
Chapter 12

Polymorphism

The term polymorphic has Greek roots and means roughly \many forms." (poly = many,
morphos = form. Morphos is related to the Greek god Morphus, who could appear to
sleeping individuals in any form he wished and hence was truly polymorphic.) In biology, a
polymorphic species is one, such as Homo Sapiens, that is characterized by the occurrence
of di�erent forms or color types in individual organisms or among organisms. In chemistry,
a polymorphic compound is one that can crystallize in at least two distinct forms, such as
carbon, which can crystallize both as graphite and as diamond.

12.1 Varieties of Polymorphism

In object-oriented languages, polymorphism is a natural result of the is-a relationship and of
the mechanisms of message passing, inheritance, and the concept of substitutability. One of
the great strengths of the OOP approach is that these devices can be combined in a variety
of ways, yielding a number of techniques for code sharing and reuse.

Pure polymorphism occurs when a single function can be applied to arguments of a
variety of types. In pure polymorphism, there is one function (code body) and a number
of interpretations. The other extreme occurs when we have a number of di�erent functions
(code bodies) all denoted by the same name{a situation known as overloading or sometimes
ad hoc polymorphism. Between these two extremes are overriding and deferred methods.1

1Note that there is little agreement regarding terminology in the programming language commu-
nity. In [Horowitz 1984], [Marcotty 1987], [MacLennan 1987], and [Pinson 1988] for example, polymor-

phism is de�ned in a manner roughly equivalent to what we are here calling overloading. In [Sethi 1989]
and [Meyer 1988a] and in the functional programming languages community (such as [Wikstr�om 1987,
Milner 1990]), the term is reserved for what we are calling pure polymorphism. Other authors use the
term for one, two, or all of the mechanisms described in this chapter. Two complete, but technically
daunting, analyses are [Cardelli 1985] and [Danforth 1988].

207

208 CHAPTER 12. POLYMORPHISM

12.2 Polymorphic Variables

With the exception of overloading, polymorphism in object-oriented languages is made pos-
sible only by the existence of polymorphic variables and the idea of substitutability. A
polymorphic variable is one with many faces; that is, it can hold values of di�erent types.
Polymorphic variables embody the principle of substitutability. In other words, while there
is an expected type for any variable the actual type can be from any value that is a subtype
of the expected type.

In dynamically bound languages (such as Smalltalk), all variables are potentially polymorphic{
any variable can hold values of any type. In these languages the desired type is de�ned by
a set of expected behaviors. For example, an algorithm may make use of an array value,
expecting the subscripting operations to be de�ned for a certain variable; any type that
de�nes the appropriate behavior is suitable. Thus, the user could de�ne his or her own type
of array (for example, a sparse array) and, if the array operations were implemented using
the same names, use this new type with an existing algorithm.

In statically typed languages, such as Java, the situation is slightly more complex. Poly-
morphism occurs in Java through the di�erence between the declared (static) class of a
variable and the actual (dynamic) class of the value the variable contains.

A good example of a polymorphic variable is the array allPiles in the Solitare game
presented in Chapter 9. The array was declared as maintaining a value of type CardPile,
but in fact it maintains values from each of the di�erent subclasses of the parent class. A
message presented to a value from this array, such as display in the example code shown
below, executes the method associated with the dynamic type of the variable and not that
of the static class.

public class Solitaire extends Applet f
...

static CardPile allPiles [];

...

public void paint(Graphics g) f
for (int i = 0; i < 13; i++)

allPiles[i].display(g);

g
...

g

12.3 Overloading

We say a function name is overloaded if there are two or more function bodies associated
with it. Note that overloading is a necessary part of overriding, which we and will describe

12.3. OVERLOADING 209

in the next section, but the two terms are not identical and overloading can occur without
overriding.

In overloading, it is the function name that is polymorphic{it has many forms. Another
way to think of overloading and polymorphism is that there is a single abstract function
that takes various types of arguments; the actual code executed depends on the arguments
given. The fact that the compiler can often determine the correct function at compile time
(in a strongly typed language), and can therefore generate only a single code sequence are
simply optimizations.

