
50

Chapter 4

Memory Management

In Java the task of memory management is largely conducted in the background, just be-
yond the issues of concern to the typical programmer. This can be an advantage, as it
removes a complex task from the programmers range of vision, thus allowing him or her to
concentrate on more application speci�c details. On the other hand, it also means that the
Java programmer has little control over how memory management is performed.

Using C++, in contrast, memory management is explicitly under the direction of the Warning

The C++ pro-

grammer

must always

be aware

of how mem-

ory manage-

ment is being

performed

programmer. If properly used this can work to the programmers advantage, permitting
much more e�cient use of memory than is possible with Java. But if improperly used (or,
more often, ignored) memory management issues can bloat a program at run-time, or make
a program very ine�cient. For this reason, to write e�ective C++ programs it is important
to understand how the memory management system operates.

Because in C++ the programmer is responsible for memory management, there are a
variety of errors that are possible in C++ programs but are rare or unusual in Java. These
include the following:

� Using a value before it has been initialized. (The Java language requires a data
ow
analysis that will detect many of these errors. The C++ language makes no such Warning

C++ does not

perform

data
ow

analysis

to detect po-

tentially un-

de�ned local

variables

requirement).

� Allocating memory for a value, then not deleting it once it is no longer being used.
(This will cause a long running program to consume more and more memory, until it
fails in a catastrophic fashion.)

� Using a value after it has been freed. (Once returned to the memory management
system, the contents of a freed location are typically overwritten in an unpredictable
fashion. Thus, the contents of a freed value will be unpredictable.)

Each of these potential errors will be illustrated by examples in the remainder of this
chapter.

51

52 CHAPTER 4. MEMORY MANAGEMENT

4.1 The Memory Model

To understand how memory management is performed in C++ it is �rst necessary to appre-
ciate the C++ memory model, which di�ers in a fundamental fashion from the Java memory
model. In many ways, the C++ model is much closer to the actual machine representation
than is the Java memory model. This closeness permits an e�cient implementation, at the
expense of needing increased diligence on the part of the programmer.

In C++ there is a clear distinction between memory values that are stack-resident, andDefine

Stack-

resident val-

ues are

created when

a procedure is

entered,

and deleteted

when the pro-

cedure exits

those that are heap-resident. Stack resident values are those created automatically when a
procedure is entered or exited, while heap resident values must be explicitly created using
the new operator. In the following sections we will describe some of the characteristics of
both of these, and the problems the programmer should look out for.

4.2 Stack Resident Memory Values

Both the stack and the heap are internal data structures managed by a run-time system.
Note An

acti-

vation record

is sometimes

called

an activation

frame, or a

stack frame

Of the two, the stack is much more orderly. Values on a stack are strongly tied to procedure
entry and exit. When a procedure begins execution, a new section of the stack is created.
This stack segment holds parameters, the return address for the caller, saved internal reg-
isters and other machine speci�c information, and space for local variables. The section of
a stack speci�cally devoted to one procedure is often termed an activation record.

In Java, only primitive values are truly stack resident. Objects and arrays are always
allocated on the heap. Compare the following two example procedures. Each creates a local
integer, a local array, and an object instance.

void test () // Java

f
int i;

int a[] = new int[10];

anObject ao = new anObject();

...

g

void test () // C++

f
int i;

int a[10];

anObject ao;

...

g

4.2. STACK RESIDENT MEMORY VALUES 53

In the Java procedure only the primitive integer value is actually allocated space on the
stack by the declaration. Both the array and the object value must be explicitly created (as
heap-resident values) using the new operator. In C++, on the other hand, all three values
will reside on the stack, and none require any actions beyond the declaration to bring them
into existence.

Procedure invocations execute in a very orderly fashion. If procedure A invokes proce-
dure B, and B in turn invokes C, then procedure C must terminate before B will continue
with execution, and B in turn must terminate before A will resume. This property allows
activation records to be managed in a very e�cient and orderly manner. When a procedure
is called, an activation record is created and pushed on the stack, and when the procedure
returns, the activation record can be popped from the stack. A pointer can be used to point
to the current top of stack. Allocation of a section of the stack then simply means moving
this pointer value forward by the required amount.

