
96

Chapter 6

Polymorphism

The polymorphic variable is one of the most powerful mechanisms provided by the object- Define A

static type is

asso-

ciated with a

declaration, a

dynamic type

is associated

with a value

oriented paradigm. A polymorphic variable, you will recall, is a variable for which the static
type, the type associated with a declaration, may di�er from the dynamic type, the type
associated with the value currently being held by the variable.

In Java a polymorphic variable can be declared as either a class type or an interface type.
If a variable is declared as a class type, the value held by the variable must be either derived
from the declared class or from a class that inherits from the declared class. If a variable
is declared using an interface type, the value held by the variable must be derived from a
class that implements the given interface. The C++ language does not include the concept of
interfaces, and so the idea of a polymorphic variable is only possible using class inheritance.
There are many other subtle and not-so-subtle di�erences between polymorphism in C++

and polymorphism in Java, as we will explain in this chapter.

To discuss polymorphism we need a class hierarchy. An intuitive hierarchy is provided
by a portion of the animal kingdom, which we can represent as follows:

Bird

Animal

Cat

Mammal

Dog

�
�

�
�

@
@

@
@

Figure 6.1 provides an realization of this class hierarchy in Java, while Figure 6.2 gives
the corresponding C++ code. We will use these classes in various discussions throughout
this chapter.

97

98 CHAPTER 6. POLYMORPHISM

abstract class Animal f
abstract public void speak();

g

class Bird extends Animal f
public void speak() f System.out.println("twitter"); g

g

class Mammal extends Animal f
public void speak() f System.out.println("can
t speak"); g
public void bark() f System.out.println("can
t bark"); g

g

class Cat extends Mammal f
public void speak() f System.out.println("meow"); g
public void purr() f System.out.println("purrrrr"); g

g

class Dog extends Mammal f
public void speak() f System.out.println("wouf"); g
public void bark() f System.out.println("wouf"); g

g

Figure 6.1: Animal Kingdom Class Hierarchy in Java

99

class Animal f
public:

virtual void speak() = 0;

g;

class Bird : public Animal f
public:

virtual void speak() f printf("twitter"); g
g;

class Mammal : public Animal f
public:

virtual void speak() f printf("can
t speak"); g
void bark() f printf("can
t bark"); g

g;

class Cat : public Mammal f
public:

void speak() f printf("meow"); g
virtual void purr() f printf("purrrrr"); g

g;

class Dog : public Mammal f
public:

virtual void speak() f printf("wouf"); g
void bark() f printf("wouf"); g

g;

Figure 6.2: Animal Kingdom Class Hierarchy in C++

100 CHAPTER 6. POLYMORPHISM

6.1 Virtual and Non-virtual Overriding

Overriding occurs when a method in a parent class is replaced in a child class by a method
having the exact same type signature. In Java overriding is the norm, the expected result. InDefine A

type sig-

nature is the

type descrip-

tions for each

argu-

ment and the

type descrip-

tion of the re-

turn type

C++, on the other hand, whether overriding occurs or not is controlled by the programmer,
using the keyword virtual.

The issue in overriding is how a method, that is, the actual code to be executed, is
bound to a message. If the virtual keyword is omitted, then the binding is determined by
the static type of a variable, that is, by the variables declared type. This is illustrated by
the following:

Dog � d = new Dog();

Mammal � m = d;

d->bark(); // wouf
m->bark(); // can't bark

Because d is declared as a Dog the method selected will be that of the Dog class. Because
m is declared only as a Mammal, even though it holds exactly the same value as does d, the
method executed will be that provided by the class Mammal.

