
Chapter 7

Sets

The problem we will consider in this chapter is the implementation of a data structure that
corresponds roughly to the notion of a set in mathematics. Our purpose is not to explain
the concept of a set (we assume the reader is already familiar with the idea) but to further
explore some of the techniques that can be used in the representation of common data
structures.

For this chapter we will de�ne a set to be an unordered collection of objects of the same
type, with no value appearing more than once in the set. In order to simplify our presenta-
tion, we will consider only three operations on sets. The action of addition incorporates a
new element into the set, while inclusion is a test used to determine if an element is already
present in the set. Finally, a union of one set with a second is formed by adding all the
elements from the second set that do not appear already in the �rst. The exercises at the
end of the chapter explore the implementation of various other set operations.

Unlike the chapter on Lists (Chapter 4), which developed a single implementation of a
data structure that made use of facilities from multiple di�erent paradigms, in this chapter
we will consider four di�erent implementation approaches, each more-or-less pure in their
own paradigm. Two of the approaches will make use of object-oriented programming, and
two of the approaches will use functional techniques. The presentation of di�erent imple-
mentations permits the reader to explore the range of potential solution techniques, and to
more clearly see some of the advantages and disadvantages of the di�erent methods.

7.1 Object-Oriented Sets

Object-oriented programming is in large part a paradigm that emphasizes the reuse of
existing software abstractions in the development of new software components. We saw this
in the previous chapter, where we constructed in an object-oriented fashion the Table data
type on top of the List abstraction from Chapter 4. In the �rst part of this chapter we

133

134 CHAPTER 7. SETS

will once again illustrate how this is accomplished by building the object-oriented versions
of our set data abstraction by making use of the List data structure.

There are two primary mechanisms available for software reuse using object-oriented
programming, and both are applicable in the development of a set data abstraction. In the
�rst of the following two sections we illustrate software reuse using the idea of composition,
while in the second section we develop an entirely di�erent approach using the technique of
inheritance.

7.1.1 Implementing Sets using Composition

You will recall that an object is simply an encapsulation of state (data values) and behavior.
When using composition to reuse an existing data abstraction in the development of a new
data type, a portion of the state of the new data structure is simply an instance of the
existing structure. This is illustrated in Figure 7.1, where the data type Set contains a �eld
of type List. In a similar fashion, in Chapter 6 we constructed the Table data structure
which held values in a �eld of type List.

Operations used to manipulate the new structure are implemented by making use of the
existing operations provided for the earlier data type. For example, the implementation
of the includes operation for our set data structure simply invokes the similarly-named
function already de�ned for lists. Notice that both the includes test and the addition
function check to make sure the list data �eld has been initialized before they perform their
operation, and initialize the data �eld to hold a newly created empty list if needed.

The addition of a new element to a set �rst checks to see if the value is already contained
in the collection. If it is already in the list it is not added, since our de�nition of a set
stipulates that each element appears only once in the collection. Only if the element is not
already in the set is it added to the list.

The operation of union is made di�cult by the necessity of looping over the elements
in the second set. Since this is will undoubtedly also be an operation users of the set data
abstraction will wish to perform, we make available the function named items that was
used with the list abstraction to perform iteration. The items function simply invokes the
functions with the same name in the list class.

Figure 7.2 illustrates the use of our set data abstraction. An array literal is de�ned
to hold the names of di�erent types of animals. Two sets are de�ned, one containing
animals that bark and one containing animals that are found in a zoo. A loop then prints
out information concerning each type of animal. The output of the program would be as
follows:

a cat is a non-zoo animal that does not bark

a dog is a non-zoo animal that barks

a seal is a zoo animal that barks

a lion is a zoo animal that does not bark

a horse is a non-zoo animal that does not bark

7.1. OBJECT-ORIENTED SETS 135

class Set [T : equality];

var

values : List[T]; f hold data values in a list g

function add (newValue : T);

begin f add new value to set, by adding to list g
if � defined(values) then

values := List[T]();

if � values.includes(newValue) then

values.add(newValue);

end;

function includes (value : T)->boolean;

begin f see if value is held by set g
return defined(values) & values.includes(value);

end;

function items(byRef val : T)->relation;

begin f iterate over values from set g
return defined(values) & values.items(val);

end;

function unionWith(secondSet : Set[T]);

var f add all elements from second set g
val : T;

begin

for secondSet.items(val) do

add(val);

end;

end;