The e�ciencies of stack memory are not without cost. There are two major drawbacks
to the use of the stack for variable storage:

� The lifetime of stack resident memory values is tied to procedure entry and exit. This Define
The

lifetime is the

period of time

a value can be

used

means that stack resident values cease to exist when a procedure returns. An attempt
to use a stack resident value after it has been deleted will typically result in error.

� The size of stack resident memory values must be known at compile time, which is
when the structure of the activation record is laid out.

The following sections will describe some of the implications of these two issues.

4.2.1 Lifetime errors

An important fact to remember is that once a procedure returns from execution, any stack
resident values are deleted and no longer accessible. A reference to such a value (see Chap-
ter 3) will no longer be valid, although it may for a time appear to work. Here are some
examples.

// WARNING { Program contains an error

char � readALine ()

f

char buffer[1000]; // declare a bu�er for the line

gets(buffer); // read the line

return buffer; // return text of line

g

54 CHAPTER 4. MEMORY MANAGEMENT

In this example the procedure will return a pointer to the array bu�er,1 however the
memory for the bu�er will have been deleted as part of the procedure return. The pointer
will reference values that may or may not be correct, and will almost certainly be overwritten
once the next procedure is called.

Contrast this with an equivalent Java procedure:

String readALine (BufferedInput inp) throws IOException

f
// create a bu�er for the line

String line = inp.readLine();

return line;

g

Although the variable line is declared inside the procedure, the value assigned to the
variable will be heap-resident. Therefore this value will continue to exist, even after the
procedure returns.

Function return values are by no means the only way to create dangling references. An
assignment to a global variable or a by-reference parameter can do the same thing, as shown
in the following:

char � lineBuffer; // global declaration of pointer to bu�er

// WARNING { Program contains an error

void readALine ()

f
char buffer[1000]; // declare a bu�er for the line

gets(buffer); // read the line

lineBuffer = buffer; // set pointer to reference bu�er

g

Some of the more sophisticated C++ compilers will warn about such errors, but the
programmer should not depend upon this being caught.

4.2.2 Size errors { the Slicing Problem

For object-oriented programming, one of the most severe restrictions of stack-based memory
management derives from the fact that the positions of values within the activation record
are determined at compile time. For primitive values and pointers this is a small concern.

1The close relationship in C++ between arrays and pointers is discussed in detail in Chapter 3. It should
also be noted that gets is a problematic function, for many of the reasons cited in this chapter. Better
solutions to this problem are provided by the Stream I/O package described in Chapter 10. However, gets
is part of the legacy C++ inherits from C, and is still commonly found in many programs.

4.2. STACK RESIDENT MEMORY VALUES 55

However, it is an issue for arrays and for objects. For arrays, it means that the array bound
must be known at compile time. For objects, it means a limitation on the degree to which
values can be polymorphic.

Array Allocations

Stack resident arrays must have a size that is known at compile time. Often programmers Note The

size

of any value

stored on the

stack must be

known at

compile time

avoid this problem by allocating an array with a size that is purposely too large. An earlier
example, which we will repeat, illustrated this technique. Here the programmer is reading
lines of input from a �le, and has allocated the character array to hold 200 elements, on the
assumption that no line will have any more than this number of characters.

// WARNING { Program contains an error

char buffer[200]; // making array global avoids deletion error

char � readALine ()

f

gets(buffer); // read the line

return buffer;

g

Potential problems occur since array bounds are not checked in C++ at run time2. Should Rule

Never

assume

that just be-

cause an ar-

ray is big, it

will always be

\big enough"

an overly-long line be encountered in the �le, the bu�er will simply be exceeded, and the
values read will
ow over into whatever happens to follow the array in the activation record.
This will have the e�ect of changing the values of other variables in an unpredictable fashion,
with generally infelicitous results.

