvalue; // private data �eld

g

In C++ the same e�ect is achieved by means of an initializer. The initializer names the
parent class, and uses as arguments the arguments for the parent class constructor. As in
Java, if no appropriate initializer is found the default constructor for the parent class is
invoked.

class bigBox : public box f // C++ code

public:

bigBox (int x, double d) : box(x), dvalue(d) f g

private:

double dvalue;

g;

A �nal item to note is that class members are initialized in the order that they areNote

Fields

are initialized

in the order

of declaration

5.4. CONSTRUCTORS AND INITIALIZATION 81

declared in the class body, not in the order the initializers are listed. (They are deleted
by the destructor in the reverse order. Destructor functions were introduced in Chapter 4.)
The programmer might be very confused by the result of executing the method test on an
instance of the following class:

class order f // warning, initialization error

public:

order (int i) : one(i), two(one) f g
int test() f return two; g

private:

int two; // initialized �rst

int one; // initialized second

g;

The variable two is initialized with the as yet uninitialized value of one, and then the
value of one is set. The result is that the value held in two is unpredictable garbage.

5.4.3 Order of Initialization

In C++ the initialization of parent classes occurs before the initialization of child classes. Warning

C++ and

Java initial-

ize subclasses

di�erently

During the time a parent class constructor is executed the object is viewed as an instance of
the parent class. This means that methods that are invoked are matched only to functions
in the parent class, even if these methods have been declared as virtual. (See Chapter 4 for
a discussion of the virtual modi�er). To see the impact of this, we can once again contrast
a simple class written in Java and the equivalent class written in C++. Consider �rst the
following Java classes:

class A f // Java classes illustrating initialization

public A ()

f
System.out.println("in A constructor");

init();

g

public void init()

f
System.out.println("in A init");

g
g

class B extends A f

82 CHAPTER 5. THE CLASS DEFINITION

public B ()

f
System.out.println("in B constructor");

g

public void init()

f
super.init();

System.out.println("in B init");

g
g

When an instance of B is created the constructor for B will be executed. This construc-
tor will automatically invoke the constructor for A. The constructor for A will invoke the
method init, which is de�ned in A but overridden in B. However, the overridden method in
B will invoke the method in A. (As an aside, notice that constructors always use re�nementDefine A

re�nement

combines the

actions

of the parent

and child

semantics, in which the parent class will always be invoked. Methods, on the other hand,
use replacement semantics, and so the parent function is only invoked if explicitly called).
The output of the sequence would be as follows:

in A constructor

in A init

in B init

in B constructor

A super�cially equivalent C++ program is as follows:

class A f // C++ classes illustrating initialization

public:

A ()

f
printf("in A constructor\n");

init();

g

virtual void init()

f
printf("in A init\n");

g
g;

class B : public A f

5.4. CONSTRUCTORS AND INITIALIZATION 83

public:

B ()

f
printf("in B constructor\n");

g

virtual void init()

f
A::init();

printf("in B init\n");

g
g;

However, in C++ when the function init is invoked in the constructor for A, only the
method in class A is used, regardless whether or not the virtual keyword is used in the
declaration of the function. Thus, the output from C++ would be as follows:

in A constructor

in A init

in B constructor

Notice that the init function in B has not been executed at all. Should the C++ pro-
grammer attempt to overcome this limitation by invoking the init function directly in B,
they would discover another error, namely that the init function in A would then be invoked
twice.

5.4.4 Combining Constructors

Java programmers are accustomed to being able to de�ne one constructor using another, as
in the following:

// Java class with linked constructors

class newClass f
public newClass (int i)

f
// do some initialization

...

g

public newClass (int i, int j)

f

84 CHAPTER 5. THE CLASS DEFINITION

this(i); // invoke one argument constructor

// do other initialization

...

g
g

This feature has no direct C++ counterpart. Oftentimes programmers will try to use aWarning

In C++ you

cannot

invoke a con-

structor from

within

another

fully quali�ed name, as in the following:

class box f // error { does not work as expected

public:

box (int i) : x(i) f g
box (int i, int j) : y(j) f box::box(i); g

int x, y;

g;

Creating a two-argument box and printing the resulting value of x and y will demonstrate
that the fully quali�ed call on the one-argument constructor had no e�ect. In reality, what
this function accomplished was to create an unnamed temporary, initialize it, then destroy
it.

