
90



Chapter 5

Iteration

All of the data structures examined in the �rst part of this book can be used to maintain
collections of values. The problem posed by the task of iteration is simply to de�ne a
mechanism which will permit the programmer who is making use of such a data structure
to access, one at a time, each element held by the collection. Since the task is easy to
specify, and occurs with great frequency, the various alternative techniques that can be
employed in solving the problem of iteration provide an excellent illustration of the range
of programming techniques that are possible in a multiparadigm language. In this chapter
we will explore �ve di�erent solutions to the iteration problem. Each solution is inspired
by, and is similar in spirit to, a mechanism found in one or more widely used programming
language. Following a description of these �ve techniques we will explore two important
variations on the problem of iteration; iteration with premature termination, and iteration
of two or more structures in parallel. Our vehicle for all of our examples will be the object
oriented version of the list structure described in Chapter 4.

5.1 Variation 1 { Direct Manipulation

The most obvious approach to the task of iteration is for the user of the list abstraction
to directly cycle over the elements contained in the individual links. This is the technique
employed, for example, in the includes method. First, a variable of type Link must be
declared. Then, a while loop is written that iterates over each link �eld. An example of
this approach as it could be used to print each element of a list might look something like
the following:

var

aList : List[integer];

p : Link[integer];

91



92 CHAPTER 5. ITERATION

begin

...

f print out the vales maintained by a list g

p := aList.data;

while defined(p) do begin

print(p.datum);

print(" ");

p := p.link;

end;

This solution, while workable and e�cient, is unsatisfactory in several regards. The
major objection is that this solution forces the user of the List data abstraction to have
detailed knowledge of the way in which lists are represented. In particular, the user of a list
must not only know that elements are maintained in links, but must declare the seemingly
extraneous variable p. But it is even worse, for not only must the variable p be declared,
but it must be declared as an instance of the class Link, a class which is otherwise hidden
from the user of the list abstraction.

Issues such as the necessity to make explicit use of data �elds used in the implemen-
tation of a data structure are only a minor annoyance in programs developed by a single
programmer working in isolation, but become a major headache in large programs developed
by several programmers working together. In such situations one programmer will create
software components, such as the list class, which are then used by another programmer.
We would like to minimize the amount of information the second programmer needs to know
in order to make use of the services provided by the �rst programmer.

Several years ago the computer scientist David Parnas captured the essential goals of
information hiding in a pair of principles, which are now referred to as Parnas' Principles:

1. The developer of a software component should have access to all the information
necessary to provide the services assigned to the component, and nothing more.

2. The user of a software component should have access to all the information necessary
to make use of the services provided by the component in the solution of a problem,
and nothing more.

The emphasis is purposely placed on the �nal limiting clause. In short, we would like
to develop a mechanism whereby the user of a list class could perform the iteration task
without knowledge of the internal structure of lists.



5.2. VARIATION 2 { PASSING THE ACTION AS A FUNCTION 93

5.2 Variation 2 { Passing the Action as a Function

As an alternative to the direct manipulation of link values, the next solution we will in-
vestigate relies on the ability to create functions as expressions. In particular, functions
can be passed as arguments to procedures and returned as results of execution. The use
of functions in this fashion is one small aspect of functional programming, a topic we will
investigate in much more detail in Part IV of this book.

The basic idea is to de�ne in class List a method, which we will call onEach, that takes
as argument a one-argument function. When the onEach method is invoked, the function
supplied as argument is then executed repeatedly, once for each element contained in the
list. Each time the function is executed a di�erent value of the list is passed as argument.

class List [T : equality];

var

data : Link[T];

...

function onEach(fun : function(T));

var

p : Link[T];

begin

p := data;

while defined(p) do begin

fun(p.datum);

p := p.next;

end;

end;

...

end;

Since the onEach method is part of the List class, it is permitted to directly access the
link �elds in the list without violating Parnas' principles.