Figure 7.1: Sets Constructed using Composition

136 CHAPTER 7. SETS

const

animals := ["cat", "dog", "seal", "lion", "horse"];

var

barkingAnimals : set[string];

zooAnimals : set[string];

name : string;

begin

barkingAnimals := set[string](); f make an empty set g
zooAnimals := set[string]();

barkingAnimals.add("dog");

barkingAnimals.add("seal");

zooAnimals.add("seal");

zooAnimals.add("lion");

zooAnimals.add("lion"); f second add has no e�ect g

for animals.items(name) do begin

print("a ");

print(name);

if zooAnimals.includes(name) then

print(" is a zoo animal")

else

print(" is a non-zoo animal");

if barkingAnimals.includes(name) then

print(" that barks\n")

else

print(" that does not bark\n");

end;

end;

Figure 7.2: An Example Program using Object-Oriented Sets

7.1. OBJECT-ORIENTED SETS 137

class Set [T : equality] of List[T];

function add (newValue : T);

begin f add only if not already in list g
if � includes(newValue) then

List[T].add(self, newValue);

end;

function unionWith(secondSet : Set[T]);

var

val : T;

begin f add all elements from second set g
for secondSet.items(val) do

add(val);

end;

end;

Figure 7.3: A Set de�ned using Inheritance

7.1.2 Using Inheritance

An entirely di�erent mechanism for software reuse in object-oriented programming is the
concept of inheritance. Using inheritance, a new class can be declared to be a subclass, or
child class of an existing class. By doing so, all data areas and functions associated with the
original class are automatically associated with the new data abstraction. The new class
can in addition de�ne new data values or new functions. The new class can also override

functions in the original class, by simply de�ning new functions with the same name.
These possibilities are illustrated in Figure 7.3, which implements a di�erent version of

the set data abstraction. By naming the class List following the keyword of we indicate
that the new abstraction is an extension, or a re�nement, of the earlier class. This means
that all operations associated with lists (Figure 4.1, page 63) are immediately applicable to
sets as well. Notice that the class does not de�ne any new data �elds. Instead, the data
�elds de�ned in the List class will be used to maintain the set elements. Similarly, functions
de�ned in the parent class can be used without any further e�ort. In particular, this means
that no work is required to implement the inclusion test, since the list data structure already
provides a function named includes that performs exactly the task we desire.

The addition of an element to a set, on the other hand, has a slightly di�erent meaning
than the addition of a value to a list. Thus, the implementation of the addition function must
supersede, or override, the function with the same name found in the list class. Contrast
the de�nition of the add function shown in Figure 7.3 with the similarly named function
de�ned for lists (Figure 4.2, page 68). The function for sets �rst checks to see if the element
is in the collection, only adding the new element if it is not present in the set. If it is not

138 CHAPTER 7. SETS

yet present in the list, then we want to invoke the add function from the class List.1

Simply saying self.add(...) would not work, since the compiler would interpret that
construct as a recursive call on the overridden add function, and the result would be an
in�nite execution loop. The solution to this problem involves a more general mechanism in
the Leda language. When a class name is used in an expression that references a function
de�ned within the class, as in

List[T].add

a transformation is applied to generate a new function out of the named function. This
new function takes one more argument than the original. Thus, the add function, which
in the class List required only a single argument, is converted into a new function that
requires two arguments. The additional argument is used to specify which list is being
manipulated. In e�ect, it is as if the expression given above had been translated into the
following function:

function [T : equality] (aList : List[T], newValue : T);

begin

aList.add(newValue);

end

This transformation is applied in the add function, which converts the one-argument function
from the parent class into a two-argument function, which is then immediately invoked. The
technique, however, can in general be applied to any function de�ned within a class.

A subtle point to note in relation to this transformation is the fact that the �rst argument
to the function being generated is declared as a List, but in fact is passed a value of class
Set (namely, the value referred to by the pseudo-variable self from within the Set class).
This is permitted, since the class Set inherits from class List, and thus can in all reasonable
situations be used as a substitute for class List. We will explore this issue in more detail
later in Chapter 10.

The method for performing union in the Set class formed using inheritance uses exactly
the same technique as the function written for the class using composition. Note, however,
that since the items function is inherited by the Set class, it does not need to be repeated
in the class declaration, as we were required to do with the �rst technique.