There are two common solutions that demonstrate the proper solution to this problem.
If the only di�erence between two constructors is the assignment of a default value, then a
default argument value can be used:

// C++ class with default arguments in constructor

class newClass f
public:

newclass (int i, int j = 7)

f
// do object initialization

...

g
g;

Although only one function is de�ned, it can be used with either one argument or two.
In the one argument case, the default value (here seven) is automatically supplied for the
second argument.

Another common solution to this problem is to factor the common initialization into a
separate method, which is then declared as private:

// C++ class with factored constructors

5.5. THE ORTHODOX CANONICAL CLASS FORM 85

class newClass f
public:

newClass (int i)

f
initialize(i); // do common initialization

g

newClass (int i, int j)

f
initialize(i);

... // then do further initialization

g

private:

void initialize (int i)

f
... // common initialization actions

g
g;

Even if the initialize method is declared public or protected as well as virtual, it cannot be
overridden since it is invoked from within a constructor function. (See Section 5.4.3).

5.5 The Orthodox Canonical Class Form

Several authors of style guides for C++ have suggested that almost all classes should de�ne Rule

Always de�ne

the four func-

tions in the

OCCF

four important functions. This has come to be termed the orthodox canonical class form.
The four important functions are:

� A default constructor. This is used internally to initialize objects and data members
when no other value is available.

� A copy constructor. This is used in the implementation of call-by-value parameters.

� An assignment operator. This is used to assign one value to another.

� A destructor. This is invoked when an object is deleted.

Even if empty bodies are supplied for these functions, writing the class body will at least
suggest that the program designer has thought about the issues involved in each of these.
Furthermore, appropriate use of visibility modifers, described in the next section, give the
programmer great power is allowing or disallowing di�erent operations used with the class.

86 CHAPTER 5. THE CLASS DEFINITION

5.6 Visibility modi�ers

For the most part, the visibility modi�ers public, protected, and private operate the same in
C++ as they do in Java. However, their are some di�erences. In C++ the modi�ers designate
a section of a class de�nition, rather than being applied item by item as they are in Java.
The modi�ers cannot be applied to entire classes in C++. One way to get the e�ect of a
non-public class in C++ is to declare a class inside a namespace (see Section 12.7).

There is a minor di�erence in the meaning of the keyword protected. Protected �elds
in Java are open to both subclasses and to other classes declared within the same package.
The C++ language has no notion of packages, and so the term applies only to subclasses.

The C++ language allows a subclass to change the visibility of a method, even one thatWarning

A subclass is

permitted

to change the

visibility of

attributes in-

herited from

a parent class

is declared as virtual and is being overridden. Consider the following:

class parent f

public:

virtual void test () f printf("in parent test\n"); g

g;

class child : public parent f

private:

void test () f printf("in parent test\n"); g

g;

parent � p = new child;

p->test();

A variable of type pointer to parent is nevertheless holding a value of type child. The
method test is de�ned in both classes. When invoked, the method executed will be that
found in the child class, not that found in the parent class. That much, except for the funny
keyword virtual that we will discuss later in Chapter 6, should come as no surprise to the
Java programmer.

What is surprising is that the method test was executed, despite the fact that it was
declared as private in the class de�nition. Such a method cannot, after all, be invoked from
a variable declared as child, even if it holds the exact same value:

child � c = (parent �) p;

c->test(); // compile error, cannot invoke private method

Some compilers will produce warning messages when the visibility of methods is changed
in this fashion, but unlike Java it is not considered a compiler error.

5.7. INNER CLASSES VERSUS NESTED CLASSES 87

5.7 Inner classes versus Nested Classes

Both Java and C++ permit class de�nitions to be nested. A class de�nition that appears Warning

C++ and

Java both al-

low classes to

be de�ned in-

side each

other, but

have di�erent

semantics

inside another class de�nition is termed an inner class in Java, and a nested class in C++.
Despite the similar appearances, there is a major semantic di�erence between the two con-
cepts. An inner class in Java is linked to a speci�c instance of the surrounding class (the
instance in which it was created), and is permitted access to data �elds and methods in this
object. A nested class in C++ is simply a naming device, it restricts the visibility of features
associated with the inner class, but otherwise the two are not related.