12.3.1 Overloading Messages in Real Life

In Chapter 1 we saw an example in which overloading occurred without overriding, when
I wanted to surprise my friend with
owers for her birthday. One possible solution was to
send the message sendFlowersTo to my local
orist; another was to give the same message to
my wife. Both my
orist and my wife (an instance of class Spouse) would have understood
the message, and both would have acted on it to produce a similar result. In a certain sense,
I could have thought of sendFlowersTo as being one function understood by both my wife
and my
orist, but each would have used a di�erent algorithm to respond to my request.

Note, in particular, that there was no inheritance involved in this example. The �rst
common superclass for my wife and my
orist was the category Human. But certainly the
behavior sendFlowersTo was not associated with all humans. My dentist, for example, who
is also a human, would not have understood the message at all.

12.3.2 Overloading and Coercion

As an example more closely tied to programming languages, suppose a programmer is devel-
oping a library of classes representing common data structures. A number of data structures
can be used to maintain a collection of elements (sets, bags, dictionaries, arrays, and priority
queues, for example), and these might all de�ne a method, add, to insert a new element into
the collection.

This situation{in which two totally separate functions are used to provide semantically
similar actions for di�erent data types{occurs frequently in all programming languages, not
simply in object-oriented languages. Perhaps the most common example is the overloading
of the addition operator, +. The code generated by a compiler for an integer addition is often
radically di�erent from the code generated for a
oating-point addition, yet programmers
tend to think of the operations as a single entity, the \addition" function.

In this example it is important to point out that overloading may not be the only activity
taking place. A semantically separate operation, coercion, is also usually associated with
arithmetic operations. It occurs when a value of one type is converted into one of a di�erent
type. If mixed-type arithmetic is permitted, the addition of two values may be interpreted
in a number of di�erent ways:

210 CHAPTER 12. POLYMORPHISM

� There may be four di�erent functions, corresponding to integer + integer, integer +
real, real + integer, and real + real. In this case, there is overloading but no coercion.

� There may be two di�erent functions for integer + integer and real + real. In integer
+ real and real + integer, the integer value is coerced by being changed into a real
value. In this situation there is a combination of overloading and coercion.

� There may be only one function, for real + real addition. All arguments are coerced
into being real. In this case there is coercion only, with no overloading.

12.3.3 Overloading from Separate Classes

There are two di�erent forms of overloading that can be distinguished. One form occurs
when the same function name is found in two or more classes that are not linked by inher-
itance. A second form occurs when two or more functions with the same name are found
within one class de�nition. The latter form will be described in the next section.

A good example of overloading of the �rst type is the method isEmpty. This method
is used to determine if an object is empty, however the exact meaning of empty will di�er
depending upon circumstances. The message is understood by the classes Vector, Hashtable
and Rectangle. The �rst two are collection classes, and the message returns true when there
are no elements in the collection. In the class Rectangle the message returns true if either
the height or width of a rectangle is zero, and thus the rectangle has no area.

Rectangle r1 = new Rectangle ();

if (r1.isEmpty()) ...

Overloading Does Not Imply Similarity

There is nothing intrinsic to overloading that requires the functions associated with an
overloaded name to have any semantic similarity. Consider a program that plays a card
game, such as the solitaire game we examined in Chapter 9. The method draw was used to
draw the image of a card on the screen. In another application we might also have included
a draw method for the pack of cards, that is, to draw a single card from the top of the deck.
This draw method is not even remotely similar in semantics to the draw method for the
single card, and yet they share the same name.

Note that this overloading of a single name with independent and unrelated meanings
should not necessarily be considered bad style, and generally it will not contribute to con-
fusion. In fact, the selection of short, clear, and meaningful names such as add, draw, and
so on, contributes to ease of understanding and correct use of object-oriented components.
It is far simpler to remember that you can add an element to a set than to recall that to
do so requires invoking the addNewElement method, or, worse, that it requires calling the
routine Set Module Addition Method.