A programmer using the set abstraction might want to use inheritance one more time in
order to avoid the repeated use of fully quali�ed names. To do this, the programmer creates
a new class with no data areas and no behavior, as follows:

1The question of whether the add function in the class Set must invoke the add function in the class List

is tied to a fundamental di�erence between the so-called \American" school of object-oriented languages

versus the so-called \Scandinavian" school. The references at the end of this chapter contain further pointers

to discussions of this distinction.

7.1. OBJECT-ORIENTED SETS 139

class stringSet of set[string]

f no data, no new behavior g
end;

The variables barkingAnimals and zooAnimals in Figure 7.2 can then be de�ned as
instances of stringSet. Similarly the constructor for stringSet can be invoked, which
simply constructs an instance of the class Set[string]. In all other respects the example
program shown in Figure 7.2 remains unchanged, since exactly the same syntax is used with
both forms of sets, and exactly the same output will be generated by each.

The is-a relation

Given the existence of these two di�erent software reuse mechanisms it is natural to ask
under what conditions it is more appropriate to use inheritance and under what conditions
it is better to use composition. While it is di�cult to provide a hard-and-fast rule that
is applicable in all situations, a simple heuristic is useful in answering this question in the
large majority of cases. This heuristic is commonly known as the \is-a" test.

To apply the \is-a" test, form an English sentence by placing the name of the child
class �rst, followed by the words \is a", and lastly the name of the parent class. If the
resulting assertion appears to \sound right", then inheritance is likely the proper technique
to employ. If the sentence seems to sound a little odd, then inheritance is likely not the
proper technique to use.

Let us apply the is-a heuristic to the present case. Consider the sentence:

A Set is a List.

It is likely that this assertion does not seem entirely accurate. For example, there are many
features of a set that do not seem to be necessarily applicable to lists. A set is unordered,
and contains only unique elements, to name just two. On the other hand, the sentence

A Set can be implemented using a List.

makes much more sense. This simple test seems to indicate, then, that composition, rather
than inheritance, is the better implementation technique for constructing sets out of lists.
We will return to a discussion of the is-a test when we discuss co- and contravariance in
object oriented languages, in Chapter 10.

7.1.3 Contrasting Composition and Inheritance

Having illustrated two di�erent mechanisms for software reuse, and having seen that they
are both applicable to the implementation of sets, we are now in a position to comment on
some of the advantages and disadvantages of the two approaches.

The mechanism of composition is the simpler of the two techniques. The advantage of
composition is that it more clearly indicates exactly what operations can be performed on

140 CHAPTER 7. SETS

a particular data structure. Looking at the declaration shown in Figure 7.1, it is clear that
the only operations provided for the Set data type are addition, the inclusion test, and set
union. This is true regardless of what operations are de�ned for lists.

Using inheritance, on the other hand, the operations of the new data abstraction are a
superset of the operations provided for the original data structure on which the new object
is built. Thus, for the programmer to know exactly what operations are legal for the new
structure it is necessary to examine the declaration for the original. An examination of
the declaration shown in Figure 7.3, for example, does not immediately indicate that the
includes test can legally be applied to sets. It is only by examining the declaration for the
earlier data abstraction (in this case, the List class de�ned in Figure 4.1, page 63), that the
entire set of legal operations can be ascertained. The observation that for the programmer
to understand a class constructed using inheritance it is often necessary to
ip back and
forth between two (or more) class declarations has been labeled the \yo-yo" problem. (See
bibliography section for references).

However, the brevity of data abstractions constructed using the abstraction mechanism
is, in another light, an advantage. Using inheritance it is not necessary to write any code
to access the functionality provided by the class on which the new structure is built. For
this reason implementations using inheritance are almost always, as in the present case,
considerably shorter in code length than implementations constructed using composition,
while at the same time often providing greater functionality. For example, the inheritance
implementation not only makes available the includes test for sets, but also the functions
remove and onEach.

Finally, data structures implemented using inheritance tend to have a very small ad-
vantage in execution time over those constructed using composition, since one additional
function call is avoided. (The preceding statement is true of Leda, but should not be con-
strued to be true for all programming languages. Some languages, such as C++, have a
feature that permits function calls to be replaced directly by their associated function bod-
ies. In these languages using this mechanism the overhead of the additional function call
can sometimes be eliminated.)

The bottom line, however, is that both techniques are very useful, and an object-oriented
programmer should be familiar with either form.