To illustrate the use of nested classes let us rewrite the Java linked list abstraction
presented earlier, placing the Link class inside the List abstraction:

// Java List class

class List f
private Link firstElement = null;

private class Link f // inner class de�nition

public Object value;

public Link forwardLink;

public Link backwardLink;

public Link (Object v, Link f, Link b)

f value = v; forwardLink = f; backwardLink = b; g

public void addBefore (Object val)

f
Link newLink = new Link(val, this, backwardLink);

if (backwardLink == null)

firstElement = newLink;

else f
backwardLink.forwardLink = newLink;

backwardLink = newLink;

g
g

... // other methods omitted

g

public void push front(Object val)

f
if (firstElement == null)

88 CHAPTER 5. THE CLASS DEFINITION

firstElement = new Link(val, null, null);

else

firstElement.addBefore (val);

g

... // other methods omitted

g

Note that the method addBefore references the data �eld �rstElement, in order to handle
the special case where an element is being inserted into the front of a list. A direct translation
of this code into C++ will produce the following:

// C++ List class

class List f
private:

class Link; // forward de�nition

Link � firstElement;

class Link f // nested class de�nition

public:

int value;

Link � forwardLink;

Link � backwardLink;

Link (int v, Link � f, Link � b)

f value = v; forwardLink = f; backwardLink = b; g

void addBefore (int val)

f
Link � newLink = new Link(val, this, backwardLink);

if (backwardLink == 0)

firstElement = newLink; // ERROR !

else f
backwardLink->forwardLink = newLink;

backwardLink = newLink;

g
g

... // other methods omitted

g;

5.7. INNER CLASSES VERSUS NESTED CLASSES 89

public:

void push front(int val)

f
if (firstElement == 0)

firstElement = new Link(val, 0, 0);

else

firstElement->addBefore (val);

g
... // other methods omitted

g;

It has been necessary to introduce a forward reference for the Link class, so that the
pointer �rstElement could be declared before the class was de�ned. Also C++ uses the value
zero for a null element, rather than the pseudo-constant null. Finally links are pointers,
rather than values, and so the pointer access operator is necessary. But the feature to
note occurs on the line marked as an error. The class Link is not permitted to access the
variable �rstElement, because the scope for the class is not actually nested in the scope for
the surrounding class. In order to access the List object, it would have to be explicitly
available through a variable. In this case, the most reasonable solution would probably be
to have the List method pass itself as argument, using the pseudo-variable this, to the inner
Link method addBefore. (An alternative solution, having each Link maintain a reference to
its creating List, is probably too memory intensive).

class List f
Link � firstElement;

class Link f
void addBefore (int val, List � theList)

f
...

if (backwardLink == 0)

theList->firstElement = newLink;

...

g
g;

public:

void push front(int val)

f
...

// pass self as argument

firstElement->addBefore (val, this);

90 CHAPTER 5. THE CLASS DEFINITION

g
... // other methods omitted

g;

When nested class methods are de�ned outside the class body, the name may require
multiple levels of quali�cation. The following, for example, would be how the method
addBefore would be written in this fashion:

void List::Link::addBefore (int val, List � theList)

f
Link � newLink = new Link(val, this, backwardLink);

if (backwardLink == 0)

theList->firstElement = newLink;

else f
backwardLink->forwardLink = newLink;

backwardLink = newLink;

g
g

The name of the function indicates that this is the method addBefore that is part of the
class Link, which is in turn de�ned as part of the class List.

5.8 Static Initialization

Static items in both Java and C++ are elements de�ned as part of a class description thatWarning

C++ does not

use the mes-

sage passing

syntax for in-

voking static

functions

exist independently of class instances. A static data �eld, for example, will exist as a single
value, regardless of the number of instances that have been created. (Even if no instances
have been created). A static member function can be invoked without a receiver. One
di�erence is in the syntax used for the latter operation. In Java the syntax is the same as
for message passing, with the class name as the receiver. In C++ a static member function
is written as the class name, a pair of colons, and the member function name:

d = Math.sqrt (d); // Java { invoke static function sqrt

Date::setDefault(12,7,42); // C++ { use quali�ed name

Another way in which C++ and Java di�er is in the way in which static data �elds are
initialized. In Java they are initialized either as direct assignments in the class body, or in
a special static initializer block. The following illustrates both of these examples:

class box f
public box (int v)

5.8. STATIC INITIALIZATION 91

f
boxCount++;

value = v;

if (v == 0)

zeroCount++;

g

private int value;

// keep track of number of boxes created

static private int boxCount = 0;