12.4. OVERRIDING 211

All object-oriented languages permit the occurrence of methods with similar names in
unrelated classes. In this case the resolution of overloaded names is determined by obser-
vation of the class of the receiver for the message. Nevertheless, this does not mean that
functions or methods can be written that take arbitrary arguments. The statically typed
nature of Java still requires speci�c declarations of all names.

12.3.4 Parameteric Overloading

Another style of overloading, in which procedures (or functions or methods) in the same
context are allowed to share a name and are disambiguated by the number and type of
arguments supplied, is called parameteric overloading; it occurs in Java as well as in some
imperative languages (such as Ada) and many functional languages. Parameteric overload-
ing is most often found in constructor functions. A new Rectangle, for example, can be
created either with no arguments (generating a rectangle with size zero and northwest cor-
ner 0,0), with two integer arguments (a width and height), with four integer arguments
(width, height, northwest corner), with a Point (the northwest corner, size is zero), with a
Dimension (height and width, corner 0,0), or with both a Point and a Dimension.

Rectangle r1 = new Rectangle ();

Rectangle r2 = new Rectangle (6, 7);

Rectangle r3 = new Rectangle (10, 10, 6, 7);

Point p1 = new Point (10, 10);

Dimension d1 = new Dimension (6, 7);

Rectangle r4 = new Rectangle (p1);

Rectangle r5 = new Rectangle (d1);

Rectangle r6 = new Rectangle (p1, d1);

There are six di�erent constructor functions in this class, all with the same name. The
compiler decides which function to execute based on the number and type of arguments
used with the function call.

Overloading is a necessary prerequisite to the other forms of polymorphism we will
consider: overriding, deferred methods, and pure polymorphism. It is also often useful in
reducing the \conceptual space," that is, in reducing the amount of information that the
programmer must remember. Often, this reduction in programmer-memory space is just as
signi�cant as the reduction in computer-memory space permitted by code sharing.

12.4 Overriding

In Chapter 8 we described the mechanics of overriding, so it is not necessary to repeat that
discussion here. Recall, however, the following essential elements of the technique. In one
class (typically an abstract superclass), there is a general method de�ned for a particular

212 CHAPTER 12. POLYMORPHISM

message that is inherited and used by subclasses. In at least one subclass, however, a method
with the same name is de�ned, that hides access to the general method for instances of this
class (or, in the case of re�nement, subsumes access to the general method). We say the
second method overrides the �rst.

Overriding is often transparent to the user of a class, and, as with overloading, frequently
the two functions are thought of semantically as a single entity.

12.4.1 Replacement and Re�nement

In Chapter 9 we brie
y noted that overriding can occur in two di�erent forms. A method
can replace the method in the parent class, in which case the code in the parent is not
executed at all. Alternatively, the code from the child can be used to form a re�nement,
which combines the code from the parent and the child classes.

Normally, overridden methods use replacement semantics. If a re�nement is desired, it
can be constructed by explicitly invoking the parent method as a function. This is accom-
plished by using the pseudo-variable super as the receiver in a message passing expression.
An example from the Solitare program described in Chapter 9 showed this:

class DiscardPile extends CardPile f

public void addCard (Card aCard) f
if (! aCard.faceUp())

aCard.flip();

super.addCard(aCard);

g

g

Constructors, on the other hand, always use re�nement semantics. A constructor for a
child class will always invoke the constructor for the parent class. This invocation will take
place before the code for the constructor is executed. If the constructor for the parent class
requires arguments, the pseudo-variable super is used as if it were a function:

class DeckPile extends CardPile f

DeckPile (int x, int y) f
// �rst initialize parent

super(x, y);

// then create the new deck

// �rst put them into a local pile

for (int i = 0; i < 4; i++)

for (int j = 0; j <= 12; j++)

12.5. ABSTRACT METHODS 213

addCard(new Card(i, j));

// then shu�e the cards

Random generator = new Random();

for (int i = 0; i < 52; i++) f
int j = Math.abs(generator.nextInt()) % 52;

// swap the two card values

Object temp = thePile.elementAt(i);

thePile.setElementAt(thePile.elementAt(j), i);

thePile.setElementAt(temp, j);

g
g

g

When used in this fashion, the call on the parent constructor must be the �rst statement
executed. If no call on super is make explicitly and there exist two or more overloaded
forms of the constructor, the constructor with no arguments (sometimes called the default

constructor) will be the form used.