7.2 Implementing Sets using Characteristic Functions

While it may be natural to �rst think about representing sets as data, there are many
examples in both computer theory and software engineering where sets are more easily
represented as actions; that is, as functions. For example, formal languages are consider to
be characterized either by a description or by a recognition function. A set can be de�ned
equally well by a regular expression:

(a (bc | cb))* d

7.2. IMPLEMENTING SETS USING CHARACTERISTIC FUNCTIONS 141

or by a �nite automata:

m m m m

m

m

S F- � -

@
@
@
@@R

�
�
�
��� @

@
@
@@R

�
�
�
���

a

c

b

a

b

c

d

The two forms are usually considered to be equivalent. That is, the �nite automata
returns true if and only if the input matches the set description.

In a similar manner, in the C standard library there is a function used to tell whether a
character value represents an upper case letter. In set terms, we can think of this as testing
whether the character is in the set of upper case letters. But operationally the function
simply performs a calculation which returns true if the argument happens to be located
within a given range:

int isUpperCase(char c)

f
return c >=
A
 && c <=
Z
;

g

In both these cases the underlying idea is the same. Namely, to characterize a set it is
su�cient to de�ne a function which return true if the argument is contained in the set, and
false otherwise. Such a function is known as a characteristic function for the set.

In this �rst section our characteristic functions will exactly match this basic idea. That
is, the characteristic functions will take as argument a value, and return a boolean result
that is true if the argument is contained in the set and false otherwise. We will see in the
second section that this rather direct approach may have certain disadvantages, and these
disadvantages can be overcome by using a slightly more indirect representation.

To implement our three example set operations we will provide a quartet of utility func-
tions, named emptySet, setAdd, setIncludes and setUnion. The �rst takes no arguments,
and simply generates a new empty set. Each of the latter three will take two arguments.
The �rst argument in all cases is the characteristic function representing the set, while the
second argument represents either an individual set element (in the case of addition or inclu-
sion) or the characteristic function associated with another set (in the case of union). The

142 CHAPTER 7. SETS

�rst and third functions, setAdd and setUnion, will return a new characteristic function
that represents the set with the addition of the new element (or elements). The second
function (setIncludes) returns a boolean value which indicates whether or not the second
argument is contained in the set. Both functions are generic, and thus must be quali�ed by
an argument representing the type of object held in the set.

To see how these operations might be used, consider the program shown in Figure 7.4,
which is a rewriting of the test program used in the earlier Figure 7.2. Changes include the
following:

� A type de�nition de�nes the name stringSet to be a synonym for a function that
takes a string as argument and returns a boolean value as result.

� The two sets are now declared simply as instances of the type stringSet.

� Adding values to the set is accomplished by invoking the function setAdd, which
returns a new characteristic function value. Although we could have written the
statement that initializes the set as a series of assignments, it is more characteristic of
functional programming to generate the set value once, using the result of one addition
as argument to the next.

� To test to see if a value is contained in a set we simply invoke the characteristic
function on the value. The function returns true if it is in the set, and false otherwise.

Figures 7.5 and 7.6 illustrate the implementation of the set manipulation functions. The
empty set function simply returns a new characteristic function which answers false to every
query. Thus, no elements are contained in an empty set.

The implementation of the setAdd function is more complex. The function �rst checks
to see if the element being added is already present in the set, by simply invoking the
characteristic function with the new value as argument. If it is in the set then there is no
reason to add it again, so the current characteristic function is returned. If, on the other
hand, the element is not in the set, then a new characteristic function is generated.

The new function captures and retains the environment in which it was de�ned. Then,
when invoked, the value of the variable named addedValuewill be the value it held when the
function was created. The new function takes as argument a set element, and compares the
argument to the captured quantity in the variable addedValue. If they are equal the result
true is returned, otherwise the existing characteristic function, which was also captured
when the function was de�ned, is invoked to see if the argument is present in the set. This
new characteristic function is then returned as the result of the setAdd operation.

The setUnion function (Figure 7.6) is similar. A new function is created that takes as
argument a value, and returns true if the value is found in either the �rst set or in the
second set.