It is possible to create arrays with sizes determined at run-time using heap-resident
values. This is done in a fashion similar to Java, with the exception that the programmer
must explicitly free the memory when no longer required (see Section 4.3).

char � buffer;

int newSize;

... // newSize is given some value

buffer = new Char[newSize]; // create an array of the given size

...

delete [] buffer; // delete bu�er when no longer being used

56 CHAPTER 4. MEMORY MANAGEMENT

class A f
public:

// constructor

A () : dataOne(2) f g

// identi�cation method

virtual void whoAmI () f printf("class A"); g
private:

int dataOne;

g;

class B : public A f
public:

// constructor

B () : dataTwo(4) f g

// identi�cation method

virtual void whoAmI () f printf("class B"); g
private:

int dataTwo;

g;

Figure 4.1: A Class Hierarchy for Illustrating the Slicing Problem

4.2. STACK RESIDENT MEMORY VALUES 57

The Slicing Problem

Java programmers are used to object values being polymorphic (see Chapter 6). That is, a
variable declared as maintaining a value of one class can, in fact, be holding a value derived
from a child class. In the class hierarchy shown in Figure 4.1,3 class A is extended by a new
class B, which overrides the virtual method whoAmI.4 In both Java and C++ it is legal to
assign a value derived from class B to a variable declared as holding an instance of class A:

A instanceOfA; // declare instances of

B instanceOfB; // class A and B

instanceOfA = instanceOfB;

instaceOfA.whoAmI(); // question: what will happen?

However, the e�ect of this assignment will di�er in the two languages. The Java pro-
grammer will expect that, while the declaration of instanceOfA is class A, the value will
continue to be that of a B, and thus the method invoked will be that found in class B.

This polymorphic behavior runs into con
ict with the stack based memory allocation Rule

Static

variables are

never

polymorphic

model. Note that values of class B are larger than values of class A, since they include an
additional data �eld (namely, the inherited �eld dataOne, and the �eld dataTwo de�ned in
class B). In order to maintain the e�ciencies of the stack-based memory allocation, these
additional �elds are simply sliced away when the assignment occurs. Thus, the value ceases
to be an instance of class B, and simply becomes an instance of class A:

A B

�

�
�
�
��

@@�
�
�
��
@@

In this light, it is therefore not surprising that the method executed by the invocation
of whoAmI will be that of class A, and not that of class B. This is true regardless of whether
the method whoAmI was declared virtual.

2See Chapter 3 for a further discussion on this issue. Note that there is an alternative function, fgets,
that permits the bu�er size to be speci�ed. As a general matter, fgets should be preferred over gets for just
this reason. However, the type of error discussed here arizes in many situations, so the point is still valid.

3Output is here produced using the statement printf, which is one of two output techniques commonly
encountered in C++ programs. The topic if I/O libraries will be discussed in Chapter 10.

4See Chapter 6 for a more complete discussion of the keyword virtual.

58 CHAPTER 4. MEMORY MANAGEMENT

Note carefully, however, that slicing does not occur with references or with pointers:Warning

The message

passing rules

for point-

ers and refer-

enes are dif-

ferent from

those for sim-

ple variables

A & referenceToA = instanceOfB;

referenceToA.whoAmI(); // will print class B

B � pointerToB = new B();

A � pointerToA = pointerToB();

pointerToA->whoAmI(); // will print class B

Slicing only occurs with objects that are stack resident. For this reason, many C++

programs make the majority of their objects heap resident. The issues the Java programmer
learning C++ should be aware of when using heap allocation are discussed in detail in the
next section.

4.3 Heap Resident Memory Values

Heap resident values are created using the new operator. Memory for such values resides on
the heap, or free store, which is a separate part of memory from the stack. Typically such
values are accessed through a pointer, which will often reside on the stack. The following
contrasting code fragments in C++ and Java will illustrate this:Note The

parenthe-

sis are omit-

ted from

a new state-

ment if there

are no argu-

ments for the

constructor

void test () // Java

f

A anA = new A();

...

g

void test () // C++

f

A � anA = new A; // note pointer declaration

if (anA == 0) ... // handle no memory situation

...

delete anA;

g

Here anA will reside on the stack (in both Java and C++) but the value it references will
reside on the heap:

4.3. HEAP RESIDENT MEMORY VALUES 59

The Stack

"

anA ��
��

��
��

��*

The Heap'

&

$

%
Current

Activation

Record

The Java language hides the use of this pointer value, and programmers seldom need be
concerned with it. In C++, on the other hand, the pointer declaration is explicitly stated.

