
150

Chapter 9

Templates and Containers

The template mechanism in C++ is perhaps one of the more complex features of the language Define A

template

allows a class

or function to

be parameter-

ized by a type

that has no correspondence in Java. Templates allow class de�nitions or functions to be
parameterized by types or values, in much the same way that a function de�nition can
be executed with a variety of di�erent values. The template mechanism is performed at
compile time, and permits a great deal of type checking to be performed statically, and
eliminates many of the run-time casts that typically populate Java programs (and consume
Java execution time).

A major use of templates is as a tool to develop a rich set of data structure, or container
abstractions. In this chapter we will �rst explain the template mechanism, contrasting it
with various di�erent techniques in Java. The chapter will then conclude with a description
of the Standard Template Library, or STL. The STL is the major data structure library
used by C++ programs.

9.1 Template Classes

Template classes are perhaps best explained using an example. Consider the following de�-
nition, which is a generalization of the box data structure we developed in earlier chapters:

template <class T> class box f
public:

box () f g
box (T v) : val(v) f g
box (box<T> & right) : val(right.val) f g

T value() f return val; g

151

152 CHAPTER 9. TEMPLATES AND CONTAINERS

void operator = (T right) f val = right; g
void operator = (box<T> & right) f val=right.val; g

private:

T val;

g;

The new box is a template class. That means that the type box itself is incomplete,
it cannot by itself be used to create instances. Instead, the parameter (T, in this case)
must be �lled in with a speci�c type before an instance can be created. A class template
gives the programmer the ability to de�ne a data type in which some type information is
purposely left unspeci�ed, to be �lled in at a later time. One way to think of this is that
the class de�nition has been parameterized in a manner similar to a procedure or function.
Just as several di�erent calls on the same function can all pass di�erent argument values
through the parameter list, di�erent instantiations of a parameterized class can �ll in the
type information in di�erent ways.

Within the class body the variable T can be used as a type name. Thus, we can declare
variables of type T, have functions that return a T value, and so on. (Note that T is simply
an identi�er, and that any other identi�er name could have been used.)

To create an object we must �rst specify a value for T. For example, the following creates
a box that will hold an integer, and a box that will hold a double precision value:

box<int> ib;

box<double> db;

ib = 7;

db = 3.14;

box<int> ibtwo = 4; // can be initialized in constructor

ib = ibtwo;

int x = ib.value();

The types associated with template classes are scrupulously checked at compile time.
An attempt to use a value incorrectly will result in a compile time error:

ib = 2.7; // error - cannot assign real to int

Probably the most common use for template classes, although by no means the only one,
is to create container classes. The STL, described in Section 9.3, is one such collection of
classes. For example, the list data structure represents the abstraction of a linked list, but
does not itself specify the particular type of elements it will contain. Instead, the element
type is speci�ed by a template parameter:

list<int> ilist; // create a list of integers

9.1. TEMPLATE CLASSES 153

list<double> dlist: // create a list of real numbers

list<Animal �> alist; // create a list of pointers to animals

ilist.push front(7); // add an element to front of list

int x = ilist.front(); // extract �rst element from list

Contrast this with the way collections are implemented in Java. In Java, the values
held by a collection class are stored in variables declared as Object. There are two major
problems with the Java approach:

1. It means that non object values, such as primitive types (integer and the like) cannot
be stored in Java collections. This is the major reason the Java language provides
wrapper classes, such as Integer.

2. It means that when a value is removed from a Java collection, it must be cast back to
the appropriate type. Notice that there are no cast operations in the above example.
When we remove an element from the list ilist, the compiler knows already that it is
an integer, and not a double or an animal or any other sort of value.

By using templates, the language allows truly reusable, general-purpose components to
be created and manipulated with a minimum of di�culty and yet still retain type safety,
which is an important goal of strongly typed languages. On the other hand, Java can easily
maintain heterogeneous collections, that is, collections of values of various di�erent types.
Such collections are more di�cult to represent in C++.

The keyword class in the template parameter list is somewhat misleading, since the value
can be any type quantity, not simply a class value. (The slightly more descriptive keyword Note The

keyword type-

name is a re-

cent addition

to the C++

language

typename can be used instead of class, however this is a recent change to C++ and as yet not
supported by many compilers). For example, we created box values using the int type as a
template parameter, which is not a class type. Other primitive values can also be used as
template parameters. For example, the following creates a bit array with a given number
of bit values.

template <int s> class bitSet f
public:

set (int index) f ... g
test (int index) f ... g

void operator = (bitSet<s> & right);

protected:

// assume 16 bits per word

int data [(s + 15)/ 16];

154 CHAPTER 9. TEMPLATES AND CONTAINERS

g;

To manipulate a bit array we simply �ll the template argument value with an integer
quantity:

bitSet<25> a;

a.set(17); // set position 17

if (a.test(i)) ...