An interesting feature to note in relation to the set union function is the way in which
the code mirrors the de�nition of a union. A value is in the union if either it is in the
�rst set, or it is in the second set. Thus, it is not surprising that the logical or operator

7.2. IMPLEMENTING SETS USING CHARACTERISTIC FUNCTIONS 143

type

stringSet : function(string)->boolean;

var

animals : array[string];

barkingAnimals : stringSet;

zooAnimals : stringSet;

name : string;

begin

animals := ["cat", "dog", "seal", "lion", "horse"];

barkingAnimals := setAdd[string](

setAdd[string](emptySet[string](), "dog"), "seal");

zooAnimals := setAdd[string](

setAdd[string](emptySet[string](), "seal"), "lion");

for animals.items(name) do begin

print("a ");

print(name);

if zooAnimals(name) then

print(" is a zoo animal")

else

print(" is a non-zoo animal");

if barkingAnimals(name) then

print(" that barks\n")

else

print(" that does not bark\n");

end;

end;

Figure 7.4: An Example Program using Characteristic Functions

144 CHAPTER 7. SETS

f return a new empty set g
function emptySet [X : equality] ()-> function(X)->boolean;

begin

return function (v : X)->boolean;

begin f always just say no g
return false;

end;

end;

f return characteristic function for set containing new element g
function setAdd [X : equality]

(theFun : function(X)->boolean, addedValue : X)->function(X)->boolean;

begin

f if already in the set then do not add again g
if setIncludes[X] (theFun, addedValue) then

return theFun;

f return a new characteristic function g
return function(newVal : X)->boolean;

begin

if (newVal = addedValue) then

return true;

return theFun(newVal);

end;

end;

Figure 7.5: Implementation of Sets using Characteristic Functions

7.2. IMPLEMENTING SETS USING CHARACTERISTIC FUNCTIONS 145

f see if element is contained in set characterized by function g
function setIncludes [X : equality]

(theFun : function(X)->boolean, value : X) -> boolean;

begin

f simply return the characteristic function value g
return theFun(value);

end;

f return characteristic function represent union of two sets g
function setUnion [X : equality]

(firstSet, secondSet : function(X)->boolean)->function(X)->boolean;

begin

return function(newVal : X)->boolean;

begin

f true if either in �rst or second g
return firstSet(newVal) j secondSet(newVal);

end;

end;

Figure 7.6: Set Union with Characteristic Functions

appears at the heart of the function shown in Figure 7.6. What is surprising, perhaps,
is that nowhere does an or appear in the equivalent function constructed in the object-
oriented version (Figure 7.3). The object-oriented algorithm describes how a union can
be constructed, whereas the function version is more declarative, describing what a union
represents.

For completeness we have also given in Figure 7.6 a de�nition of the function setIncludes;
although it simply turns around and invokes the �rst argument using the second argument
as value. Thus, in practice, there would be little reason to use the includes function with
this representation. This is not true of the representation to be studied in the next section.

To motivate the need for a di�erent representation, consider that a di�cult problem to
overcome using sets represented by characteristic functions is the task of iteration. Imagine,
for example, the formation of the union of the sets of zoo animals and barking animals,
followed by the printing of the elements contained in the new set. This can be accomplished,
but only by explicitly iterating over all animals and testing each one for inclusion in the
new set:

thirdSet := setUnion[string] (zooAnimals, barkingAnimals);

print("union of barking animals and zoo animals is: ");

for animals.items(name) do

if setIncludes[string] (thirdSet, name) then begin

146 CHAPTER 7. SETS

print(name);

print(" ");

end;

print("\n");

In the next section we will consider a di�erent representation that simpli�es this problem.

7.2.1 Characteristic Functional Arguments

Using the set implementation technique illustrated in Figure 7.5, it is easy to determine if
any particular element is contained in a set; one merely executes the characteristic function.
If, however, we do not have a particular element in mind, but merely wish to determine
which elements are present in the set, then the task is much more di�cult. If the possible
range of elements is relatively small, then we can simply loop over each potential value and
use the inclusion test. This was the technique employed by the example program shown in
Figure 7.4. Suppose, on the other hand, that the range of values is very large, for example
the set of integer numbers. We would certainly not want to loop over all integers to see
which values were contained in the set.2 To solve this problem, we will propose a slightly
di�erent representation for a set.

We will continue to represent a set by a characteristic function; however, instead of the
function returning a boolean value, we will take as argument to the characteristic func-
tion another function as argument, and simply apply the function argument to each value
contained in the set. Thus, the characteristic function is performing the same task as the
function onEach provided for the List abstraction.

To form a new empty set we invoke the function emptySet, shown in Figure 7.7. The
value returned is a function which, when provided with an action to perform on every
element, simply does nothing.