In Java if a memory request cannot be satis�ed an OutOfMemmory exception is thrown. Warning

Not all com-

pilers will

throw an ex-

ception when

mem-

ory becomes

exhausted

Newer versions of C++ will likewise throw a bad alloc exception. However, earlier versions of
the language would simply return a null pointer value when a request could not be satis�ed.
It is therefore important to test for this condition, and take appropriate action (such as
throwing an exception yourself) if it occurs.

A more important di�erence relates to the recovery of heap based memory. Java incor-

Define A

garbage col-

lection sys-

tem searches

out

and recovers

unused mem-

ory

porates garbage collection into its run-time library. The garbage collection system monitors
the use of dynamically allocated variables, and will automatically recover and reuse memory
that is no longer being accessed. C++, on the other hand, leaves this task to the programmer.
Dynamically allocated memory must be handed back to the heap manager using the delete

operator. There are two forms of this operator, both of which have been used in examples
presented earlier in this chapter. The deletion of an individual object is performed by simply
naming the pointer variable, as in the example shown above. When deleting an array a pair
of empty square braces must be used. An example showing this syntax was presented earlier
in Section 4.2.2.

Because memory recovery must be an explicit concern of the programmer, four types of
errors are common:

� Forgetting to allocate a heap-resident value, and using a pointer as if it were referencing
a legitimate value.

� Forgetting to hand unused memory back to the heap manager.

� Attempting to use memory values after they have been handed back to the heap
manager.

� Invoking the delete statement on the same value more than once, thereby passing the
same memory value back to the heap manager.

60 CHAPTER 4. MEMORY MANAGEMENT

In Java the �rst type of error, if not caught by the compiler, will generally raise a null Warning

Uninitial-

ized values in

C++ are not

only not re-

ported by the

compiler, but

their

initial values

are generally

garbage

pointer exception. C++ compilers are not obligated to try and detect the use of variables
before they have been set, and few will. Furthermore, the initial contents of memory are
generally not determined. Thus, an uninitialized pointer value will sometimes contain a
legal memory address even before it has been set, although there is no way to know where
in memory it is pointing to. Attempting to read from such a value or assigning to it will
cause an unpredictable result.

The second type of error is termed a memory leak. Often such leaks can occur withoutDefine A

memory leak

is an alloca-

tion of mem-

ory

that is never

recovered

any harmful e�ects. However, in a long running program or if memory allocation occurs in
a situation that is executed repeatedly, such leaks will cause the memory requirements for
the program to increase over time. Eventually the heap manager will be unable to service
a request for further memory, and the program will halt. Leaks are often the result of
successive assignments to the same pointer variable:

AnObject � a;

...

a = new AnObject();

...

a = new AnObject(); // leak, old reference is now lost

The third type of error sometimes occurs as the result of an over-zealous attempt to avoid
the second error. Here memory is passed back to the heap manger before all references to the
value have been deleted. As part of managing and recycling heap resident values, the heap
manager often stores pertinent information in the value. For example, the heap manager
may keep a list of similarly sized blocks of memory, and store in each block a pointer to the
next element. Thus, after a value is deleted the contents are often overwritten. Reading
from such a value will produce garbage, and writing to such a value will confound the heap
manager. Both errors are typically catastrophic.

Depending upon the sophistication of the memory manager, the fourth error may or may
not be severe. Some heap mangers can detect this condition. Other heap mangers will not
notice the error, but the internal data structures used by the heap manager will be put into
an inconsistent state. This, too, can result in unpredicatable errors.

A simple rule of thumb is that every time the new operator is used, the programmerRule Al-

ways match

memory al-

locations and

deletions

should be able to identify where and under what circumstances the associated delete directive
will be issued. There are two techniques that are frequently used to help simplify the
management of heap values. These are:

� Hide the allocation and release of dynamic memory values inside an object. The object
is therefore the \owner" of the heap resident value, and is \responsible" for memory
management. For example, the memory management is often tied to the lifetime of
the object, which can sometimes be more reliably predicted (for example, the object

4.3. HEAP RESIDENT MEMORY VALUES 61

is stack resident). This technique is only applicable where there is only one pointer to
the heap resident value.

