
Chapter 5

Ball Worlds

In our intuitive description of object-oriented programming presented in Chapter 1, we
described an object-oriented program as a universe of interacting agents. However, in our
�rst example Java program, in Chapter 4, we did not actually create any new objects, but
only used the static procedure named main in the program class.

Our second program is slightly more complex in structure, although hardly more com-
plicated in functionality. It places a graphical window on the user's screen, draws a ball
that bounces around the window for a few moments, and then halts.

Our second example program, or paradigm, is constructed out of two classes. The �rst
of these appears in Figure 5.1. Again, we have added line numbers for the purposes of

75

76 CHAPTER 5. BALL WORLDS

reference, however these are not part of the actual program.1 The reader should compare
this program to the example program described in the previous chapter, noting both the
similarities and di�erences. Like the previous program, this program imports (on line 1)
information from the Java library. Like the earlier program, execution will begin in the
procedure named main, (lines 3 through 6), which is declared as static, void and public. Like
all main programs, this procedure must take as argument an array of string values, which
are, in this case, being ignored.

However, this program also incorporates a number of new features. These are summa-
rized by the following list, and will be the subject of more detailed discussion in subsequent
sections.

� The class de�nes a number of private internal variable �elds, some of which are con-
stant, some of which are initialized but not constant, and some of which are not
initialized. These data �elds will be described in detail in Section 5.1.

� The main program creates an instance of the class BallWorld. This object is initialized
by means of a constructor. A constructor is a function that automatically ties together
the actions of object creation and object initialization. Constructors will be introduced
in Section 5.2.

� The class is declared as an extension of an existing Java class named Frame. This
technique is called inheritance, and is the principal means in object-oriented languages
for constructing new software abstractions that are variations on existing data types.
Inheritance will be introduced in Section 5.3, and will be more extensively studied
beginning in Chapter 8.

� The output displayed in a window by this program is created using some of the graph-
ics primitives provided by the Java run-time library. These graphics operators are
explained in Section 5.4.

5.1 Data Fields

We have seen in the previous chapter (Section 4.4) how data �elds can be declared within a
class and how they can be initialized. The example program here includes features we have
not seen in our previous programs in the four data �elds declared on lines 7 to 10:

public static final int FrameWidth = 600; // 7

public static final int FrameHeight = 400; // 8

private Ball aBall; // 9

1In order to draw more attention to the Java code itself, the programs presented in this text have

purposely been written using very few comments. In practice comments would usually be used to describe

each function in a class.

5.1. DATA FIELDS 77

import java.awt.�; // 1

public class BallWorld extends Frame f // 2

public static void main (String [] args) f // 3

BallWorld world = new BallWorld (Color.red); // 4

world.show (); // 5

g // 6

public static final int FrameWidth = 600; // 7

public static final int FrameHeight = 400; // 8

private Ball aBall; // 9

private int counter = 0; // 10

private BallWorld (Color ballColor) f// constructor for new window 11

// resize our frame, initialize title 12

setSize (FrameWidth, FrameHeight); // 13

setTitle ("Ball World"); // 14

// initialize aBall data �eld 15

aBall = new Ball (10, 15, 5); // 16

aBall.setColor (ballColor); // 17

aBall.setMotion (3.0, 6.0); // 18

g // 19

public void paint (Graphics g) f // 20

// �rst, draw the ball 21

aBall.paint (g); // 22

// then move it slightly 23

aBall.move(); // 24

if ((aBall.x() < 0) jj (aBall.x() > FrameWidth)) // 25

aBall.setMotion (-aBall.xMotion(), aBall.yMotion()); // 26

if ((aBall.y() < 0) jj (aBall.y() > FrameHeight)) // 27

aBall.setMotion (aBall.xMotion(), -aBall.yMotion()); // 28

// �nally, redraw the frame 29

counter = counter + 1; // 30

if (counter < 2000) repaint(); // 31

else System.exit(0); // 32

g // 33

g // 34

Figure 5.1: Class Description for Ball World

78 CHAPTER 5. BALL WORLDS

private int counter = 0; // 10

Recall that the keyword public means that the variables being declared can be accessed
(that is, used directly) anywhere in a Java program, while those that are declared as private
can be used only within the bounds of the class description in which the declaration appears.
Recall also that the keyword static means that there is one instance of the data �eld, shared
by all instances of the class. The modi�er keyword �nal generally means that this is the last
time when an object is changed. It is here applied to a variable declaration; we will in later
chapters see how the modi�er can also be applied to a function de�nition. When used with
a variable declaration, the declaration must also include an initialization, as shown here.