A bit array can be assigned to another bit array of the same size, but not to an array
with a smaller number of values:

bitSet<25> b;

bitSet<30> c;

a = b; // ok, will execute assignment operator

a = c; // produces compile time error, sizes don't match

9.1.1 Template Methods

When template methods are written separately from the class de�nition, they must also be
be parameterized by the template argument:

template <int s>

void bitSet<s>::operator = (bitSet<s> & right)

f
// �rst compute the data vector size

int max = (s + 15) / 16;

// then copy all the data �elds into our array

for (int i = 0; i < max; i++)

data[i] = right.data[i];

g

Notice that the class name bitSet has been quali�ed by the template argument s. This
is not simply a method in class bitSet, but is a method in bitSet<s>.

9.2 Template Functions

In addition to classes, ordinary functions can also be given template de�nitions. A simple
example is the following, which is a function to determine the maximum of two quantities:

9.2. TEMPLATE FUNCTIONS 155

template <class T>

T max (T left, T right)

f

// return largest value

if (left < right)

return right;

else

return left;

g

The function max can be used with any data type that implements the < operator. Since
the < operator can be overloaded for user de�ned data types, this is potentially an in�nite Note

Template

function

types will be

inferred from

the argument

values,

and need not

be speci�ed by

the program-

mer

set of possibilities.

int i = max(3, 4);

double d = max(3.14, 4.7);

// assume comparison has been de�ned for class anObject

AnObject a, b;

AnObject c = max(a, b);

// mixing types will not work

int i = max(2, a); // will produce compiler error

A feature to note is that it is not necessary to explicitly declare the types that will be
used with an invocation of a template function, as it is with template classes. Instead, the
necessary types are inferred from the types given by the arguments. If a single unambiguous
meaning is not possible, as in the last statement shown above, then the compiler will produce
an error message.

Template functions are not expanded until they are used, at which point an instance of Warning

Errors in

template

functions are

often di�cult

to trace back

to the origi-

nating state-

ment

the function with the correct argument types will be created. Often template functions op-
erate by using other template functions, and so on many levels deep. An error, for example,
using argument values that do not support all the necessary operations (for instance, using
max with arguments that do not recognize the < operator), will be reported is relation to
the expanded template function, not in reference to the function invocation that caused the
template to be expanded. Because of this, an error in a template function may be very
di�cult to trace back to the originating statement.

156 CHAPTER 9. TEMPLATES AND CONTAINERS

9.3 The Standard Template Library

The Standard Template Library, or STL, is a collection of useful container classes for com-
mon data structures, such as lists and stacks. It includes the following:

vector Resizeable array
list Linked list
deque Double ended vector
set and multiset Ordered set
map and multimap Keyed dictionary
stack last-in, �rst out collection
queue �rst-in, �rst out collection
priority queue ordered access collection

Manipulation of the containers is facilitated by a tool called an iterator. An iterator
is a generaization of a memory pointer, used to access elements in a container without
knowledge of the internal representation for the container, similar to the class Enumeration
in Java. Finally, the STL is unique in providing a large collection of generic algorithms,
which are functions manipulated by means of iterators, not tied to any single container.
Each of these features will be described in the sections that follow.

9.3.1 Containers

Space does not permit a complete exposition of all the STL classes, instead in this section
we will simply contrast those containers which are most closely similar to the standard
containers in Java, and outline the major areas of di�erence.

Vectors

Like the Java Vector data type, the class vector (note lower case v) represents a dynamicallyWarning

The vector

data type has

lower case v,

un-

like the Vec-

tor data type

in Java

resizable array. Unlike the Java class, the C++ class must be provided with a template
parameter that describes the element type:

vector<int> a;

vector<double> b(10); // initially ten elements

Note that data structures are generally declared as ordinary variables. It is not necessary
to allocate a container class using the new operator except in special circumstances, such as
when the container must outlive the context in which it is declared.