� If it is not possible to designate a single \owner" for a heap resident value, then it is
di�cult to know who should be responsible for deleting the value once it is no longer
being referenced. This problem can be solved by maintaining, as part of the heap, a
reference count that indicates the number of pointers to the value. When this count
is decremented to zero, the value can be recovered.

We will illustrate each of these techniques by developing a data abstraction for the String

data type.

4.3.1 Encapsulating Memory Management

String literals in C++, unlike Java, are very low level abstractions. A string literal in C++ is
treated as an array of character values, and the only permitted operations are those com-
mon to all arrays. The String data type in Java is designed to provide a higher level of
abstraction. A version of this data structure is provided in the new Standard Template
Library (the STL, see Chapter 9). It is also a common example found in many intro-
ductory C++ texts. The version we present here is skeletal, describing only those features
related to memory management. More complete implementations can be found described
in [Budd 98a, Budd 94, Lippman 91, Coplien 92].

The class description for String is shown in Figure 4.2. As is common in C++, the shorter
methods (in this case, all but one method) are provided using in-line de�nitions in the
class heading, while longer methods are found in an implementation �le, outside the class
de�nition.

String variables can be declared with no initialization, or initialized using either a literal
string text, a character array (that is, a pointer to a character) or another string value:

string a;

string b = "abc";

string c = b;

The important feature of this string abstraction is that there is a one-to-one matching Note One

way to man-

age dy-

namically al-

located mem-

ory

is to make an

object respon-

sible

for managing

the memory

of String objects to dynamically allocated bu�ers. Every string has one bu�er, and every
bu�er is \owned" by a speci�c String. This bu�er is created by the method resize:

void String::resize(int size)

f
if (buffer == 0) // no previous allocation

buffer = new char[1 + size];

else if (size > strlen(buffer)) f

62 CHAPTER 4. MEMORY MANAGEMENT

class String f
public:

// constructors

String () : buffer(0) f g
String (const char � right) : buffer(0)

f resize(strlen(right)); strcpy(buffer, right); g
String (const String & right) : buffer(0)

f resize(strlen(right.buffer)); strcpy(buffer, right.buffer); g

// destructor

�String () f delete [] buffer; g

// assignment

void operator = (const String & right)

f resize(strlen(right.buffer)); strcpy(buffer, right.buffer); g

private:

void resize (int size);

char � buffer;

g;

Figure 4.2: The Class String (Version One)

4.3. HEAP RESIDENT MEMORY VALUES 63

delete [] buffer; // recover old value

buffer = new char[1 + size];

g
g

If no bu�er has yet been allocated a bu�er of the requested size is created. (The one
extra character is for the null character inserted at the end of a string by the function strcpy.
Otherwise, if the current bu�er is too small for the requested number of characters, then
the current bu�er is returned to the heap manager, and a new bu�er is created.

A string variable can be assigned a value from another string variable:

a = b;

In this case, a copy of the contents of the right hand side is created:

b

a

copy of bu�er

bu�er

-

-

We have seen how the dynamic bu�er allocation will take place in the constructor. We
have seen how this bu�er may be deleted and replaced with another as the result of an
assignment. If we now ask our fundamental question, for every new is there a matching
delete, we see that there is one remaining case we have not yet discussed. What happens if
a variable of type String is destroyed? This will happen, for example, when local variables Define A

destructor

is a procedure

that performs

whatever

housekeep-

ing is nec-

essary before

a variable is

deleted

are recovered at the end of a procedure. To handle this case, C++ provides a mechanism
to perform actions immediately before the point of destruction. This ability is provided by
means of a procedure called the destructor. The destructor for a class is a non-argument
procedure with a name formed by prepending a tilde before the class name. The destructor
shown in Figure 4.2 simply deletes the dynamically allocated bu�er. With this facility, we
can now match all allocations and deletes, ensuring no memory leaks will occur.

Do not confuse the destructor with the delete operator. The delete operator is the
function used to actually return memory to the heap manger. The destructor is charged
with whatever \housecleaning" tasks are necessary before a variable disappears. Often this
housecleaning involves memory management, but not always. In the next section we will
encounter a destructor that performs more than simply memory management.