If, on the other hand, a method is declared as virtual, as is the speakmethod in Figure 6.2,Note Vir-

tual over-

riding corre-

sponds to the

Java seman-

tics

then the method invoked may, under the right circumstances, be determined by the dynamic

(that is, run time) value held by the class. This is illustrated by the following:

d->speak(); // wouf
m->speak(); // also wouf
Animal � a = d;

a->speak(); // and more wouf

The method speak for variable d will be that of class Dog, as might be expected. However
m will also use the Dog method. Even a, which is an Animal, will use the Dog method. Thus,
virtual overridding corresponds to the behavior of overridden functions in Java.

Regardless of the type of value held by a variable, the validity of a message is determined
by the static, or declared type. This is the same as in Java. Thus while the variable d will
respond to the message bark, the variable a that was declared as Animal, even though it
contains the exact same value, is not allowed to perform this operation.

d->bark(); // wouf
a->bark(); // compile error, not allowed

Because of the C++ memory model (see Chapter 4) virtual, or polymorphic, overriding
will only occur when used with a pointer or reference, and not with stack-based variables.
This is illustrated by the following:

6.1. VIRTUAL AND NON-VIRTUAL OVERRIDING 101

Mammal mm;

mm = �d;

mm.speak(); // can't speak

d->speak(); // although dog will wouf

Note that the variable mm is here not declared as a pointer, as were earlier variables,
but as a simple stack-based value. The Dog value held by d is assigned to the variable
mm. During the assignment process the value loses its dog identity, and becomes simply a
mammal. Thus the speak method will be that of class Mammal, not that of class Dog.

The pseudo-variable this, the reference to the receiver within a method, is a pointer in Note The

variable this

is

a pointer in

C++, a vari-

able in Java

C++, whereas it is an object value in Java. Thus, implicit messages sent to this can have
polymorphic bindings.

If a variable is not declared as virtual in a parent class, it cannot subsequently be made
virtual in a child class. On the other hand, the keyword is optional in the child class; once
declared as virtual by the parent, the method remains virtual in all child class de�nitions.
Notice that we have made use of this fact by omitting the virtual keyword from the speci�-
cation of the method speak in class Cat. Despite this, the method still remains virtual.

6.1.1 Impact of Virtual on Size

When a class description contains a virtual method, an internal table is created for the class, Note
When classes

contain vir-

tual methods,

instances will

hold a hidden

pointer to a

virtual

method table

called the virtual method table. This table is used in the implementation of the dynamic
binding of message to method required by the virtual method. In order to do this, each
instance of a class will contain an additional hidden pointer value, which references the
virtual method table. The programmer can see this e�ect by adding or removing the virtual
keyword from a class description, and examining the size of an instance of the class:

class sizeTest f

public:

int x, y;

virtual void test () f x = 3; g

g;

sizeTest x;

// size will be 8 if not virtual, larger if virtual

println("%d\n", sizeof(x));

102 CHAPTER 6. POLYMORPHISM

6.1.2 Obtaining Type Information from a dynamic value

In Java all objects recognize the method getClass(), and in response will yield a Class object
that describes the dynamic type of the value. Using the Class value one can obtain various
bits of information about the value, for example a string that describes the dynamic type:

Animal a = new Dog();

// following will print class Dog
System.out.println("class is " + a.getClass().getName());

The equivalent feature in C++ is a function named typeid. The typeid function returns aWarning

The typeid

feature is

a recent addi-

tion to C++

value of type typeinfo, described by the include �le of the same name. The string represen-
tation of the name of the class if yielded by the method name:

Animal � a = new Dog();

// will print the class Dog

println("class is %s\n", typeid(�a).name());

Notice it is necessary to dereference the variable a, since the typeid must act on the value
a points to, not the pointer value itself.

Being a relatively recent addition to C++, the typeid facility is one of the few places in
the standard library that will generate an exception on error. Should the pointer value in
the above expression be null, a bad typeid exception will be thrown.