Variables that are static and �nal are used to create symbolic names for constants, as
they are variables that are guaranteed to exist only in one place, and not change values.
Because they cannot be modi�ed, there is less reason to encapsulate a static �nal variable by
declaring it private. Thus, such values are often made public, as shown here. The particular
symbolic values being de�ned in this program represent the height and width of the window
in which the application will eventually produce its output. Symbolic constants are useful
in programs for a number of di�erent reasons:

� By being de�ned in only one place, they make it easy to subsequently change, should
circumstances require. For example, changing the height and or width of the window
merely requires editing the �le to change the values being used to initialize these
symbolic constants, rather than hunting down all locations in the code where the
quantities are used.

� When subsequently used elsewhere in the program, the symbolic name helps document
the purpose of the constant values.

The counter data �eld is an integer value, initialized to zero:

private int counter = 0; // 10

Because the �eld is declared private we know it can be used only within the bounds of the
class de�nition. Because it was not declared static, we know that each instance of the class
will hold its own di�erent value. Because it was not declared as �nal we know that the value
being assigned is simply the initial value the variable will hold, but that it subsequently
could be reassigned. We will see how this variable is used when we discuss the graphical
aspects of the current program.

private Ball aBall; // 9

The �nal data �eld is declared as an instance of class Ball, which is the second class used
in the creation of our example program. A ball is an abstraction that represents a bouncing
ball. It is represented by a colored circle that can move around the display surface. The

5.2. CONSTRUCTORS 79

class Ball will be described in Section 5.5. How this �eld is initialized is described in the
next section.

5.2 Constructors

As we noted at the beginning of the chapter, one of the major topics we address in this
chapter is the creation of new objects. This occurs in two places in the program shown in
Figure 5.1. The �rst is in the main program, which creates an instance of the class BallWorld.

BallWorld world = new BallWorld (Color.red); // 4

The new operator is always used to create a new object. In this case, it is being used to
create an instance of BallWorld, which (we will see in the next section) is the name given to
the window in which the program will display its output. The new operator is followed by a
class name, indicating the type of object being created. A parenthesized list then gives any
arguments needed in the initialization of the object.

Object creation and object initialization are intimately tied in concept, and it is impor-
tant that a programming language also bring these concepts together. Without support
from the programming language, two types of errors can easily occur:

� An object is created, but it is used before it is initialized.

� An object is created, and initialized multiple times before it is used.

The language Java uses a concept called a constructor to guarantee that objects are
placed into a proper initial state the moment they are created. A constructor bears a strong
resemblance to a function, however the name of the function matches the name of the class in
which it appears, the function does not specify a return type, and the user will never directly
execute the constructor. However, like a function, a constructor can have arguments, and
the body of the constructor consists of a sequence of statements. In our example program
the constructor occurs in lines 11 to 19:

private BallWorld (Color ballColor) f// constructor for new window 11

// resize our frame, initialize title 12

setSize (FrameWidth, FrameHeight); // 13

setTitle ("Ball World"); // 14

// initialize aBall data �eld 15

aBall = new Ball (10, 15, 5); // 16

aBall.setColor (ballColor); // 17

aBall.setMotion (3.0, 6.0); // 18

g // 19

80 CHAPTER 5. BALL WORLDS

When an object is created (via the new operator), the �rst function invoked using the
newly created object is the constructor function. The arguments passed to the constructor
are the arguments supplied in the new expression.

In this particular case, the argument represents a color. The class Color is part of the
Java run-time library. The value red is simply a constant (a value declared both as static
and �nal) in the class description of Color.