The concept of a destructor in C++ should also not be confused with the notion of a
�nalize method in Java. Destructors are tied to variables, while the �nalize method is tied
to a value. The destructor will be invoked when a variable is about to be destroyed, for
example as soon as it goes out of scope when a procedure returns, or when the variable
itself is dynamically allocated and has been the target of a delete. A �nalize method in

64 CHAPTER 4. MEMORY MANAGEMENT

Java is invoked when the value holding the method is about to be recovered by the garbage
collector. There is no guarantee in Java when this will occur, if ever. Thus programmers
cannot make assumptions concerning behavior in Java based on the execution of code in a
�nalize method. In this regard the C++ programmer is on slightly safer ground, as the rules
for when a destructor will be invoked are carefully spelled out by the language de�nition.

An Execution Tracer

A clever example that illustrates the use of constructors and destructors is an executionNote Con-

structors and

destructors

can be used

for a variety

of nested ac-

tivities

tracer. The class Trace takes as argument a string value. The constructor prints a message
using the string, and the destructor prints a di�erent message using the same string:

class Trace f
public:

// constructor and destructor

Trace (string);

�Trace ();

private:

string name;

g;

Trace::Trace (string t) : name(t)

f
cout << "Entering " << name << endl;

g

Trace::�Trace ()

f
cout << "Exiting " << name << endl;

g

To trace the
ow of function invocations, the programmer simply creates a declaration
for a dummy variable of type Trace in each procedure to be traced:

void procedureOne ()

f
Trace dummy("Procedure One");

...

procedureTwo(); // proc one invokes proc two

g

void procedureTwo ()

4.3. HEAP RESIDENT MEMORY VALUES 65

f
Trace dummy("Procedure Two");

...

if (x < 5) f
Trace dumTrue("x test is true");

...

g
else f

Trace dumFalse("x test is false");

...

g
...

g

Using the ability to declare variables local to a block, trace variables can even be used
to follow the e�ect of conditional or loop statements. by their output, the values of type
Trace will trace out the
ow of execution. A typical output from this program might be:

Entering Procedure One

Entering Procedure Two

Entering x test is true

...

Exiting x test is true

Exiting Procedure Two

Exiting Procedure One

The auto ptr Class

The relationship between a string value and the underlying bu�er is a pattern that is repeated
many times in programs. That is, there is an object that must dynamically allocate another
memory value in order to perform its intended task. However, the lifetime of the dynamic
value is tied to the lifetime of the original object; it exists as long as the original objects
exists, and should be eliminated when the original object ceases to exist.

To simplify the management of memory in this case, the standard library implements a
useful type named auto ptr (see Section A.5 in Appendix A). A simpli�ed version of auto ptr

could be described as follows:5

template <class T>

class auto ptr f

5This class description uses templates, which will be described in Chapter 9.

66 CHAPTER 4. MEMORY MANAGEMENT

public:

auto ptr (T �p) : ptr(p) f g
auto ptr () : ptr(0) f g
�auto ptr() f delete ptr; g

void operator = (T� right)

f
delete ptr;

ptr = right;

g
private:

T � ptr;

g;

The actual class is more robust and will handle assignments and copies, but this form
illustrates the key features. An auto ptr object simply holds a pointer value, and will delete
the memory referenced by the pointer when it itself is destroyed.

A revised string class that used auto pointers would look similar to the following:

class string f
...

private:

auto ptr<char> buffer;

g;

void String::resize(int size)

f
if ((buffer == 0) jj (size > strlen(buffer)))

buffer = new char[1 + size];

g

In this form it would not be necessary to implement a destructor for the string class,
since the default destructor would invoke the destructor for the auto pointer �eld, which
would in turn return the bu�er memory back to the heap manager.

Auto pointers should be used any time there is a one-to-one correspondence between
objects and an internal heap-allocated memory, and the lifetime of the internal object is
tied to the lifetime of the surrounding container.

