
Chapter 15

Design Patterns

Like most complex structures, good computer programs are often formed by imitating the
structure of older, similar programs that have already proven successful. The concept of a
design pattern is an attempt to capture and formalize this process of imitation. The basic
idea is to characterize the features of a proven solution to a small problem, summarizing the
essential elements and omitting the unnecessary detail. A catalog of design patterns is a
fascinating illustration of the myriad ways that software can be structured so as to address
di�erent problems. Later, patterns can give insight into how to approach new problems that
are similar to those situations described by the pattern.

This chapter will introduce the idea of design patterns by describing several that are
found in the Java library. The terminology used in describing the patterns is adapted
from the book Design Patterns: Elements of Reusable Object-Oriented Software, by Erich
Gamma, Richard Helm, Ralph Johnson and John Vlissides [Gamma 1995]. This was one of
the �rst books to describe the concept of design patterns and provide a systematic cataloging
of patterns. Many more patterns than are described here can be found in this book, as well
as in the recent literature on design patterns.

The format used in describing each pattern is to �rst characterize the problem the
pattern is addressing. Then, the essential features of the solution are summarized. In some
cases this is followed by a discussion that examines some of the context for the problem, or
contrasts alternative design possibilities. This is followed by a more detailed description of
the pattern as it is manifest in the Java Library. Finally, a sentence or two summarizes the
situations where the pattern is applicable.

15.1 Adapter

problem: How do you use an object that provides appropriate behavior but uses a di�erent
interface than is required in some situation?

259



260 CHAPTER 15. DESIGN PATTERNS

solution: De�ne an adapter class that acts as an intermediary. The adapter does little
work itself, but merely translates commands from one form into the other.

discussion: International travelers frequently overcome the problem of di�ering electrical
plug and voltage standards by using adapters for their appliances. These adapters
allow an electrical appliance that uses one type of plug to be modi�ed so that it can
be used with a di�erent type of plug. The software equivalent is similar. An adapter is
concerned mostly with changes in the interface to an object, and less with the actual
functionality being provided.

Client Adapter Worker

example: An example of adapters in the Java library are the \wrapper" classes, Boolean,
Integer, and so on. These adapt a primitive type (such as boolean or int) so that they
can be used in situations where an Object is required. For example, wrappers are
necessary to store primitive values as elements in a Vector.

Another form of adapter is the class MouseAdapter used in the pin ball game described
in Chapter 7, as well as in the Solitare program presented in Chapter 9. Here the
adapter reduces the interface, by implementing default behavior for methods that are
unneeded in the current application. The client can therefore concentrate on the one
method that is used in the program.

An adapter can be used whenever there is the need for a change in interface, but no,
or very little, additional behavior beyond that provided by the worker.

15.2 Composition

problem: How do you permit the creation of complex objects using only simple parts?

solution: Provide a small collection of simple components, but also allow these components
to be nested arbitrarily. The resulting composite objects allow individual objects and
compositions of objects to be treated uniformly. Frequently, an interesting feature of
the composition pattern is the merging of the is-a relation with the has-a relation.

example: A good example of composition in the Java library is the creation of design
layouts through the interaction of Components and Containers. There are only �ve
simple types of layouts provided by the standard library, and of these �ve only two,
border layouts and grid layouts, are commonly used. Each item in a layout is a
Component. Composition occurs because Containers are also Components. A container



15.2. COMPOSITION 261

holds its own layout, which is again one of only a few simple varieties. Yet the container
is treated as a unit in the original layout.

The structure of a composite object is often described in a tree-like format. Consider,
for example, the layout of the window shown in Figure 13.8 of Chapter 13. At the
application level there are four elements to the layout. These are a text area, a simple
blank panel, and two panels that hold composite objects. One of these composite
panels holds three scroll bars, while the second is holding a grid of sixteen buttons.

�����

PPPPP

������

XXXXXX
�

�
�

H
H
H

:::

Color =

(((((((((

hhhhhhhhh
�
�
�

H
H
H

Color = [40,60,50]

By nesting panels one within another, arbitrarily complex layouts can be created.

Another example of composition is the class SequenceInputStream, which is used to
catenate two or more input streams so that they appear to be a single input source
(see Section 14.1.2). A SequenceInputStream is-a InputStream (meaning it extends the
class InputStream). But a SequenceInputStream also has-a InputStream as part of its
internal state. By combining inheritance and composition, the class permits multiple
sequences of input sources to be treated as a single unit.

This pattern is useful whenever it is necessary to build complex structures out of a few
simple elements. Note that the merging of the is-a and has-a relations is characteristic
of the wrapper pattern (Section 15.9), although wrappers can be constructed that are
not composites.