6.2 Abstract Classes

An abstract class is a class used only as a parent class for inheritance, one that cannot be
used to create instances directly. The Java language includes an explicit keyword abstract to
indicate this situation. The C++ language does not use this keyword. Instead, an abstract
class is simply a class that includes a pure virtual method. A pure virtual method is aDefine A

pure virtual

method must

be overridden

in subclasses

method that is declared as virtual but which does not include a method body. Instead, the
method is \assigned" the null value. An example occurs in Figure 6.2:

class Animal f
public:

virtual void speak() = 0;

g;

As with abstract classes in Java, it is not possible to create an instance of a class that
contains a pure virtual member. An attempt to do so will produce a compile time error
message.

6.3. DOWNCASTING (REVERSE POLYMORPHISM) 103

As we noted at the beginning of this chapter, the C++ language does not provide the Note An

interface can

be simulated

by pure vir-

tual methods

interface facility. Sometimes classes that consist entirely of pure virtual methods are used
in the same manner as interfaces:

class KeyPressHandler f // speci�cation for key press event handler
public:

virtual void keyDown (char c) = 0;

g;

class MouseDownHandler f // speci�cation for mouse down event handler
public:

virtual void mouseDown (int x, int y) = 0;

virtual void mouseUp (int x, int y) = 0;

g;

Since C++ supports multiple inheritance (see Section 12.8), a class can implement several
of such interfaces:

class EventHandler : public KeyPressHandler, public MouseDownHandler f
public:

void keyDown (char c) f ... g
void mouseDown (int x, int y) f ... g
void mouseUp (int x, int y)(f ... g

g;

In Java the keyword �nal is in some ways the opposite of abstract, serving to indicate
methods or classes that cannot be overwritten. There is no equivalent feature in C++,
although as we noted in the previous chapter in some cases declaring the constructor for a
class as protected can have a similar e�ect.

6.3 Downcasting (Reverse Polymorphism)

A polymorphic variable can have a dynamic type that is a subclass of its static, or declared Note

Downcasting

reverses the

assignment

to a polymor-

phic variable,

hence

the term re-

verse poly-

morphism

type. For example, a variable can be declared as a pointer to an Animal, but actually be
maintaining a pointer to a Cat. Often one is required to form an assignment that depends
upon the dynamic type, rather than the static type. For example, one needs to assign the
polymorphic Animal variable to a variable of type Cat.

The Java programmer can test the dynamic type of a variable by means of the operator
instanceof, and will perform the transformation by using a cast operator:

Animal a = ... ;

104 CHAPTER 6. POLYMORPHISM

if (a instanceof Cat)

Cat c = (Cat) a;

Alternatively, the Java programmer can explicitly catch the exception that is thrown if
the conversion is illegal:

Animal a = ...;

try f
Cat c = (Cat) a;

g catch(ClassCastException & e) f ... g

There is no direct C++ equivalent to the instanceof operation. Furthermore, although
the syntax of the cast operation is taken directly from C++, the Java programmer should
be aware that the semantics of the equivalent operation in C++ are slightly di�erent. The
Java cast performs a run-time check to ensure the validity of the conversion, and issuesWarning

C++ does not

perform

a run time

check to en-

sure the va-

lidity of cast

conversions

an exception if illegal. The C++ cast is entirely a compile time operation, and no check is
made at run-time. If the cast is improper no indication is given to the programmer, and an
erroneous outcome will likely result:

Animal � a = new Dog();

Cat � c = (Cat �) a;

c->purr(); // behavior is unde�ned

Such errors can sometimes be hidden due to the interaction between the cast operation
and the rules for virtual and nonvirtual method invocation. Note, for example, that if we
had not declared the method purr as virtual, the proper Catmethod would have been invoked
(since the static type is Cat) despite the fact that the actual value held by variable c is a
dog. The behavior when the method is declared as virtual is more di�cult to predict; on
many machines it will produce a segmentation fault.