BallWorld world = new BallWorld (Color.red); // 4

The corresponding parameter value in the constructor function is named ballColor (see
line 11). The constructor function must ensure that the instance of the class BallWorld
is properly initialized. As we noted earlier, the BallWorld represents the window in which
the output will be displayed. The �rst two statements in the constructor set some of the
attributes for this window; namely, the size and the title.

Line 17 of the constructor again uses the new operator to create and initialize a new
object. In this case the object is an instance of the class Ball. Not only will memory
for this object be created by the new statement, but the arguments will be matched by a
corresponding constructor in the class Ball, which will then be invoked to initialize the newly
created ball:

public class Ball f // a generic round colored object that moves

...

public Ball (int x, int y, int r) f // ball with given center and radius

...

g
g

The complete class description for Ball will be shown in Figure 5.2 (page 84). Not all aspects
of a Ball are set by the constructor. The �nal two statements in the constructor for BallWorld
set the color of the ball, and set the direction of motion for the ball. These attributes will
be discussed in more detail in Section 5.5.

5.3 Inheritance

The most important feature of this program is the use of inheritance (sometimes also called
extension). As we noted earlier, the ball world is a rectangular window in which the action
of the program (the bouncing ball) is displayed. The code needed to display and manipulate
a window in a modern graphical user interface is exceedingly complex; due in part to the
fact that the user can indicate actions such as moving, resizing, or iconifying the window.
As a consequence, recent languages attempt to provide a means of reusing existing code so

5.3. INHERITANCE 81

that the programmer need only be concerned with those features of the application that
distinguish the program from other window applications.

The programming language Java uses the class Frame to represent a generic window.
By saying that the class BallWorld extends the class Frame, we indicate that our new class,
the ball world, is a type of frame, but a more specialized type with a single purpose. The
class Frame de�nes code to perform actions such as resizing the window, arranging for the
window to be displayed on the workstation screen, and so on. By extending the class Frame,
our new class inherits this functionality, which means the abilities are made available to the
new class, and do not need to be rewritten anew.

public class BallWorld extends Frame f // 2

By executing the example program the reader can verify that the window exhibits the
functionality we expect of graphical windows; the ability to move, resize, and iconify, even
though the program does not explicitly de�ne any code to support these behaviors. (The
reader might also note some expected behaviors that are not provided. For example, the
handling of menu items and the close or quit box. In a later chapter we will describe how
these features can be provided.)

We can observe the use of inheritance in the variety of methods that are invoked in our
example program, but are not de�ned by the class BallWorld. These functions are instead
inherited from the parent class Frame. Two examples are the functions setSize and setTitle
invoked in the BallWorld constructor. These functions set the dimensions (in pixels) and
title value for the window, respectively.

private BallWorld (Color ballColor) f// constructor for new window 11

// resize our frame, initialize title 12

setSize (FrameWidth, FrameHeight); // 13

setTitle ("Ball World"); // 14

...

g // 19

Another example is the function show, which is invoked in the static procedure main after
the instance of BallWorld has been created. The show function arranges for the window to
appear on the display surface, and then for the surface of the window to be drawn.

public static void main (String [] args) f // 3

BallWorld world = new BallWorld (Color.red); // 4

world.show (); // 5

g // 6

82 CHAPTER 5. BALL WORLDS

5.4 The Java Graphics Model

Graphics in Java is provided as part of the AWT, or the Abstract Windowing Toolkit. The
Java AWT is an example of a software framework. The idea of a framework is to provide
the structure of a program, but no application speci�c details. The overall control, the ow
of execution, is provided by the framework, and therefore does not need to be rewritten for
each new program. Thus, the programmer does not \see" the majority of the program code.

This is illustrated by the actions that occur subsequent to the program issuing the show
method that is inherited from the class Frame. The window in which the action will take
place is created, and the image of the window must be rendered. To do so, the show method
invokes a function named paint, passing as argument a graphics object.