One way this operation could be used to print out the values maintained by a list is
for the user to de�ne a special printing function. The name of this function could then be
passed as argument to the method onEach:

function printValue(i : integer);

begin

print(i);

print(" ");

end;



94 CHAPTER 5. ITERATION

var

aList : List(integer);

...

f print out the values held in the list g

aList.onEach(printValue);

end;

The printValue function would then be invoked once for each value in the list named
aList. An even better solution eliminates the necessity of explicitly creating the function
printValue. This approach uses the ability in Leda to create unnamed functions directly
as expressions, for example in an argument list. The following statement shows how the
onEach method might be used in this fashion to print the values maintained by a list:

f print out the values held in the list g

aList.onEach(function(val : integer);

begin

print(val);

print(" ");

end);

The function passed as argument to onEach is created directly in the argument list.
Notice this function does not have a name, and no other extraneous variables have been
declared. In all other respects the syntax used to create the function is exactly the same as
the syntax used in normal functions.

Although not used in this example, functions de�ned within another function or program
capture the environment in which they are de�ned. That is, such functions can make use
of variable values accessible at the time the function was de�ned, and the values of those
variables will be retained as long as the function is accessible. We will make use of this
aspect of nested functions later in this chapter when we discuss the generator approach to
iteration.

5.3 Variation 3 { Using Relations and Backtracking

In chapter one we noted that a feature necessary to support the relational, or logic program-
ming paradigm is the ability to perform automatic backtracking to revisit prior computa-
tional states. Since Leda supports the logic programming paradigm, it naturally includes
an automatic backtracking facility. An alternative approach to the problem of iteration can
be constructed by making use of this mechanism. While not exactly logic programming, per
se, this solution is in the spirit of the logic programming facilities in Leda. (In Part V we
will explore more traditional logic programming in Leda).



5.3. VARIATION 3 { USING RELATIONS AND BACKTRACKING 95

Backtracking in Leda is delimited by a for or if statement. Within the expression
portion of such a statement the programmer can invoke a relation. A relation is simply an
expression of type relation, most generally constructed out of the relational assignment
operator (to be described shortly), boolean expressions, logical operators or functions which
return relations. The boolean or operator naturally de�nes a \solution" to a relational
expression as a sequence of alternative choices. Each alternative solution is tried in turn.
In the case of lists, a \solution", as implemented by the relation named items, is simply
a binding of a value in the list to the argument variable. Using the for statement in this
fashion, the following code fragement will print the values held in a list, separated by spaces:

f print out the values held by a list g
for aList.items(i) do begin

print(i);

print(" ");

end;

This approach to iteration is straight-forward and simple, and will be the technique we
will most frequently employ in the remainder of the text.

As with several functions we have seen already, the implementation of the items relation
is accomplished by a combination of methods in both class List and Link, the bulk of the
work being performed in the latter class. The argument to both methods is passed by
reference, so changes made within the method will be reected as changes made to the
actual argument. The de�nition in class List is as follows:

class List [T : equality];

var

data : Link[T];

...

function items(byRef val : T)->relation;

begin

f enumerate the values held in list g
return defined(data) & data.items(val);

end;

...

end;

The backtracking takes place within the Link class. At each step through this recursive
procedure there are two alternatives. The �rst alternative invokes the unify relation, which
you will recall from Chapter 3 (page 43) binds the value of the �rst argument to the quantity
given in the second. The second alternative performs a recursive call, which subsequently
binds the remaining values to the variable.



96 CHAPTER 5. ITERATION

class Link [T : equality];

var

datum : T;

next : Link[T];

...

function items(byRef val : T)->relation;

begin

return unify[T](val, datum)

j defined(next) & next.items(val);

end;

...

end;

The or statement, when used with relational values, is the key component of the back-
tracking mechanism. Each alternative possibility in an or expression is systematically exe-
cuted in conjunction with the statement portion of the for or if statement. In this manner
every element in the list will eventually be generated. (The complete details of the imple-
mentation for the logic programming paradigm will be discussed in Chapter 22.)

5.4 Variation 4 { Data Structure Iterators

In many object-oriented languages a popular approach to the problem of iteration is to
employ a type of data structure called an iterator. An iterator is an auxiliary data structure
created with the sole purpose of permitting access to the values held in a collection through
a sequence of simple operations, while hiding from the user of the iterator the actual im-
plementation of these operations. Because an iterator is usually developed by the author of
the data structure over which it operates, it is permitted access to the inner working of this
class without violating Parnas' principles.