To get around this problem the C++ language provides a di�erent type of cast, calledNote The

RTTI is a re-

cent addition

to the C++

language

a dynamic cast. The dynamic cast is part of a suite of functions, called the run-time
type information system, or RTTI. The dynamic cast operator is a templated function (see
Chapter 9). The template argument is the type to which conversion is desired. Unlike
the normal cast, the dynamic cast operator checks the validity of the conversion. If the
conversion is not proper, a null value is yielded. Thus, the result is either a properly type-
checked value, or null. The programmer can then test the resulting value to see if the
conversion took place. In this manner the dynamic cast operator combines the features of
both the instanceof operator and the cast operator in Java.Note

Test-

ing a pointer

in an if state-

ment is the

same as test-

ing whether

or not

the pointer is

null

Cat � c = dynamic cast<Cat �>(a);
if (c)

printf("variable was a cat");

6.3. DOWNCASTING (REVERSE POLYMORPHISM) 105

else

printf("variable was not a cat");

If dynamic cast is used with object values, instead of pointers, a failure results in a
bad cast exception being thrown, rather than a null pointer. The dynamic cast operation
works only with polymorphic types, that is, pointers (or references) to classes that contain
at least one virtual method.

A static cast is similar, but performs no dynamic check on the result. This is most often
used to convert one pointer type, for example a void * pointer, into another type:

void � v = ...;

// we know, from elsewhere, that v is really a cat
Cat � c = static cast<Cat �>(v);

A static cast is not restricted to polymorphic types. Two other types of cast (const cast, Rule
Whenever

possible, use

the RTTI in-

stead of stan-

dard

unchecked

cast conver-

sions

and reinterpret cast) have also been added to C++, but their use is uncommon and they will
not be described here. However, programmers are encouraged to use these newer, more
type-safe facilities instead of the older cast mechanism.

6.3.1 Simulating The Dynamic Cast

The RTTI is a relatively new addition to the C++ language, and not all compilers will yet
support this feature. Thus, it may be necessary to achieve the e�ect of the dynamic cast
operator without actually using the operator. Before the introduction of RTTI, one common
programmers trick was to encode explicit is-a methods in class hierarchies. For example, to
test animal values to see if they represent a dog or cat, we can write methods such as the
following:

class Mammal f
public:

virtual bool isaDog() f return false; g
virtual bool isaCat() f return false; g

g;

class Dog : public Mammal f
public:

virtual bool isaDog() f return true; g
g;

class Cat : public Mammal f
public:

106 CHAPTER 6. POLYMORPHISM

virtual bool isaCat() f return true; g
g;

Mammal � fido;

A test, such as �do!isaDog(), can then be used to determine if the variable �do is
currently holding a value of type Dog. If so, a conventional cast can safely be used to
convert the quantity into the correct type.

By returning a pointer rather than an integer, we can extend this trick to combine both
the test for subclass type and the conversion, which is more closely similar to the dynamic
cast operator in the RTTI. Since a function in the class Mammal is returning a pointer to
a Dog, the class Dog must have a forward reference (see Section 5.3). The result of the
assignment is either a null pointer or a valid reference to a Dog; so, the test on the result
must still be performed but we have eliminated the need for the cast. This is shown as
follows:

class Dog; // forward reference
class Cat;

class Mammal f
public:

virtual Dog � isaDog() f return 0; g
virtual Cat � isaCat() f return 0; g

g;

class Dog : public Mammal f
public:

virtual Dog � isaDog() f return this; g
g;

class Cat : public Mammal f
public:

virtual Cat � isaCat() f return this; g
g;

Mammal � fido;

Dog � lassie;

A statement such as

lassie = fido->isaDog();

6.4. NAME RESOLUTION 107

can then always be performed. It will result in the variable lassie holding a non-null value
only if �do indeed held a value of class Dog. If �do did not hold a dog value, then a null
pointer value will be assigned to the variable lassie.

if (lassie)

... fido was indeed a dog

else

... assignment did not work

... fido was not a dog

While it is possible for the programmer to implement this, the disadvantage of this
technique for performing downcasting (sometimes called reverse polymorphism) is that it
requires adding methods to both the parent and the child classes. If there are many child
classes inheriting from one common parent class, the mechanism can become unwieldy. If
making changes to the parent class is not permitted this technique is not possible.