The programmer de�nes the appearance of the window by providing an implementation
of the function paint. The graphics object passed as argument provides the ability to draw
a host of items, such as lines and polygons as well as text. In our example program we use
the paint procedure for two purposes. The only image in the window itself is the bouncing
ball. The image of the ball is produced by invoking the paint method in the class Ball
(see Figure 5.2). The second purpose of the paint method is to provide a simple means
of updating the location for the ball. The ball is moved slightly, checking to see if the
resulting new location is outside the bounds of the window. If so, the direction of the ball
is reversed. Finally, invoking the repaint method (also inherited from Frame) indicates to
the framework that the window should be redrawn, and the cycle continues.2 A counter
is used to prevent the program from running inde�nitely, invoking the function System.exit
after a certain number of iterations. (Later programs will use other techniques to halt the
program).

public void paint (Graphics g) f // 20

// �rst, draw the ball 21

aBall.paint (g); // 22

// then move it slightly 23

aBall.move(); // 24

if ((aBall.x() < 0) jj (aBall.x() > FrameWidth)) // 25

aBall.setMotion (-aBall.xMotion(), aBall.yMotion()); // 26

if ((aBall.y() < 0) jj (aBall.y() > FrameHeight)) // 27

aBall.setMotion (aBall.xMotion(), -aBall.yMotion()); // 28

// �nally, redraw the frame 29

counter = counter + 1; // 30

if (counter < 2000) repaint(); // 31

else System.exit(0); // 32

2Some readers might object that the control of the animation has little to do with the rendering of the

image on the window, and thus does not belong in the paint routine. While there is merit to this argument,

this is also the simplest way to make simple animations. In later chapters we will present more robust ways

to control animations.

5.5. THE CLASS BALL 83

g // 33

Note that the programmer calls the inherited method named repaint, which in turn will
eventually result in the paint method being invoked. The programmer does not directly call
the paint method for the class.

In later examples we will investigate more of the abilities of the graphics objects provided
by the Java library.

5.5 The class Ball

We will use a ball, that is, round colored object that moves, in a number of our subsequent
example programs. It is therefore useful to de�ne the behavior of a Ball in a general fashion
so that it can be used in a variety of ways. The description of class Ball is placed in its
own �le (Ball.java) and is linked together with the BallWorld class to create the executable
program.

A Ball (Figure 5.2) maintains four data �elds. The location of the ball is represented
by a Rectangle, a general purpose class provided in the Java run-time library. Two oating
point values represent the horizontal and vertical components of the direction of motion for
the ball. Finally, the color of the ball is represented by an instance of class Color, a Java
library class we have previously encountered.

These four data �elds are declared as protected. This allows any subsequent child classes
we might create to have access to the data �elds, without exposing the data to modi�cation
by other objects. It is good practice to declare data �elds protected, rather than private,
even if you do not anticipate extending the class to make new classes.

The constructor for the class Ball records the location by creating a new instance of class
Rectangle. Note that the three integer arguments passed as arguments to the constructor
represent the center location of the ball and the radius: a simple calculation is used to
convert these to the corner of the rectangle and the extent. The constructor also provides
default values for color (blue) and motion. As we have seen in our example program, these
can be rede�ned by invoking the functions setColor and setMotion.

A number of functions are used to access some of the attributes of a ball. Attributes that
can be obtained in this fashion include the radius, the x and y coordinate of the center of the
ball, the horizontal and vertical directions of motion, and the region occupied by the ball.
Functions that allow access to a data �eld in a class are termed accessor functions. The use of
accessor functions is strongly encouraged in preference to making the data �elds themselves
public, as an accessor function only permits the value to be read, and not modi�ed. This
ensures that any modi�cation to a data �eld will be mediated by the proper function, such
as through the function setMotion or moveTo.

Some of the functions use operations provided by the class Rectangle. A rectangle can
provide a width (used in function radius), the location of the upper corner (used in functions

84 CHAPTER 5. BALL WORLDS

public class Ball f // a generic round colored object that moves

protected Rectangle location; // position on graphic surface

protected double dx, dy; // x and y components of motion vector

protected Color color; // color of ball

public Ball (int x, int y, int r) f // ball with given center and radius

location = new Rectangle(x-r, y-r, 2�r, 2�r);
dx = 0; dy = 0; // initially no motion

color = Color.blue;