A simple iterator for our List class might de�ne only four operations. The �rst is
initialization, by which means an iterator is bound to a list over which it will ow. The
remaining three operators test to see if there are any remaining values to be generated, return
the current value, and increment, or move the iterator to the next value. An implementation
of such an iterator can be given as follows:

class ListIterator[T : equality];

var

finger : Link[T];

function init(aList : List[T]);



5.4. VARIATION 4 { DATA STRUCTURE ITERATORS 97

begin

finger := aList.data;

end;

function atEnd()->boolean;

begin

return � defined(finger);

end;

function current()->T;

begin

if defined(finger) then

return finger.datum;

return NIL;

end;

function increment();

begin

if defined(finger) then

finger := finger.next;

end;

end;

The iterator maintains a pointer, or \�nger", into the data values held by the list struc-
ture. Upon initialization this �nger is set to refer to the �rst element, and is moved to the
next value by the increment operation. When the end of the list is reached the value held
by the �nger will naturally become unde�ned. Thus, this condition is used to determine
whether or not the iterator has reached the end of the loop, while the value pointed to by
the �nger (if de�ned) is used to generate the current element being yielded by the iterator.

To iterate over the values in a list an iterator is declared and initialized, and then a
simple loop is formed making use of the iterator operations:

var

aList : List[string];

listItr : ListIterator[string];

...

begin

...

f create and initialize a list iteratorg
listItr := ListIterator[string]();

listItr.init(aList);



98 CHAPTER 5. ITERATION

f cycle over the values held in the list g
while � listItr.atEnd() do begin

print(listItr.current());

print(" ");

listItr.increment();

end;

...

end;

Iterators can be easily developed for all the common data structures. While the iterator
solution seems to su�er from one of the problems of the �rst approach, namely; the need to
introduce a seemingly extraneous variable, it nevertheless permits complex data structures
to be examined piece by piece without violating the principles of information hiding.

Note that input/output operations can, in most computer languages, be considered a
form of iterator. That is, input and output operations are often mediated through a variable,
typically declared as type \�le", with which various operations can be performed. The actual
data itself is not contained in the variable, but is held in an external storage area.

5.5 Variation 5 { Data Generators

A generator is a function which will yield a sequence of values, one new value each time
it is invoked. Probably the most common form of generator function is a random-number
generator, which yields a new pseudo-random integer value on each call. But generators
can be constructed for other tasks. In particular, the task of iteration can be tackled by
creating a generator which will yield, on each successive invocation, a di�erent value from
the underlying data structure.

If the functional solution as implemented by the method named onEach is thought of as
\bundling up the action to be performed and handing it to the list," then the use of gener-
ators is almost exactly the reverse. Namely, the list itself is bundled into a structure which
will yield each element in turn, and it is this structure which is given to the programmer to
manipulate.

While a random number generator can be considered to be producing a sequence which
is in�nite in length, the generators for data structures produce a �nite sequence. Thus,
some protocol must be observed for indicating the end of the sequence. The technique we
will use is to produce the value NIL when the values are exhausted.

Imagine we add a method generate to the List class in order to create a list generator.
Then the task of printing all the values held in a list might be implemented as follows:

var

aList : List[string];

gen : function()->string;



5.5. VARIATION 5 { DATA GENERATORS 99

val : string;

...

gen := aList.generator();

val := gen();

while defined(val) do begin

print(val);

print(" ");

val := gen();

end;

...

Note that the generator itself is stored in a variable which is declared as type function.
The generator function requires no arguments, but produces on each call a value of the
appropriate type.1

To implement the generator operation we de�ne a function which returns another func-
tion as a result. As we noted earlier, functions de�ned as expressions capture and retain the
environment in which they are de�ned. Thus, within the generator function we can de�ne
a pointer to the current element, similar to the �nger used in the iterator style of loop. This
value is initially set to reference the �rst element in the list, and is continually modi�ed as
each execution of the returned function takes place.

Within the generator function itself there is another local variable which is used to hold
the value being returned. If the pointer current references a legal value then this variable
is set, otherwise once all values have been enumerated it remains unde�ned.

class List [T : equality];

var

data : Link[T];

...

function generator()->function()->T;

var

current : Link[T];

begin

current := data;

return function()->T;

var

val : T;

1More complicated use of the generator programming paradigm requires the ability to \restart" a gener-

ator so as to set it again to the beginning of the sequence it is producing. Often this is speci�ed by passing

a value to the generator function, for example a zero might indicate that the next value in sequence is to be

produced, while a one would indicate the sequence should be reset to the beginning.