4.3.2 Reference Counts

There are many situations where two or more objects need to share a common data area.
We could imagine, for example, wanting to change the semantics for the assignment of

4.3. HEAP RESIDENT MEMORY VALUES 67

strings so that two strings would share a common internal bu�er. That is, subsequent to
the statement:

a = c;

both variables a and c would reference the same bu�er:

a

c

internal bu�er

��
��*

HHHHj

The di�culty with this interpretation is that we no longer have a single unambiguous Define A

ref-

erence count

is the count

of the num-

ber of point-

ers to a dy-

namically al-

located object

object that can be said to \own" the dynamically allocated value, and can therefore be
charged with disposing of it when it is no longer needed. A solution to this problem is to
augment the dynamic value with a count of the number of pointers that reference it. This
count is termed a reference count. Care is needed to ensure the count is accurate; whenever
a new pointer is added the count is incremented, and whenever a pointer is removed the
count is decremented.

Figure 4.3 shows a revision of the String abstraction that incorporates these changes.
The method resize has here been replaced with reassign. The method reassign replaces the
current string reference with another. In doing so, it both decrements the reference count
on the old string reference, and increments the count on the new. Performing the increment
�rst ensures the procedure will work in the special case where a variable is assigned to
itself. If the reference count for the old value becomes zero, the memory for the entire string
reference is returned to the heap manager, using the method delete. Before recovering the
memory, the heap manger will execute the destructor for the string reference being deleted.
This destructor will, in turn, return the bu�er to the heap manager.

void String::reassign(String::StringReference � np)

f
if (np) // increment count on new value

np->count += 1;

if (p) f // decrement reference counts on old value

p->count -= 1;

if (p->count == 0)

delete p;

g
p = np; // change binding

g

68 CHAPTER 4. MEMORY MANAGEMENT

class String f
public:

// constructors

String () : p(0) f g
String (const char � right) : p(0)

f reassign(new StringReference(right)); g
String (const String & right) : p(0) f reassign(right.p); g

// destructor

�String () f reassign(0); g

// assignment

void operator = (const String & right) f reassign(right.p); g

private:

void reassign (StringReference �);

class StringReference f
public:

int count;

char � buffer;

StringReference(const char � right);

�StringReference() f delete [] buffer; g
g

StringReference � p;

g

void String::StringReference::StringReference(const char � right)

f
count = 0;

buffer = new Char[1 + strlen(right)];

strcpy(buffer, right);

g

Figure 4.3: The Class String (Version Two)

4.3. HEAP RESIDENT MEMORY VALUES 69

The structure of the object holding both the reference count and the bu�er is de�ned by
means of a nested class declared within the body of the String class. The reader should note
that although there are super�cial syntactic similarities, there are some semantic di�erences
between nested classes in C++ and inner classes in Java. These are discussed in more detail
in Chapter 5.

The values held by reference counts can be illustrated by tracing the execution of a
simple program. Imagine the following:

string g; // global string value

void test ()

f

string a = "abc";

string b = "xyz";

string c;

c = a;

a = b;

g = b;

g

The following table summarizes the reference counts associated with the values "abc"
and "xyz" as the program executes:

statement "abc" "xyz"

string a = "abc"; 1 0
string b = "xyz"; 1 1
string c; 1 1
c = a; 2 1
a = b; 1 2
g = b; 2 2
end of execution:

destructor for c 1 2
destructor for b 1 1
destructor for a 1 0

We are left with a single reference (namely the global variable g) pointing to the value
"abc". The value "xyz" will have been recovered when the reference count reached zero,
that is, when the variable a was deleted.

70 CHAPTER 4. MEMORY MANAGEMENT

Test Your Understanding

1. What are some of the advantages of putting the programmer in control of memory
management? What are some of the disadvantages?

2. What is a stack resident value? When is it allocated? When is it deleted?

3. What are characteristics of stack resident values that are not necessarily characteristics
of heap resident values?

4. Explain the error in the following program fragment:

char � secretMessage()

f
char messageBuffer[100];

strcpy (messageBuffer "Eat Ovaltean!");

return messageBuffer;

g

5. Explain the slicing problem, and under what circumstances it will occur.

6. What is a heap resident memory value? How is this value allocated?

7. What are the four types of errors that can occur in the recovery of heap resident
values?

8. What is a destructor? When is it invoked?

9. What is a reference count?

10. The following statement is legal. It will create a temporary string value for the right
hand expression, then assign the temporary to the left hand variable, before destroying
the temporary. Assuming the reference counting scheme is being used to implement
the string data type, trace the reference counts on the various internal bu�er values.

string text = "initial text";

text = "new text";