Figure 9.1 compares methods in the vector data type to the Java equivalents. The C++

class provides a variety of di�erent constructors, including ones that set the initial size, and
a constructor that sets the initial size and provides a default initial value. Element access
and modi�cation in the C++ version is both provided by the subscript operator, whereas

9.3. THE STANDARD TEMPLATE LIBRARY 157

operation C++ Java equivalent

Creation vector<T> v; v = new Vector();
vector<T> v(int size);
vector<T> v(size, initial value);
vector<T> v(oldvector);

Element access v[index] elementAt(index)
First element front() �rstElement()
Last element back() lastElement()
size size() size()
empty test empty() isEmpty()
set size resize(newsize) setSize(newsize)
capacity capacity() capacity()
set capacity reserve(newsize) ensureCapacity(newsize)
add to front push front(value) insertElementAt(value, 0)
add to back push back(value) addElement(value)
insert at position insert(iterator, value) insertElementAt(value, position)
change at position v[position] = value setElementAt(value, position)
Remove last element pop back() none

Remove from position erase(iterator) removeElementAt(position)
copy vector<T> v(oldvector); clone()
create iterator begin() elements()

end()

Figure 9.1: Comparison of vector methods

158 CHAPTER 9. TEMPLATES AND CONTAINERS

Java uses two di�erent methods for these two activities. In the methods that refer to an
internal position within the vector the Java methods generally use an integer index, while
the C++ versions use an iterator value (see Section 9.3.2). A copy, or clone, is formed in
Java using an explicit method, while in C++ the same action is performed using a copy
constructor.

One important di�erence between the Java abstraction and the C++ version is that
attempting to access an element that is out of range will always raise an exception in Java,Warning

Like arrays

and

strings, vec-

tors do not

check for out

of range in-

dex values

however the C++ data abstraction performs no run-time checks. It is possible that an out of
range index value would not be detected, and garbage values would be returned on access,
or an unknown location modi�ed on element set. An alternative method, at, does perform
a run-time range check, and generates a sf out of range error for illegal index values.

The Java class provides a method (contains) that can be used to determine whether or
not a speci�c value is held by the container, and another (removeElement(val)) to remove an
element by giving its value, rather than position. The C++ version has no similar methods,
although one of the generic algorithms (see Section 9.3.3) can be used for this purpose. If
this operation is common, the set data abstraction is a preferable alternative to using a
vector.

Linked list

The list proves most of the same features as the vector data type, adding methods that
allow insertions and removals from the front of the container, as well as from the back. In
addition, insertions or removals from the middle are performed in constant time, rather than
the O(n) time required by the vector data type.

a list

link link link link

?
- - -� � �

Deque

The deque is an interesting data abstraction, that can be thought of as a pair of vectors
placed back to back, moving in opposite directions. This arrangement permits e�cient
(constant time) insertion to either end, however slower linear insertion into the middle.
However, the deque is a more space e�cient structure than is a list.

� -

9.3. THE STANDARD TEMPLATE LIBRARY 159

Set

The set data type maintains elements in order, and thereby permits very e�cient (that is, Note
While a set

in mathemat-

ics

does not im-

ply order, the

set data type

maintains its

values in or-

der

logarithmic) time insertion, removal, and inclusion test for values. Internally, it is imple-
mented by a balanced binary tree.

�
��

A
AU

�
��

A
AU

�
��

A
AU

�
�	

@
@R

Map

A map is a key/value structure, similar to the Java Dictionary or Hashtable data types. The Define A

map is an in-

dexed collec-

tion, similar

to the Java

Dictionary

map data type is parameterized by two template arguments, one for the key type and a
second for the value type. Operations on maps are implemented using a data type called
a pair, which is a key/value combination. Iterators, for example, yield pair values. The
key element in the pair is obtained using the function �rst, and the value �eld is found
using the method second. An optional third argument (required in some C++ compiler
implementations) is a function object used to compare key values to each other. (Function
objects will be discussed in Section 9.3.4.)

The case study in graph manipulation, Chapter 15, illustrates the use of the map data
type.

Stack and Queue

A stack is a linear structure that allows insertions and removals only from one end, while a
queue inserts elements from one end and removes them from the other:

6
?

� - -

160 CHAPTER 9. TEMPLATES AND CONTAINERS

The stack and queue data structures in the STL are interesting in that they are adapters,Define

An adapter is

a software

component

that changes

the in-

terface to an-

other compo-

nent

built on top of an underlying data type, such as a vector or a linked list. The template
argument used in the constructor speci�es the underlying container:

stack< vector<int> > stackOne;

stack< list<anObject �> > stackTwo;

queue< deque<double> > queueOne;

Note the separating space between the two right angle brackets, many C++ compilers
will report spurious compiler errors if the space is omitted (confusing the angle brackets for
the right shift operator). The method names for the stack abstraction are similar to those
used by the Java Stack class.