100 CHAPTER 5. ITERATION

begin

if defined(current) then begin

val := current.datum;

current := current.next;

end;

return val;

end;

end;

...

end;

The generator solution would appear to su�er from at least one problem that is also found
in the iterator solution. This is that the construction of a loop requires the introduction
of an extra variable to hold the generator or iterator. But in another sense this weakness
can also be a strength. By breaking the task of iteration into a number of distinct steps we
allow a greater exibility in the way the components can be assembled. We will make use
of this property of generators in a later section when we discuss how several lists can be
traversed at one time.

5.6 Premature Termination

Often loops are used not to process an entire list, but to search for an element that satis�es
a certain property. In such cases it is usually useless and ine�cient to continue the iteration
once the selected value has been located. Thus, it is desirable to have some ability to
terminate a loop prematurely, before all elements have been examined.

In those forms of iteration we have examined which use while statements to control the
loop (namely, the direct manipulation solution, the iterator solution, and the generator so-
lution) it is a simple matter to add an additional condition to the expression being tested by
the while statement. We show here the modi�cation of the solution formed using iterators.
Imagine a list contains a sequence of names in alphabetical order, and we wish to halt as
soon as a name begins with a \C" or lexicographically larger letter. The loop to perform
this could be written as follows:

...

listItr := ListIterator[string]();

listItr.init(aList);

while � listItr.atEnd() & listItr.current() < "C" do begin

print(listItr.current());

print(" ");

listItr.increment();

end;



5.6. PREMATURE TERMINATION 101

...

There are two general ways to handle the problem of premature termination when using
the relational form of iteration. A relation used in the expression portion of an if statement
will search for the �rst solution which satis�es the condition. Thus a search often takes the
form of a relation which generates values and a condition which tests for the desired solution:

if aList.items(val) & val >= "C" then

...

else

...

An advantage of this form of search is that an else clause can be used to determine if
the search was unsuccessful. Alternatively, the for statement used with relations allows an
additional stopping condition. The boolean expression following the to keyword is evaluated
at the end of the statement portion of the loop. Execution continues as long as the expression
is false, and halts immediately the �rst time the expression evaluates to true.

for aList.items(val) to val >= "C" do begin

print(val);

print(" ");

end;

Because of a peculiar feature of the implementation technique used in conjunction with
the for statement, it is not possible to use a return statement inside the body of a relational
for loop. The following program is not permitted by the Leda system, and will generate a
compile time error:

for aList.items(val) do begin

if val >= "C" then

return val;

end;

It is important to remember that the test in the relational form is performed after the
statement which forms the body of the loop has been executed, while the test in the while
loop is executed before the statement. This means that the relational version will print the
�rst name which is lexicographically larger than \C" and then halt, while the alternative
loops will halt prior to printing this value. The e�ect of the �rst loop can be achieved by
including a conditional test in the body of the loop:

for aList.items(val) to val >= "C" do

if val < "C" then begin



102 CHAPTER 5. ITERATION

print(val);

print(" ");

end;

It is somewhat more di�cult to modify the functional technique in such a way that it
will permit premature termination. One common suggestion is to have the function being
passed to the onEach method return a boolean value, and execute as long as this boolean
value remains true.

5.7 Iteration of Multiple Structures in Parallel

Consider the problem of taking two lists of equal length which each contain integer values,
and generating a third list of the same length so that each value in the third list contains
the sum of the corresponding values in the �rst two. While simple to describe, the solution
to this problem is made di�cult by the fact that it requires the ability to simultaneously
iterate over two lists in parallel. Not all the approaches to iteration we have described in
this chapter will permit this style of use. For example, consider nesting successive calls on
the function onEach. An attempt at a solution might look something like the following:

var

firstList, secondList, thirdList : List[integer];

begin

...

thirdList := List[integer]();

firstList.onEach(function (x : integer);

begin

secondList.onEach(function (y : integer);

begin

thirdList.addToEnd(x + y);

end);

end);

...

If the two input lists each contain n elements, the resulting list will contain not the n
pair-wise sums, but n2 elements which correspond to each pairing of values from the �rst
list with each value from the second.

A similar situation will occur if one tries to use the relational approach to iteration:

var

firstList, secondList, thirdList : List[integer];

x, y : integer;



5.7. ITERATION OF MULTIPLE STRUCTURES IN PARALLEL 103

begin

...

thirdList := List[integer]();

for firstList.items(x) & secondList.items(y) do

thirdList.addToEnd(x + y);

...