g

// functions that set attributes

public void setColor (Color newColor) f color = newColor; g

public void setMotion (double ndx, double ndy) f dx = ndx; dy = ndy; g

// functions that access attributes of ball

public int radius () f return location.width / 2; g

public int x () f return location.x + radius(); g

public int y () f return location.y + radius(); g

public double xMotion () f return dx; g

public double yMotion () f return dy; g

public Rectangle region () f return location; g

// functions that change attributes of ball

public void moveTo (int x, int y) f location.setLocation (x, y); g

public void move () f location.translate ((int) dx, (int) dy); g

public void paint (Graphics g) f
g.setColor (color);

g.fillOval

(location.x, location.y, location.width, location.height);

g
g

Figure 5.2: Implementation of the class Ball

5.6. MULTIPLE OBJECTS OF THE SAME CLASS 85

x and y), can move to a new position (used in function moveTo), and can transliterate on
the 2-dimensional surface (used in the function move).

Finally, the function paint uses two operations that are provided by the class Graphics
in the Java library. These are the ability to set the current color for rendering graphics
(setColor) and to display a painted oval at a given location on the window (�llOval).

5.6 Multiple Objects of the Same Class

Every instance of a class maintains its own internal data �elds. We can illustrate this
by making variations on our sample program. The simplest change is to modify the main
routine to create two independent windows. Each window will have a di�erent ball, each
window can be independently moved or resized.

public static void main (String [] args) f
// create �rst window with red ball

BallWorld world = new BallWorld (Color.red);

world.show();

// now create a second window with yellow ball

BallWorld world2 = new BallWorld (Color.yellow);

world2.show();

g

The reader should try making this change, and observe the result. Note how one window
is bouncing a red ball, and the second is bouncing a yellow ball. This indicates that each
instance of class BallWorld must be maintaining its own Ball value, as a ball cannot be both
red and yellow at the same time.

A second variation illustrates even more dramatically the independence of di�erent ob-
jects, even when they derive from the same class. The class MultiBallWorld (Figure 5.3) is
similar to our initial program, only it creates a collection of balls, rather than just a single
ball. Only the lines that have changed are included, and those that are elided are the same
as the earlier program. The new program declares an array of Balls, rather than just a
single ball. Note the syntax used to declare an array. As we noted in the previous chapter,
arrays in Java are di�erent from arrays in most other languages. Even though the array is
declared, space is still not set aside for the array elements. Instead, the array itself must be
created (again with a new command):

ballArray = new Ball [BallArraySize];

Note how the size of the array is speci�ed by a symbolic constant, de�ned earlier in the
program. Even then, however, the array elements cannot be accessed. Instead, each array
element must be individually created, once more using a new operation:

86 CHAPTER 5. BALL WORLDS

public class MultiBallWorld extends Frame f

...

private Ball [] ballArray;

private static final int BallArraySize = 10;

private MultiBallWorld (Color ballColor) f
...

// initialize object data �eld

ballArray = new Ball [BallArraySize];

for (int i = 0; i < BallArraySize; i++) f
ballArray[i] = new Ball(10, 15, 5);

ballArray[i].setColor (ballColor);

ballArray[i].setMotion (3.0+i, 6.0-i);

g
g

public void paint (Graphics g) f
for (int i = 0; i < BallArraySize; i++) f

ballArray[i].paint (g);

// then move it slightly

ballArray[i].move();

if ((ballArray[i].x() < 0) jj
(ballArray[i].x() > FrameWidth))

ballArray[i].setMotion

(-ballArray[i].xMotion(), ballArray[i].yMotion());

if ((ballArray[i].y() < 0) jj
(ballArray[i].y() > FrameHeight))

ballArray[i].setMotion

(ballArray[i].xMotion(), -ballArray[i].yMotion());

...

g
g

g

Figure 5.3: Class description for Multiple Ball World

5.7. CHAPTER SUMMARY 87

for (int i = 0; i < BallArraySize; i++) f
ballArray[i] = new Ball(10, 15, 5);

ballArray[i].setColor (ballColor);

ballArray[i].setMotion (3.0+i, 6.0-i);

g

Each ball is created, and initialized with the given color, and set in motion. We have
used the loop index variable to change the direction of motion slightly, so that each ball will
initially move in a di�erent direction.

When executed, ten di�erent balls will be created. Each ball will maintain its own
location and direction. As each ball is asked to paint it will display its value on the window.
Each ball will then move, independently of all other balls.