12.5 Abstract Methods

A method that is declared as abstract can be thought of as de�ning a method that is deferred;
it is speci�ed in the parent class but must be implemented in the child class. Interfaces can
also be viewed as a method for de�ning deferred classes. Both can be considered to be
a generalization of overriding. In both cases, the behavior described in a parent class is
modi�ed by the child class. In an abstract method, however, the behavior in the parent
class is essentially null, a place holder, and all useful activity is de�ned as part of the code
provided by the child class.

One advantage of abstract methods is conceptual, in that their use allows the program-
mer to think of an activity as associated with an abstraction at a higher level than may
actually be the case. For example, in a collection of classes representing geometric shapes,
we can de�ne a method to draw the shape in each of the subclasses Circle, Square, and
Triangle. We could have de�ned a similar method in the parent class Shape, but such a
method cannot, in actuality, produce any useful behavior since the class Shape does not
have su�cient information to draw the shape in question. Nevertheless, the mere presence
of this method permits the user to associate the concept draw with the single class Shape,
and not with the three separate concepts Square, Triangle, and Circle.

There is a second, more practical reason for using abstract methods. In statically typed
object-oriented languages, such as Java, a programmer is permitted to send a message to
an object only if the compiler can determine that there is in fact a corresponding method

214 CHAPTER 12. POLYMORPHISM

that matches the message selector. Suppose the programmer wishes to de�ne a polymorphic
variable of class Shape that will, at various times, contain instances of each of the di�erent
shapes. Such an assignment is possible, according to our rule of substitutability; neverthe-
less, the compiler will permit the message draw to be used with this variable only if it can
ensure that the message will be understood by any value that may be associated with the
variable. Assigning a method to the class Shape e�ectively provides this assurance, even
when the method in class Shape is never actually executed.

12.6 Pure Polymorphism

Many authors reserve the term polymorphism (or pure polymorphism) for situations where
one function can be used with a variety of arguments, and the term overloading for situ-
ations where there are multiple functions all de�ned with a single name.2 Such facilities
are not restricted to object-oriented languages. In Lisp or ML, for example, it is easy to
write functions that manipulate lists of arbitrary elements; such functions are polymorphic,
because the type of the argument is not known at the time the function is de�ned. The abil-
ity to form polymorphic functions is one of the most powerful techniques in object-oriented
programming. It permits code to be written once, at a high level of abstraction, and to be
tailored as necessary to �t a variety of situations. Usually, the programmer accomplishes
this tailoring by sending further messages to the receiver for the method. These subsequent
messages often are not associated with the class at the level of the polymorphic method,
but rather are deferred methods de�ned in the lower classes.

An example will help us to illustrate this concept. As we noted in Chapter 8, the class
Number is an abstract class, parent to the wrapper classes such as Integer, Double, Float.
The de�nition of the class is similar to the following:

public abstract class Number f

public abstract int intValue();

public abstract long longValue();

public abstract float floatValue();

public abstract double doubleValue();

2The extreme cases may be easy to recognize, but discovering the line that separates overloading from
polymorphism can be di�cult. In both Java and ML a programmer can de�ne a number of functions, each
having the same name, but which take di�erent arguments. Is it overloading in Java because the various
functions sharing the same name are not de�ned in one location, whereas in ML-style polymorphism they
must all be bundled together under a single heading?