The setIncludes function, also shown in Figure 7.7, perhaps better illustrates the way
in which this representation of functions is utilized. The purpose of the function is to test
whether a speci�c value is found in the set being characterized by the �rst argument. To
do this, the set is passed a new function, generated directly by a function expression. This
function will be then invoked on each element of the set. When invoked, the function
compares the element value against the test value which was passed to the setIncludes

function. If any element matches, then the variable result is set to true. If result remains
false after execution, it can only be because the tested value is not contained in the set.

The action of the setAdd function (Figure 7.8) is also di�erent in the new representation
than the similarly named function in the previous formulation. As before, the setAdd

function �rst tests to see if a value is already contained in a collection. If so, then no further
action is necessary and the existing characteristic function is returned. If, on the other

2Exercise 11 investigates some of the di�culties caused by this limitation in the implementation technique

of Figure 7.5.

7.2. IMPLEMENTING SETS USING CHARACTERISTIC FUNCTIONS 147

f return a new empty set g
function emptySet [X : equality] ()->function(function(X));

begin

return function(action :function(X));

begin

f do nothing g ;

end;

end;

f see if element is contained in set characterized by function g
function setIncludes [X : equality]

(theFun : function(function(X)), value : X)->boolean;

var

result : boolean;

begin

result := false;

f test each value in turn g
f if any match argument then set the result
ag g

theFun(function(test : X);

begin

if test = value then

result := true;

end);

f return the �nal value of the result
ag g
return result;

end;

Figure 7.7: Creation of empty set and set inclusion test using characteristic functionals

148 CHAPTER 7. SETS

f return characteristic function of set containing element g
function setAdd [X : equality]

(theFun : function(function(X)), value : X)->function(function(X));

begin

f if value is already in set then do not add g
if setIncludes[X](theFun, value) then

return theFun;

f return a new characteristic function g
return function (action: function(X));

begin

f �rst execute action of new value g
action(value);

f then execute on remainder of the values g
if defined(theFun) then theFun(action);

end;

end;

f return characteristic function for set with element removed g
function setRemove [X : equality]

(theFun : function(function(X)), value : X)->function(function(X));

begin

f if value is not in set then do not remove it g
if � setIncludes[X](theFun, value) then

return theFun;

f return new characteristic functiong
return function (action : function(X));

begin

if defined(theFun) then

theFun(function(testVal : X);

begin

if testVal <> value then

action(testVal);

end);

end;

end;

Figure 7.8: Implementation of Set Addition and Set Removal using Characteristic Func-
tionals

7.2. IMPLEMENTING SETS USING CHARACTERISTIC FUNCTIONS 149

f return characteristic function representing union of two sets g
function setUnion [X : equality]

(firstSet, secondSet : function(function(X)))-> function(function(X));

begin

return function(action: function(X));

begin

f execute action on elements in �rst set g
firstSet(action);

f and only on elements in second set g
f that were not in �rst set g

secondSet(function(value : X);

begin

if �setIncludes[X](firstSet, value) then

action(value);

end);

end;

end;

Figure 7.9: Implementation of Set Union

hand, the value is not already in the set then a new characteristic function must be created.
This new function takes as argument a function, named action, which describes the action
to be performed on each element of the set. When invoked, the action will be performed
using as argument the new value of the set. To perform the action on the previous values
of the set the action function is passed as argument to the previous characteristic function,
which was captured when the new characteristic function was constructed.

The development of a function to remove an element from a set will serve as a vehicle to
further illustrate the manipulation of data structures implemented using the characteristic
function technique. The setRemove function is shown in Figure 7.8. If the given value is not
present in the set, then there is no need to remove it and thus the characteristic function
given as argument can be returned. Otherwise, a new characteristic function is generated.
This new function takes as argument an action to be performed, but passes to the existing
characteristic function a function that only applies this action if the argument fails to match
the value that has been removed. Thus, the removed value will never be executed with the
given action, and it will e�ectively be eliminated from the set.

Finally, the implementation of set union (Figure 7.9) is a tour-de-force in the use of this
representation. The task of forming a union is made complicated by the requirement that
values must appear in a set only once. If a value appears in both portions of a set union, the
revised characteristic function must ensure that an action is only performed on the element
once. The new characteristic function �rst performs the given action on all elements in the

150 CHAPTER 7. SETS

�rst set. Next, it performs the action only on those elements in the second set that do not
appear in the �rst set.