Priority Queue

The priority queue data type provides rapid access to the largest element in a collection,
and rapid removal of this element. Like the stack, it is built as an adaptor on top of another
container, typically a vector or a list. Two template arguments are used with a priority
queue. The �rst is the underlying container, while the second is a function object that is
used to compare elements.

9.3.2 Iterators

The concept of an iterator in the STL is similar in purpose to the idea of an Enumeration in
Java, but di�ers in the particulars of use. This is perhaps best illustrated by an example.
Imagine that v is a vector of integer values. We could compute the sum of the values in
Java using the following code fragment:

int sum = 0;

for (Enumeration e = v.elements(); e.hasMoreElements();) f
Object val = e.nextElement();

Integer iv = (Integer) val;

sum += iv.intValue();

g

The same idea would be written using iterators as follows:

int sum = 0;

vector<int>::iterator start = v.begin();

vector<int>::iterator stop = v.end();

for (; start != stop; ++start)

sum += �start;

9.3. THE STANDARD TEMPLATE LIBRARY 161

Several di�erences should be noted. Because the STL containers use template de�nitions,
it is not necessary to cast the object to the proper type after it is removed from the container.
The template property of the STL also means that containers can store primitive types, such
as integers, and do not need the wrapper classes necessitated by the Java version. A di�erent
iterator data type is provided by each container, thus to create an iterator it is necessary
to �rst specify the container type. Most importantly, while enumerations work as a single
value, iterators must always be manipulated in pairs, using a beginning and an ending
iterator.

One way to understand iterators is to note that they are designed to be equivalent, and
compatible, with conventional pointers. Just as pointers can be used in a variety of ways
in traditional programming, iterators are also used for a number of di�erent purposes. An
iterator can be used to denote a speci�c value, just as a pointer can be used to reference
a speci�c memory location. On the other hand, a pair of iterators can be used to describe
a range of values, in a manner analogous to the way in which two pointers can be used to
describe a contiguous region of memory.

Imagine, for example, an array that is being used to represent a deck of playing cards.
Two pointer values can be used to denote the beginning and ending of the deck:

card[0] card[1] card[2] ... card[50] card[51]

#
cards cards+1 cards+2 cards+50 cards+51 cards+52

If we need to represent the beginning and end of the memory space, we can use the
values cards and cards+52. In the case of iterators, however, the values being described are
not necessarily physically in sequence, but rather are logically in sequence, because they are
derived from the same container, and the second follows the �rst in the order elements are
maintained by the collection.

162 CHAPTER 9. TEMPLATES AND CONTAINERS

A
A
A
A
A
AU

��
��

��*

@
@

@
@@I

-

?

�������

The convention used by the container classes in the standard library is to return, in
response to the member function named begin(), an iterator that accesses the �rst element
in the collection. An iterator denoting the end of the collection is yielded by the member
function end().

Conventional pointers can sometimes be null, that is, they point at nothing. Iterators,
as well, can fail to denote any speci�c value. Just as it is a logical error to dereference and
use a null pointer, it is an error to dereference and use an iterator that is not denoting a
value.

When two pointers that describe a region in memory are used in a C++ program, it isNote Iter-

a-

tors produced

by containers

often come in

pairs. The

beginning it-

erator is re-

turned by the

function be-

gin,

the ending it-

erator by the

function end

conventional that the ending pointer is not considered to be part of the region. We see this
in the picture of the cards array, where the array is described as extending from cards to
cards+52, even though the element at cards+52 is not part of the array. Instead, the pointer
value cards+52 is the past-the-end value { the element that is the next value after the end of
the range being described. Iterators are used to describe a range in the same manner. The
second value is not considered to be part of the range being denoted. Instead, the second
value is a past-the-end element, describing the next value in sequence after the �nal value
of the range. Sometimes, as with pointers to memory, this will be an actual value in the
container. Other times it may be a special value, speci�cally constructed for the purpose.
The value returned by the member function end() is usually of the latter type, being a
special value that does not refer to any element in the collection. In either case, it is never
legal to try to dereference an iterator that is being used to specify the end of a range. (An
iterator that does not denote a location, such as an end-of-range iterator, is often called an
invalid iterator).