5.7 Chapter Summary

The two major themes introduced in this chapter have been the creation of new objects
using the operator new, and the de�nition of new classes using inheritance to extend an
existing class. Topics discussed in this chapter include the following:

� Data �elds which are declared �nal cannot be subsequently rede�ned. A static and
�nal value is the technique normally used to create a symbolic constant.

� New objects are always created using the operator new.

� When a new object is created, the constructor for the class of the object is automat-
ically invoked as part of the creation process. The constructor should guarantee the
object is properly initialized.

� A constructor is a function that has the same name as the class in which it is de�ned.

� Any arguments used by the constructor must appear in the new statement that creates
the corresponding object.

� Classes can be de�ned using inheritance. Such classes extend the functionality of an
existing class. Any public or protected data �elds or functions de�ned in the parent
class become part of the new class.

� The class Frame can be used to create simple Java windows. This class can be extended
to de�ne application-speci�c windows.

� The framework provided by the Java AWT displays a frame (a window) when the
frame object is given the message show. To create the image shown in the window the
message paint is used. The programmer can de�ne this method to produce application-
speci�c pictures.

88 CHAPTER 5. BALL WORLDS

� The paint method is given as argument an instance of the library class Graphics. This
object can be used to create a variety of graphical images.

� The class Rectangle (used in our class Ball) is a library class that represents a rect-
angular region on the two-dimensional window surface. The class provides a large
amount of useful functionality.

� Multiple instances of the same class each maintain their own separate data �elds.
This was illustrated by creating multiple independent Ball objects, which move inde-
pendently of each other.

Cross References

We will use the Ball class in case studies in Chapters 6, 7, 8 and 20. The topic of inheritance
is simple to explain, but has many subtle points that can easily trap the unwary. We will
examine inheritance in detail in Chapters 8 through 11. The AWT will be examined in more
detail in Chapter 13.

Study Questions

1. How would you change the color of the ball in our example application to yellow?

2. How would you change the size of the application window to 500 by 300 pixels?

3. What does the modi�er keyword �nal mean when applied in a data �eld declaration?

4. Why do symbolic constants make it easier to read and maintain programs?

5. What two actions are tied together by the concept of a constructor?

6. What types of errors does the use of constructors prevent?

7. What does it mean to say that a new class inherits from an existing class?

8. What methods inherited from class Frame are used in our example application?

9. What methods provided by our example program are invoked by the code inherited
from class Frame?

10. What abstraction does the Java library class Rectangle represent?

11. What are some reasons that data �elds should be declared as private or protected, and
access provided only through member functions?

12. In Java, what are the steps involved in creating an array of objects?

5.7. CHAPTER SUMMARY 89

Exercises

1. The function Math.random returns a random oating point value between 0 and 1.0.
Using this function, modify the example program shown in Figure 5.1 so that the ball
will initially move in a random direction.

2. Modify the MultiBallWorld so that the colors of the various balls created are selected
randomly from the values red, blue and yellow. (Hint: call Math.random() and test
the resulting value for various ranges, selecting red if the value is in one range, blue if
it is in another, and so on).

3. Modify the MultiBallWorld so that it will produce balls of di�erent radiuses, as well as
di�erent colors.

4. Rather than testing whether or not a ball has hit the wall in our main program,
we could have used inheritance to provide a specialized form of Ball. Create a class
BoundedBall that inherits from class Ball. The constructor for this class should provide
the height and width of the window, which should subsequently be maintained as data
�elds in the class. Rewrite the move function so that if the ball moves outside the
bounds, it automatically reverses direction. Finally, rewrite the BallWorld class to use
an instance of BoundedBall, rather than an ordinary Ball, and eliminate the bounds
test in the main program.

5. Our Ball abstraction is not as simple as it could have been. Separate the Ball class into
two separate classes. The �rst, the new class Ball, knows only a location, its size, and
how to paint itself. The second class, MovableBall, extends the class Ball and adds all
behavior related to motion, such as the data �elds dx and dy, the functions setMotion
and move, and so on. Rewrite the MultiBallWorld to use instances of class MovableBall.