With a suitable change in the declaration for the variable zooAnimals and the variable
barkingAnimals, and by changing the invocation of the characteristic function to instead
use the predicate setIncludes, the example program shown in Figure 7.4 works exactly
as before using this new representation. The new type declaration for sets is as follows:
following:

type

stringSet : function(function(string));

To illustrate the additional power provided by this new technique, we return again to
the problem of forming the union of the set of barking animals and zoo animals, and then
printing out the elements in this third set. In fact, we will �rst solve the more general
problem of printing the values held in an arbitrary set. You will recall that it was not
possible to write such a function for sets maintained in the �rst characteristic functional
form without explicit knowledge of the range of values, and even then only by iterating over
the entire range of values and testing each one. But such a function is very easy to write in
the new format:

function printSet [X : equality] (aSet : function(function(X)));

begin

f print each value in the set g

aSet(function(val : X);

begin

print(val);

print(" ");

end);

end;

With this function the formation and printing of the union can be accomplished in a
single expression:

print("the union of barking animals and zoo animals is:");

printSet[string] (setUnion[string] (barkingAnimals, zooAnimals));

print("\n");

7.3. A COMPARISON OF THE TECHNIQUES 151

7.3 A Comparison of the Techniques

Although many readers will undoubtedly �nd the object-oriented implementation of sets
easier to understand, several of the exercises at the end of this chapter together su�ce
to show that there is essentially no functionality provided by the object-oriented version
that cannot also be simulated using the functional techniques described in Figures 7.7, 7.8
and 7.9. Thus, based on functionality alone there is little reason to prefer one technique
over the other. Nevertheless, several important di�erences can be noted:

� Using the functional approach the representation of a set always increases in size,
never getting smaller. Even removing an element from a set increases the amount of
storage used to represent the set. Using the object-oriented technique the size of the
set increases and decreases as elements are added and removed. (For this reason the
characteristic functional approach is most often used only when the elements in the
set are �xed, or change very slowly).

� The object-oriented version is able to leverage considerable functionality o� of the
existing List data structure. Using the functional technique basically all new func-
tionality must be provided from scratch. (This is not to say that the use of functional
techniques does not encourage software reuse. In fact, functional programming sup-
ports a very powerful, if di�erent, style of software reuse. We will explore this topic
later in Chapter 14.)

� In some circumstances, the functional approach yields procedures that are closer to the
de�nition of the corresponding set operation than are the equivalent methods using
the object-oriented technique. Compare, for example, the set union function shown in
Figure 7.6 with the earlier function shown in Figure 7.1. The object-oriented version
describes operationally how to form the union, but not what a union represents. The
functional solution is much closer to the de�nition of the union.

� The declaration of a set using the object-oriented version is slightly more self-evident
then the declaration of a similar structure using the functional approach.

� Interestingly, the functional approach can result in programs that are faster. The
following table provides timings for an example program that created a set containing
100 random elements, then performed 10,000 tests for inclusion. This is perhaps why
the most common use of characteristic functions occurs in those situations where speed
is very important (see comments in the bibliography for further discussion).

Implementation execution time (seconds)

Figure 7.1 103.9
Figure 7.3 93.9
Figure 7.7 72.0

152 CHAPTER 7. SETS

Notes and Bibliography

The \yo-yo" problem, which can occur when a new data structure is implemented using
inheritance, was �rst discussed by Taenzer [Taenzer 89]. I also discuss this problem in
my book on Object-Oriented programming [Budd 91b]. The functional implementation
of sets was suggested by an example program in Samuel Kamin's book on programming
languages [Kamin 90].

Sets are found as a primitive data type in a number of programming languages. Examples
include Setl [Baxter 89], ABC [Geurts 85], Icon [Griswold 90] and others.

The di�erence between the \American" and the \Scandinavian" schools of object-oriented
program concerns the question of whether an overridden function is a re�nement or a re-

placement of the function named in the parent class. In the Scandinavian school (so named
because it is characterized by the languages Simula [Dahl 66] and BETA [Madsen 93], which
were created in Scandinavian countries), an overridden function must always �rst invoke the
function in the parent class, then invoke the function in the child class. Thus, it would be
more di�cult to write the Set class using inheritance in such a system, since the Add function
from class List would always be invoked for each call on Add in the class Set. This set class
would then need to see if the element was already in the collection, and if so remove it once
again. On the other hand, in the \American" school (characterized by languages such as
Smalltalk [Goldberg 83] and C++ [Stroustrup 86]) an overridden function totally replaces
the function in the parent class. This has both advantages, as illustrated by the implemen-
tation of sets from lists, and disadvantages. We will explore some of the disadvantages later
in Chapter 10.