// also track number of boxes with value zero

static private int zeroCount;

static f
zeroCount = 0; // initialize the zeroCount �eld

g
g

In C++ there are also two separate mechanisms that can be used. Data �elds that
are declared either as const or static and are primitive data types can be de�ned by an
initialization of the data �eld inside the class, as in Java. This syntax, however, is used only
for this one situation. All other initializations are performed outside the class body, using a
fully quali�ed name. The syntax used in the latter is similar to that used with initializations
in a declaration; an assignment can be used if there is a single argument, or parenthesis if
there are two or more arguments:

class box f
public:

box (int v) : value(v)

f boxCount++; if (v == 0) zeroCount++; g

private:

static int boxCount = 0;

static int zeroCount;

g;

// global initialization is separate from class

int box::zeroCount = 0;

92 CHAPTER 5. THE CLASS DEFINITION

The declaration and use of static methods in C++ is generally similar to the techniques
used in Java.

A common use for static data �elds in Java is to produce class-speci�c constants, as in
the following example:

class coloredBox extends box f
// de�ne the range of color values

public static final int Red = 1;

public static final int Yellow = 2;

public static final int Blue = 3;

public coloredBox (int v, int c) f super(v); ourColor = c; g

private int ourColor;

g

The C++ language does not have the keyword �nal. However, in this case such �elds can
be written as static integer constants:

class coloredBox : public box f
public:

// de�ne the range of color values

static const int Red = 1;

static const int Yellow = 2;

static const int Blue = 3;

coloredBox (int v, int c) : box(v), ourColor(c) f g

private:

int ourColor;

g;

An even better solution in this situation is to de�ne a new enumerated data type. AnRule Use

enu-

merated data

types to de-

scribe lists of

mutually ex-

clusive alter-

natives

enumerated type creates a new data type with a speci�c set of constant elements. This
avoids the inadvertent use of integer constants with arithmetic expressions:

class coloredBox : public box f
public:

enum Colors fRed, Yellow, Blueg;

coloredBox (int v, Colors c) : box(v), ourColor(c) f g

5.9. FINAL CLASSES 93

private:

Colors ourColor;

g;

To access an enumerated constant value that is de�ned within a class a fully quali�ed
name must be used. An example would be coloredBox::Red.

5.9 Final Classes

C++ does not have the Java concept of a �nal class, a class that cannot be subclassed. One
technique that is sometimes used to achieve this e�ect is to declare all constructors for
the class as private; since subclasses cannot then invoke their parent class constructors, the
C++ compiler will not permit them to be written. But this introduces a di�erent problem;
namely that such values cannot be created at all. To get around this, the programmer can
write pseudo-constructors, static functions which do nothing more than invoke a constructor
value:

class privateBox f
public:

// pseudo-constructor used for creation

static privateBox & makeBox(int v) f return privateBox(v); g

private:

// since constructor is private,

// cannot create instances directly

privateBox (int v) : value(v) f g
int value;

g;

The static function is then used each time a value is needed:

// make a new box value

privateBox aBox = privateBox::makebox(7);

Test Your Understanding

1. What are some of the super�cial similarities between a class de�nition in Java and in
C++? What are some super�cial di�erences?

2. What does it mean to say that C++ separates class de�nition and implementation?

94 CHAPTER 5. THE CLASS DEFINITION

3. What is an inline method? How is it declared?

4. How does the compiler treat the invocation of an inline method di�erently from the
invocation of a normal method?

5. What is the advantage to using inline methods? What is a disadvantage?

6. What is a quali�ed name?

7. What is a prototype? What information is omitted from a prototype that is found in
a function de�nition?

8. What is indicated by a declaration that uses the extern modi�er?

9. Why are forward references necessary in C++ and not in Java?

10. What two tasks are tied together by a constructor?

11. What is a default constructor? What are some of the conditions when it will be
invoked?

12. What is a copy constructor? What are some of the conditions when it will be invoked?

13. What types of items can be found in an initializer list?

14. What is the order in which data �elds will be initialized?

15. What is a default argument? In what situations can default arguments be used to
replace two overloaded function bodies with a single function?

16. What four methods are necessary for a class to be said to satisfy the orthodox canonical
class form?

17. What error is being exhibited by the following C++ class de�nition?

class A f
public:

void a () f ... g

class B f
public:

void b () f a(); g
g;

g;

18. How is a nested class in C++ di�erent from an inner class in Java?

5.9. FINAL CLASSES 95

19. How is the initialization of static data �elds in C++ di�erent from that of Java?

20. How can �nal constants in Java be represented in C++?

21. What is the e�ect of declaring constructor methods as private?