6.4 Name Resolution

As part of object oriented method invocation a message selector must be bound to the Define

Name resolu-

tion

is matching a

function body

to a function

name

appropriate function body. The techniques used by Java and C++ for this purpose are
similar, but not identical. Consider, for example, the following two class de�nitions in Java:

class Parent f
public void test (int i)

f System.out.println("parent test"); g
g

class Child extends Parent f
public void test (int i, int i) f

System.out.println("child two arg test"); g
public void test (Parent p) f

System.out.println("child object test"); g
g

The name space for the class Parent introduces a new function, named test, that takes
a single integer argument. The class Child builds on this name space, and adds to this two
other de�nitions for the function test. Each of these can be easily distinguished from the
original by the number or type of arguments, so there is no possibility of confusion. If we
now provide an invocation, such as the following:

Child c = new Child();

108 CHAPTER 6. POLYMORPHISM

c.test(3);

the compiler selects the function with matching arguments, in this case the function inherited
from the class Parent.

Now consider an equivalent C++ program:

class Parent f
public:

void test (int i) f printf("parent test"); g
g;

class Child : public Parent f
public:

void test (int i, int i) f printf("child two arg test"); g
void test (Parent & p) f printf("child object test"); g

g;

If we try invoking the function inherited from the parent, we will get a compiler error:

Child � c = new Child();

c->test(3); // will generate compiler error

The explanation for this behavior is that the C++ language maintains separate but linked
descriptions of each of the various name scopes. In this case, there are at least three di�erent
name scopes: the global scope, the scope for class Parent, and the scope for class Child. To
resolve a name, such as test, the compiler performs a two step process. Step one is to search
for the �rst enclosing scope in which the name is de�ned. In this case, that would be the
scope for Child. Step two is to then try to match the name with a function de�ned in that

scope. In this case, there are only two possibilities, neither of which will work. Being unable
to �nd a matching function, a compiler error is reported.

To circumvent this, the C++ programmer should rede�ne any inherited names that areRule Re-

de�ne

any inherited

names

that are over-

loaded with

di�erent type

signatures

being overloaded with new meanings. This can be done with a simple in-line function, as in
the following:

class Child : public Parent f
public:

void test (int i) f Parent::test(i); g // rede�ne inherited method
void test (int i, int i) f printf("child two arg test"); g
void test (Parent & p) f printf("child object test"); g

g;

6.5. A FOREST, NOT A TREE 109

Now all three methods will be de�ned in the Child scope, and will hence be available for
use.

6.5 A Forest, not a Tree

In Java all objects descend ultimately from the base class Object. This has the advantage
of ensuring that every object possesses some minimal functionality, namely the methods
provided by class Object. These operations include the ability to get the class of an object,
convert an object into a string representation, test an object for equality against another
object, and compute the hash value for an object.

Classes in C++ are not part of a single hierarchy. If a class is not de�ned as inheriting Note In

C++ there is

no class that

is ancestor to

all classes

from another class, then it is the root of its own hierarchy, and provides only the behavior
de�ned by the class description. Thus, a typical C++ program contains a number of di�erent
class hierarchies, each independent of the others.

In Java the class Object is often used to declare universal generic objects, values that can
hold any other object type. Since C++ does not have a single root class, there is no exact
equivalence. Frequently template classes (see Chapter 9) eliminate the need for generic
Object variables. However, where they cannot be avoided, void pointers can often be made
to serve the same purpose. A variable declared as a pointer to a void value can be assigned
any other pointer type, regardless of the type of object the pointer references.