12.7. EFFICIENCY AND POLYMORPHISM 215

public byte byteValue()

f return (byte) intValue(); g

public short shortValue()

f return (short) intValue(); g

g

The method intValue is abstract and deferred{each type of number must provide their
own implementation of this method. The method byteValue, on the other hand, is not
overridden. It is a purely polymorphic algorithm. Regardless of whether the receiver is an
integer, a double precision
oating point value, or some other type of number, this is the
only de�nition that will be found. For all of these di�erent types, when byteValue is invoked
this will be the algorithm that is executed.

The important de�ning characteristic of pure polymorphism, as opposed to overloading
and overriding, is that there is one function with the given name, used with a variety of
di�erent arguments. Almost always, as in this case, the body of such an algorithm will make
use of other forms of polymorphism, such as the invocation of abstract functions shown here.

12.7 E�ciency and Polymorphism

An essential point to note is that programming always involves compromises. In particular,
programming with polymorphism involves compromises between ease of development and
use, readability, and e�ciency. In large part, e�ciency has been already considered and
dismissed; however, it would be remiss not to admit that it is an issue, however slight.

A function, such as the byteValue method described in the last section, that does not
know the type of its arguments can seldom be as e�cient as a function that has more
complete information. Nevertheless, the advantages of rapid development and consistent
application behavior and the possibilities of code reuse usually more than make up for any
small losses in e�ciency.

12.8 Chapter Summary

Polymorphism is an umbrella term that is used to describe a variety of di�erent mechanisms
found in programming languages. In object-oriented languages the most important forms of
polymorphism are tied to the polymorphic variable{a variable that can hold many di�erent
types of values. For example, overloading occurs when two or more functions share the same
name. If these functions happen to be found in classes that have a parent class/child class
relationship, then it is called overriding. If an overridden function is used with a polymorphic
variable, then the particular function executed will be determined by the run-time value of
the variable, not the compile-time declaration for the variable.

216 CHAPTER 12. POLYMORPHISM

Other forms of polymorphism include overloading from independent classes, parameteric
overloading (overloading that is disambiguated by the types of arguments used in a function
call), and abstract methods.

Note that the use of polymorphism tends to optimize program development time and
reliability, at the cost of run-time e�ciency. For most programs, the bene�ts far exceed the
costs.

Further Reading

In the interests of completeness, it should be mentioned that there is at least one important
style of polymorphism, found in other computer languages, that is not found in Java. A
generic (sometimes called a template) is a technique that allows a class description to be
parameterized with a type. In C++, for example, one could declare a class as follows:

template <class T> class box f
public:

box (T init) f value = initial; g
T getValue() f return value; g

private

T value;

g;

The result is a \box of T", and not simply a box. To create such a value, one must also
specify a type for the parameter value T:

box<int> aBox(5); // create a box with an integer

box<Shape> aBox(Circle); // create a box with a circle

One important place where this mechanism is useful is in the creation of collection
classes (see Chapter 19). A language with generics, for example, would allow one to declare
a vector of Cards, rather than (as in Java) simply a vector of objects. The compiler can then
verify that the collection contains only the indicated type of values. More importantly, the
compiler can avoid the cast necessary in Java when an object is removed from a container

A discussion of generics in relation to other forms of polymorphism can be found in [Budd 97].

Study Questions

1. What does the term polymorphic mean in common usage?

2. What is a polymorphic variable?

EXERCISES 217

3. How is the characterization of polymorphic variables di�erent in dynamically typed
languages than in staticly typed languages?

4. What does it mean to say that a function name is overloaded?

5. What does it mean to say that a value has been coerced to a di�erent type?

6. What is parameteric overloading?

7. What is overriding, and how is it di�erent from overloading?

8. What is the di�erence between overriding using replacement, and overriding using
re�nement?

9. What is the default semantics for overriding for methods? For constructors?

10. What is an abstract method?

11. How is an abstract method denoted?

12. What characterizes pure polymorphism?

13. Why should a programmer not be overly concerned with the loss of e�ciency due to
the use of polymorphic programming techniques?

Exercises

1. Describe the various types of polymorphism found in the Pinball game application
presented in Chapter 7.

2. Describe the various types of polymorphism found in the Solitare application presented
in Chapter 9.