While the implementation of sets as characteristic functions may strike many program-
mers used to more conventional techniques as odd, the principle that data can often be
replaced by code is found in a number of di�erent situations. Finite state automata, for
example, are easily described in a tabular form. Yet when e�ciency is a concern, such as
in parsers or lexical analyzers, the states of the �nite state automata are frequently coded
directly as program statements [Aho 86, Fraser 92, Horspool 90].

Exercises

1. In the same way that the addition operator was overloaded to mean addition to lists,
rede�ne the meaning of this operator for each of the set structures de�ned in this
chapter.

2. Add a function named remove to the set abstraction de�ned in Figure 7.1. This
function should remove the item, if present, from the collection, performing no action
if the item is not present in the set. For example, subsequent to the following set of
statements the collection should contain exactly one item.

zooAnimals.add(lion);

7.3. A COMPARISON OF THE TECHNIQUES 153

zooAnimals.add(dog);

zooAnimals.add(dog);

zooAnimals.remove(dog);

3. Explain why it is not necessary to de�ne a function to remove items from the set
abstraction shown in Figure 7.3.

4. Two other operations commonly associated with sets are intersection and di�erence.
The intersection of two sets is the set of elements contained in both sets. To intersect
one set with another, remove all elements from the �rst set that do not appear in the
second. The di�erence of two sets is the inverse of the intersection; it is the elements
in the �rst set that do not appear in the second. Write functions to implement these
operations using the object-oriented form of sets. Can you write functions that will
work for both the sets built using inheritance and the sets built using composition?

5. Two sets are equal if they contain the same elements. Show how the equality testing
operator, =, could be implemented for the set data type described in Figure 7.3. To do
so, make the set class a subclass of equality, and follow the techniques used in Chapter 6
to rede�ne the meaning of the equality testing operator in class Association. How
would this di�er if you used the set data type described in Figure 7.1?

6. One set is said to be a subset of another set if all the values in the �rst are also found in
the second. (The second set can also, although need not, contain additional elements).
We can overload the meaning of the \less than" operator, <, to mean the subset test
when used with two set values. Provide an implementation for this operator using the
set data type described in Figure 7.3. How would this di�er if you used the set data
type described in Figure 7.1?

7. Chapter 4 introduced two functional uses of data structures, mapping and application.
In application a function is provided as argument and applied to each element of a
collection. This functionality was provided by the function onEach in the list data
abstraction shown in Figure 4.1 (page 63). Implement the function onEach for the set
data abstraction shown in Figure 7.1.

8. Explain why, to achieve the functionality described in the previous question, it is not
necessary to implement the onEach function for the set abstraction shown in Figure 7.3.

9. Implement a function named setRemove which will remove an element from a set
constructed using the functions in Figure 7.5. Hint: it is not possible (or at least, not
easy) to actually remove the element from the characteristic function. Rather, simply
create a new characteristic function that will return the value false when queried
about the given element.

10. Implement the set operations of intersection and di�erence using the characteristic
function representation on Figure 7.5.

154 CHAPTER 7. SETS

11. As we note in Section 7.2.1, there is no easy way to determine which elements are
contained in a set constructed in the fashion of Figure 7.5, short of simply looping
over all possible values and testing each one individually. Explain how this complicates
the implementation of a set equality or subset operator using this representation. Does
it also complicate the implementation of onEach? Why does it not complicate the set
operations described in the previous question?

12. Consider the following sequence of statements, which make use of the set implemen-
tation shown in Figures 7.7 and 7.8.

type

intSet : function(function(integer));

begin

intSet := setAdd:(integer)(intSet, 12);

intSet := setAdd:(integer)(intSet, 237);

intSet := setAdd:(integer)(intSet, 237);

intSet := setAdd:(integer)(intSet, 1632);

intSet := setRemove:(integer)(intSet, 237);

intSet := setAdd:(integer)(intSet, 237);

Describe the structure of the �nal value of intSet. How many elements does the set
contain?

13. Show how to implement the set equality operation and subset operation using the
representation provided in Figure 7.7.

14. Implement the set operations of intersection and di�erence using the characteristic
function representation on Figure 7.7.

15. Show how to implement the functionality of the onEach operation using the set rep-
resentation provided in Figure 7.7.