Animal � a = new Dog();

void � v = a; // assign v pointer to an animal

Just as a cast must be used to downcast an Object value in Java, a dynamic cast (see
Section 6.3) should be used to convert a void pointer value back into the original type.

Dog � dd = dynamic cast<Dog �>(v);

Note, however, that the dynamic cast only works if the pointer references a class that
contains at least one virtual method.

6.6 Virtual Destructors

A destructor (see Chapter 4) is a method that is invoked immediately before a variable is to
be deleted. When polymorphic variables are used, a concern is whether or not a destructor
function should be declared as virtual. To illustrate, let us add destructor functions to the
classes presented earlier in Figure 6.2:

class Animal f

110 CHAPTER 6. POLYMORPHISM

virtual �Animal () f printf("goodbye animal"); g

...

g;

...

class Cat : public Mammal f

�Cat () f printf("goodbye cat"); g

...

g;

Now imagine we create and delete a polymorphic variable, as follows:

Animal � a = new Cat();

delete a;

If the destructor in Animal is declared virtual, as shown, then both the destructors in
class Animal and class Cat will be executed. If the virtual designation is omitted, then only
the method in class Animal will be performed. If the destructor is omitted from Animal
altogether, then the method from class Cat will not be performed, whether or not it is
declared virtual.

A good rule of thumb is to declare a destructor as virtual if there are any other virtualRule De-

clare a vir-

tual destruc-

tor if a class

has any vir-

tual methods

methods. A destructor should be provided in this case, even if it performs no useful actions,
as otherwise destructors from child classes may not be executed.

Note also one more di�erence between destructors and �nalizemethods in Java. A �nalize
method should always explicitly invoke the �nalize method that it inherits from its parent
class. A destructor will do this automatically, and no explicit call is required.

6.7 Private Inheritance

You will have undoubtedly noticed how the keyword public is used to indicate inheritance
in C++, rather than the keyword extends as in Java. While public inheritance is the most
common, it is also possible to perform protected or private inheritance. When one of these
other forms are used, the visibility of data �elds and methods is the maximum of their
declared modi�ers and the modi�er used for inheritance. That is, if inheritance is protected,
then �elds declared as public in the parent class become protected in the child class. If
inheritance is private, then �elds declared either as public or protected in the parent become
private in the child class.

To understand the signi�cance of this distinction, imagine the public features of a parent
class as
owing through a child class, to become public features of the child class as well:

6.7. PRIVATE INHERITANCE 111

public

HHHHHHHHHj

In a private inheritance, the public (and protected) features of the parent class are available
for use in the child class, but do not become part of the child class interface. In e�ect, they
do not
ow through the child class, but are instead stopped at that level:

public

HHHHHHj

To illustrate why you might want to use this feature, imagine that you need to build a
stack abstraction, and you have already a list class that you want to use as the underlying
container. One possibility is to simply use inheritance, and derive the stack from the list:

class Stack : public List f // assume elements are integers
public:

push (int val) f addToFront(val); g
pop () f removeFirstElement(); g
top () f return firstElement();

g

A problem with this abstraction is that it is too powerful, it provides the user of the stack
with too many operations. In particular, there is no way to keep the user from accessing the
List operations, even when they are not appropriate. For example, somebody might directly
add or remove and element directly from the bottom of a stack.

By specifying a private inheritance, we avoid this potential misuse. The features of the Rule Use

private

inheritance

when the

child class is

not

a more spe-

cialized form

of the parent

class

parent class List, even if they are declared public or protected, are not passed through to
become part of the Stack interface. Thus, the only features are those explicitly described:

class Stack : private List f
public:

push (int val) f addToFront(val); g

112 CHAPTER 6. POLYMORPHISM

pop () f removeFirstElement(); g
top () f return firstElement();

g

But if public inheritance permitted too many operations to become attached to the new
abstraction, simply declaring a private inheritance can be too restrictive. There may be
some operations that one wants to permit. For example, the methods that check the size of
the list are still appropriate for the stack abstraction. We can specify that these new features
should continue to be part of the Stack abstraction by means of the using keyword. The
using keyword permits individual items from the parent class to be selected and attached to
the interface for the child class, while �ltering out all other operations.