Each of the remaining three approaches to iterator that we have considered in this chap-
ter have been criticized because they required the introduction of at least one seemingly
extraneous variable. In other sense, however, these variables provide an additional \handle"
with which one can control the iteration process. In particular, since iteration is accom-
plished through the combination of a number of di�erent statements, it is easier to combine
the various components together in di�erent manners, thereby producing a variety of e�ects.
We illustrate this by showing how the list of sums can be produced using generators. The
solution using the other two techniques is similar.

var

firstList, secondList, thirdList : List[integer];

x, y : integer;

firstgen, secondgen : function()->integer;

begin

...

thirdList := List[integer]();

firstgen := firstList.generator();

secondgen := secondList.generator();

x := firstgen();

y := secondgen();

while defined(x) & defined(y) do begin

thirdList.addToEnd(x + y);

x := firstgen();

y := secondgen();

end;

...

Thus, while the techniques that make use of functionals or relations are, for most prob-
lems encountered in Leda, the easiest to apply solution to the problem of iteration, there
are situations where one or more of the alternative techniques may be preferable.

Notes and Bibliography

Parnas' principles on information hiding were �rst described in [Parnas 72].



104 CHAPTER 5. ITERATION

The brute force approach to iteration is the traditional technique, used in languages
such as Algol and C. The technique of wrapping up the action to be performed as a function
and passing this function as argument to the data structure is found not only in functional
languages, but (perhaps surprisingly) in the object-oriented language Smalltalk [Budd 87,
Goldberg 83]. The relational approach is inspired not only by the mechanism used in Pro-
log [Sterling 86], but is very similar to the technique used by the language Icon [Griswold 90].
The use of iterators is common among C++ programmers [Stroustrup 86, Coplien 92], and
has been used in other languages [Grogono 91]. I myself have authored a textbook on data
structures in C++ which made extensive use of iterators [Budd 94]. The generator approach
is probably the least commonly used mechanism of the �ve, but has been employed in part
by the languages Icon and Smalltalk [Griswold 81, Budd 87], and has been examined in
detail in a book speci�cally devoted to the generator approach [Berztiss 90].

The language Smalltalk has an interesting solution to the problem of premature termina-
tion. In Smalltalk function-like structures can be created using a facility known as a Block.
Like our functions, these can be passed as arguments to other functions, and evaluated at
some later point. Like a function, when executed they act as if they were running in the
context in which they were de�ned. However, unlike our functions, a return statement ex-
ecuted from within a block acts as if it were a return from the de�ning context, and not a
return from the block/function.

Other interesting approaches to the iterator problem can be found embodied in the
languages CLU [Liskov 81], and BETA [Madsen 93]. In particular, in BETA the inheritance
mechanism is employed so that a subclass is created which implements the actions to be
performed in a method which re�nes a function de�ned in the list class. In an earlier
conference paper on Leda [Budd 92] I described some of the history of this issue and compare
the various approaches to the techniques possible using Leda.

I am indebted to Jakub T�e�s��nsk�y, a student from the University of Prague, for suggesting
the implementation technique used in the premature termination of iteration using relational
expressions.

Exercises

1. Show how to modify the generator function for Lists so as to implement the ability to
\restart" the generator at the beginning of the sequence, as described in the footnote
on page 99.

2. Modify the onEach method as described in Section 5.6. That is, the method will now
take as argument a function which returns a boolean value, and will execute as long as
the boolean result yielded by this function is true, terminating on the �rst false value.

3. In Section 5.7 the problem of generating the pair-wise sum of two lists of integer values
is considered. In the solution provided which makes use of generators, what happens
if the two lists are of di�erent lengths? Modify the solution so that the third list



5.7. ITERATION OF MULTIPLE STRUCTURES IN PARALLEL 105

continues with values simply copied from the longer list (in essence, as if the shorter
list were extended with zero entries).

4. Write a program that uses iterators to generate a list containing the pair-wise sum of
values of two argument lists, as described in Section 5.7. Compare your solution to
the solution that uses generators.

5. Write a function

function onEachPair [X : equality]

(list1, list2 : List[X], fun : function(X, X));

The function takes as arguments two lists an a function of two arguments. It traverses
each list in parallel, executing the function of each pair of values. Can you implement
this without violating Parnas' principles? (That is, without needing to make explicit
use of the internal representation of lists?)