An examination of a typical algorithm will help illustrate how iterators are used. The
generic function named �nd() can be used to determine whether or not a value occurs in a
collection. It is implemented as follows:

9.3. THE STANDARD TEMPLATE LIBRARY 163

template <class iterator, class T>

iterator find (iterator first, iterator last, T & value)

f
while (first != last && �first != value)

++first;

return first;

g

The following shows how we could use this algorithm to search for a value being held by
a conventional C++ array:

int data[100];

...

int � where = find(data, data+100, 7);

Alternatively, the following declares a new variable, then searches for the value 7 in a
list of integers, assigning the resulting iterator to the variable:

list<int>::iterator where = find(aList.begin(), aList.end(), 7);

The resulting value is either the end-of-list iterator (equal to the value returned by the
function end()) or it represents the location of the �rst 7 in the list.

As with conventional pointers, the fundamental operation used to modify an iterator Warning

When used as

pairs, the

second itera-

tor must al-

ways be

reach-

able from the

�rst

is the increment operator (operator ++). When the increment operator is applied to an
iterator that denotes the �nal value in a sequence, it will be changed to the \past the end"
value. An iterator j is said to be reachable from an iterator i if, after a �nite sequence of
applications of the expression ++i, the iterator i becomes equal to j.

Ranges can be used to describe the entire contents of a container, by constructing an
iterator to the initial element and a special \ending" iterator. Ranges can also be used
to describe subsequences within a single container, by employing two iterators to speci�c
values. Whenever two iterators are used to describe a range it is assumed, but not veri�ed,
that the second iterator is reachable from the �rst. Errors can occur if this expectation is
not satis�ed.

The �nd() algorithm illustrates three requirements for an iterator:

� An iterator can be compared for equality to another iterator. They are equal when
they point to the same position, and are otherwise not equal.

� An iterator can be dereferenced using the � operator, to obtain the value being de-
noted by the iterator. Depending upon the type of iterator and variety of underlying
container, this value can also sometimes be used as the target of an assignment in
order to change the value being held by the container.

164 CHAPTER 9. TEMPLATES AND CONTAINERS

� An iterator can be incremented, so that it refers to the next element in sequence, using
the operator ++.

What makes iterators possible is the fact that these characteristics can all be provided
with new meanings in a C++ program, since the behavior of the given functions can all be
modi�ed by overloading the appropriate operators (see Chapter 7).

There are two major categories of iterator constructed by the containers in the stan-
dard library. The types list, set and map produce bi-directional iterators. These iterators
recognize the increment and decrement operators (the latter moving the iterator backwards
one element), but cannot be randomly accessed. The types vector, string and deque, on
the other hand, generate random-access iterators, which permit the subscript operator and
the addition of integer values to an iterator (analogous to adding an integer value to a
pointer, as with the expression cards+52). Some of the generic algorithms depend upon this
subscripting ability, and therefore cannot be used with lists or sets.

9.3.3 Generic Algorithms

One of the most interesting features of the STL is the separation between the containerDefine A

generic algo-

rithm is

a software al-

gorithm that

can

be used with

many di�er-

ent collection

classes

abstractions themselves and algorithms that can be used with the containers. By separating
the two and providing a rich collection of algorithms that work only through iterators, the
same algorithms can be used with a variety of di�erent containers, or indeed with normal
arrays and regular memory pointers. These functions are termed generic algorithms, since
they are generic to a wide variety of uses. Once again, the template mechanism is the key
to specializing the generic algorithm for use in any particular situation.

We saw one example generic algorithm in the �nd procedure described earlier. This
algorithm performs a linear search to locate a value within a collection. Other algorithms
are used to initialize the elements in a container, to perform a variety of di�erent searches,
to transform the values in a container in place, to remove elements, or to reduce a collection
to a single value.

An example algorithm that produces an in-place transformation is the function ran-
dom shu�e. This randomly rearranges the values in the collection. Using this, we could
randomly shu�e the card values described earlier as follows:

random shuffle (cards, cards+52, randomizer);

The randomizer used by this algorithm must be a random number generator, written in
the form of a function object, to be described in the next section.

9.3.4 Function Objects

Functions are not really �rst class values in C++ (or in many other languages, for thatDefine A

Function Ob-

ject is an ob-

ject that can

be used in the

fashion of a

function

9.3. THE STANDARD TEMPLATE LIBRARY 165

matter). One cannot have a variable that holds a function, for example1. Yet many of the
generic algorithms must be specialized by passing a function as an argument.