262 CHAPTER 15. DESIGN PATTERNS

15.3 Strategy

problem: How do you allow the algorithm that is used to solve a particular problem to be
easily and dynamically changed by the client?

solution: De�ne a family of algorithms with a similar interface. Encapsulate each algo-
rithm, and let the client select the algorithm to be used in any situation.

discussion: If a complex algorithm is embedded in a larger application, it may be di�cult
to extract the algorithm and replace it with another, alternative version. If several
alternative algorithms are included in the same object, both the complexity and the
code of the resulting object may be increased unnecessarily. By separating problem
and solution, it is easier for the client to select the solution (algorithm) appropriate
for any particular situation.

example: An example of the use of the Strategy pattern is the creation of layout managers
in the AWT. Rather than coding in the component library the details of how items
are laid out on the screen, these decisions are left to the layout manager. An interface
for LayoutManager is de�ned, and �ve standard layout managers are provided. The
ambitious programmer is even allowed, should he or she choose, to de�ne a new object
that satis�es the LayoutManager interface.

Application

Container LayoutManager

GridLayout

holds

inherits implements

The activities of the design component (such as a Panel or a Window) is independent
of the particular layout manager that is being used. This both simpli�es the container
component and permits a much greater degree of exibility in the structure of the
resulting layout than would be possible if layout decisions were an intrinsic part of the
container.

This pattern is useful whenever it is necessary to provide a set of alternative solutions
to a problem, and the algorithms used to address the problem can be encapsulated
with a simple interface.



15.4. OBSERVER 263

15.4 Observer

problem: How do you allow two or more independent and loosely coupled objects to change
in synchrony with each other?

solution: Maintain a list of objects that are tied, or dependent, on another object. When
the target object changes, the dependents are noti�ed that they should update them-
selves.

discussion: It is easy to maintain tightly coupled objects in synchrony. For example, if a
new class is de�ned as a subclass of an existing parent class, modi�cations of the parent
that are made via method invocations can be monitored by simply overriding the
methods. It is much more di�cult to keep objects in step with each other when links
are formed and broken dynamically at run time, or when no obvious class relationship
exists between the separate elements.

example: There are two good examples of the use of the observer pattern in the Java
library. The �rst we have seen in many earlier case studies, such as the cannon
world examined in Chapter 6. Each of the user interface components that permits
interaction, such as buttons, scroll bars, and check boxes, maintains a collection of
listener objects. This list is dynamic; listeners for any component can be easily added
or removed at run time. Furthermore, the structure of the listeners is not speci�ed,
they are only required to satisfy the necessary interface. When the component changes
state (the button is pressed, the slider moved, the Checkbox changed), each of the
listeners is noti�ed that a change has occurred. It is up to the listener to decide what
action should be taken as a result of the change.

The idea behind listeners is also found in a more general facility that can be used
by programmers for situations that do not involve user interaction. The library class
Observable represents objects that can be \observed", the equivalent of the components
in the AWT mechanism. Programmers can either subclass a new class from Observable,
or simply create an Observable �eld within a class. Other objects can implement the
Observer interface. These correspond to \listener" objects. An instance of Observer
registers itself with the object being observed.

At any time, the Observable object can indicate that it has changed, by invoking
the message notifyObservers(). An optional argument can be passed along with this
message. Each observer is passed the message update(Observable, Object), where the
�rst argument is the Observable that has changed, and the second is the optional
argument provided by the noti�cation. The observer takes whatever action is necessary
to bring the state into synchrony with the observed object.

The Observer pattern is applicable whenever two or more objects must be loosely
coupled, but must still maintain synchronization in some aspect of their behavior or
state.



264 CHAPTER 15. DESIGN PATTERNS

15.5 Flyweight

problem: How can one reduce the storage costs associated with a large number of objects
that have similar state?

solution: Share state in common with similar objects, thereby reducing the storage required
by any single object.

example: With the exception of primitive values, all objects in Java are an instance of
some class. With each class it is necessary to associate certain information. Examples
of information is the name of the class (a String), and the description of the interface
for the class. If this information was duplicated in each object the memory costs would
be prohibitive. Instead, this information is de�ned once by an object of type Class,
and each instance of the class points to this object.

The objects that share the information are known as yweights, since their memory
requirements are reduced (often dramatically) by moving part of their state to the
shared value. The yweight pattern can be used whenever there are a large number
of objects that share a signi�cant common internal state.

15.6 Abstract Factory

problem: How to provide a mechanism for creating instances of families of related objects
without specifying their concrete representations.

solution: Provide a method that returns a new value that is characterized only by an
interface or parent class, not by the actual type produced.

discussion: There are several instances where the value returned by a function in the
standard library is characterized by either an abstract class or an interface. Clearly
the actual value being returned is a di�erent type, but normally the client using the
function is not concerned with the actual type, but only the behavior described by the
characterizing attributes.

example: Two examples out of the many found in the Java library will be described.
Each of the collection classes Vector, Hashtable and Dictionary de�ne a method named
elements() that is described as returning a value of type Enumeration. As Enumeration
is only an interface, not a class, the value returned is clearly formed as an instance of
some other class. Almost always, the client has no interest in the actual type being
yielded by elements(), and is only interested in the behavior common to all values that
satisfy the Enumeration interface.