class Stack : private List f
public:

push (int val) f addToFront(val); g
pop () f removeFirstElement(); g
top () f return firstElement(); g
using isEmpty();

using int size();

g;

6.8 Inheritance and Arrays

There are a number of situations where it could be argued that the Java semantics are an
improvement over the C++ semantics, most often because the C++ semantics are incomplete
or unde�ned. However, there is one curious situation where the Java semantics seem more
confused than their C++ counterpart. This concerns an interaction between inheritance and
arrays. Assume we have declared an array of Dog values. Java permits this array to be
assigned to a variable that is declared as an array of the parent class:

Dog [] dogs = new Dog[10]; // an array of dog values
Animal [] pets = dogs; // legal

In e�ect, Java is asserting that the type Dog[] (that is, array of dogs) is a subtype of
the type Animal[]. To see what confusion can then arize, imagine the following assignment:

pets[2] = aCat; // is this legal?

On the face of it, it would seem to certainly be legal to reassign an element in the array
to now hold a Cat value. After all, the array is declared as an array of animals, and a Cat

6.9. OVERLOADING 113

is an animal. But remember that the array in question shares a reference with an array of
dog values, and by performing this assignment we actually convert one element in the Dog
array into a cat.

To prevent this, Java actually performs a run-time check on assignments to arrays of
objects. C++, on the other hand, takes a simpler approach, and simply asserts that even
though a Dog may be an Animal, there is no inheritance or subtype relationship between an
array of Dog and an array of Animal.

6.9 Overloading

A function is said to be overloaded when there are two or more function bodies associated Define

An over-

loaded name

has more

than one

meaning

with a single function name. Overriding is one form of overloading, however overloading
can occur even without overriding. We saw an example of this in an earlier section, which
included the following class de�nition:

class Child : public Parent f
public:

void test (int i) f Parent::test(i); g // rede�ne inherited method
void test (int i, int j) f printf("child two arg test"); g
void test (Parent & p) f printf("child object test"); g

g;

Here there are three di�erent versions of the test function, distinguished by the compiler
by the number and type of arguments used in the function invocation. Constructor functions
are often overloaded in this fashion, however any function can be so de�ned.

The Java programmer should be aware that almost all C++ operators can also be over-
loaded. For example, if we wanted to provide a meaning for the operations of \adding" two
cats or two dogs, we could do so as follows:

Dog � operator + (Dog � left, Dog � right)

f
// return a new Dog value
// that is the sum of the parents
return new Dog();

g

Cat � operator + (Cat � left, Cat � right)

f
return new Cat();

g

114 CHAPTER 6. POLYMORPHISM

These functions would permit a dog value to be added to another dog, or a cat to a cat,
but not permit a cat to be added to a dog. Operators can be de�ned either as ordinary
functions (as shown here) or as member functions. This will be discussed in detail in the
next chapter.

Test Your Understanding

1. What is a polymorphic variable?

2. Using the concepts of static and dynamic type, explain the e�ect of the modi�er virtual.

3. How can you print the name of the class for an object value being held by a polymorphic
variable?

4. What is a pure virtual method?

5. What is a downcast?

6. What do the initial RTTI stand for?

7. What is a dynamic cast? How does it di�er from a normal cast?

8. Explain how the name resolution algorithm used in C++ di�ers from that of Java.

9. How are exceptions tied to function names in C++? How is this di�erent from Java?

10. What are some of the advantages Java derives from having all object types inherit
from the same base class (namely, Object)?

11. What is a virtual destructor? When is such a concept important?

12. How does private inheritance di�er from normal inheritance?

13. What is an overloaded name? How is it di�erent from an overridden method name?