The STL gets around this little problem in an interesting fashion. Function invocation
is considered by C++ to be just another operator, in this case the parenthesis operator. Like
almost all operators, this can be overloaded by a class. Thus, the programmer can make
an object that can be used as if it were a function. One example is the random number
generator used in the example above. This could be written as follows:

class randomInteger f
public:

unsigned int operator () (unsigned int max) f
// compute rand value between 0 and max

unsigned int rval = rand();

return rval % max;

g
g;

randomInteger randomizer; // create an instance of class

The parenthesis operator de�nes a \function-like" interface that takes a single integer
argument. Using this value, and a real system-provided random number generator named
rand,2 the function computes a positive random number between 0 and the maximum value.

Another example will further illustrate this idea. The generic algorithm �nd if locates
the �rst element in a collection that satis�es a predicate supplied by the user. Suppose we
wish to �nd the �rst value larger than 12. We could write a special \larger than 12" function,
but let us generalize this to a \larger than x" function, where the value x is speci�ed when
an instance of the class is created. We can do this as follows:

class LargerThan f
public:

// constructor

LargerThan (int v) f val = v; g

// the function call operator

bool operator () (int test)

f return test > val; g

private:

1It is important to be precise here. One can, in C++, have a pointer to a function, but that is not the

same as having a function value.
2See Section A.8 in Appendix A.2 for a discussion of the standard libraries.

166 CHAPTER 9. TEMPLATES AND CONTAINERS

int val;

g;

Creating an instance of LargerThan gives us a function-like object that will test an
argument value to see if it is larger than whatever value was speci�ed by the constructor.
Using this, we could �nd the �rst element in a list that is larger than 12 using the following
function invocation:

LargerThan tester(12); // create the predicate function

list<int>::iterator found =

find if (aList.begin(), aList.end(), tester);

if (found != aList.end())

printf("element is %d", �found); // found such a value

else

printf("no element larger than 12");

The �nd if generic algorithm takes a collection speci�ed by a pair of iterators, and returns
an iterator that indicates the �rst element that matches the speci�cation, returning the end
of range iterator is no such element is found. By testing the result against the ending iterator
we can tell whether or not the search was a success. If it was successful, we can dereference
the resulting iterator to �nd the actual value.

If the only use for a function object is as an argument to a generic algorithm, as in the
example shown above, then the creation of the function object can often be replaced by
the creation of a nameless temporary value. A nameless temporary is created by simply
naming the class type for the temporary values along with the arguments to be used in the
constructor that will initialize the temporary:

LargerThan(12) // creates an instance of LargerThan

The creation of this temporary can be performed directly in the argument list for the
generic algorithm, yielding a very concise description:

list<int>::iterator found =

find if (aList.begin(), aList.end(), LargerThan(12));

Another common use for function objects is in the template parameter list for containers.
For the map and priority queue data types, as well as others, an optional template argument
describes the algorithm to be used in comparison between elements. This algorithm must
be described as a function object. For example, in Chapter 15 we present a case study
that uses a map to represent a graph data type. For keys this data type uses primitive C++

strings, i.e., pointers to characters. Since the default implementation of pointer comparison

9.3. THE STANDARD TEMPLATE LIBRARY 167

is not what we wish in this case, another algorithm must be de�ned. This is provided by
the following class description:

class charCompare f // compare two character literal values

public:

bool operator () (const char � left, const char � right) const

f
return strcmp(left, right) < 0;

g
g;

A charCompare takes two character pointer values, and compares the strings they refer-
ence. Using this, the desired data type is then declared as a structure that uses character
pointers as keys, holds integers as values, and uses the charCompare function object to
compare key values:

typedef map <const char �, unsigned int, charCompare> cityInfo;

Working together, containers, iterators, algorithms and function objects provide a set of
powerful tools that can �nd use in almost any nontrivial program.

Test Your Understanding

1. How is the description of a template class di�erent from the description of a normal
C++ class?

2. How is the creation of an instance of a template class di�erent from the creation of a
normal C++ value?

3. Using a container class in Java frequently necessitates the use of run-time casts. How
does the template mechanism eliminate the need for these casts?

4. What is a template function? How are the template argument types for a template
function determined?

5. What do the initials STL stand for?

6. What are some of the ways that the vector data type in C++ di�ers from the Vector
data type in Java? In what ways are they similar?

7. Why are the stack, queue, and priority queue data types known as adaptors?

8. What is a past-the-end value? How is such a value used in an iterator loop?

168 CHAPTER 9. TEMPLATES AND CONTAINERS

9. What is a generic algorithm?

10. What is a function object? How is such a value created? How is it used in conjunction
with generic algorithms?