A similar situation occurs with the classes Font and FontMetrics. The class FontMetrics
is used to describe the characteristics of a Font, such as the height and width of



15.7. FACTORY METHOD 265

characters, the distance characters extend above or below the baseline, and so on.
A FontMetrics is an abstract class, one that cannot be instanciated directly by the
programmer using the new command. Instead, a value of type FontMetric is returned
by a Graphics object in response to the message getFontMetrics. Clearly, the graphics
object is returning a value derived from a subclass of FontMetric, but the particular
value returned is normally of no concern to the client.

A similar facility is used by class Applet, which can return an AppletContext that
describes the current execution environment.

The abstract factory pattern should be used whenever the type of the actual value
to be created cannot be predicted in advance, and therefore must be determined
dynamically.

15.7 Factory Method

problem: You have a method that returns a newly created object, but want subclasses to
have the ability to return di�erent types of object.

solution: Allow the subclass to override the creation method and return a di�erent type
of object.

discussion: This pattern is very similar to the abstract factory, only specialized for the
situation where new abstractions are formed using inheritance.

example: The method clone() is a good example of a factory method. This method returns
a copy of an object, provided the object supports the Cloneable interface. The default
method in class Object raises an exception, indicating that the cloneable interface is
not supported. Subclasses that wish to permit clones must override this method, and
return a di�erent type of value.

Note that the value returned by a factory method must be the same for all classes.
For the Cloneable interface this type is Object. Any class that permits cloning will still
return a value of type Object in response to the message clone(). This value must then
be cast to the appropriate type.

The factory method pattern is useful when there is a hierarchy of abstractions formed
using inheritance, and part of the behavior of these abstractions is the creation of new
objects.

15.8 Iterator

problem: How to provide a way to access elements of an aggregate object sequentially
without exposing the underlying representation.



266 CHAPTER 15. DESIGN PATTERNS

solution: Provide a mediator object for the sole purpose of sequential access. This mediator
can be aware of the representation of the aggregate, however the client using the object
need not be aware of these details.

example: The Enumeration interface for container access actually addresses two related
problems. It provides a uniform means of accessing elements from many di�erent
types of container, and it hides the details of the underlying container representation.
It is the second aspect that makes the Enumeration a good example of the iterator
pattern.

Consider, for example, an enumeration that is generating elements from a Hashtable.
Internally, a hash table is implemented as an array, each element of the array being a
list. Values that hash into the same locations are found on the same list.

6

5

4

3

2

1

0

- 3

- 25 - 1

- 72 - 9 - 5 - 12

- 23 - 31

The programmer who uses a hash table and wishes to iterate over the values should not
be concerned with the representation, such as moving from one list to the next when
the elements in one hash location have been exhausted. The hash table enumeration
hides these di�culties behind a simple interface. The programmer sees only the two
methods hasMoreElements() and nextElement(). With these, a loop can be written that
does not even hint at the complex actions needed to access the underlying elements.

HashTable htab = new HashTable();

...

for (Enumeration e = htab.elements(); e.hasMoreElements(); ) f
Object val = e.nextElement();

...

g

The fact that the method elements returns a value that is not directly an Enumeration,
but is rather a value from another class that implements the Enumeration interface, is
an example of the Abstract Factory pattern (Section 15.6).



15.9. DECORATOR (FILTER OR WRAPPER) 267

The iterator pattern is useful whenever an aggregate object is created that can hold
an arbitrary number of values, and it is necessary to provide access to values without
exposing the underlying representation.

15.9 Decorator (Filter or Wrapper)

problem: How can you attach additional responsibilities to an object dynamically?

solution: By combining the is-a and has-a relations, create an object that wraps around
an existing value, adding new behavior without changing the interface.

discussion: Inheritance is one technique for providing new functionality to an existing
abstraction. But inheritance is rather heavy handed, and is often not exible enough to
accommodate situations that must dynamically change during the course of execution.
A decorator wraps around an existing object, and satis�es the same requirements (for
example, is subclassed from the same parent class or implements the same interface).
The wrapper delegates much of the responsibility to the original, but occasionally adds
new functionality.

Bu�ered

InputStream

InputStream

example: The class InputStream provides a way to read bytes from an input device, such
as a �le. The class Bu�eredInputStream is a subclass of InputStream, adding the ability
to bu�er the input so that it can be reset to an earlier point and values can be reread
two or more times. Furthermore, a Bu�eredInputStream can take an InputStream as
argument in its constructor.

Because a Bu�eredInputStream both is an InputStream and has an input stream as
part of its data, it can be easily wrapped around an existing input stream. Due
to inheritance and substitutability, the Bu�eredInputStream can be used where the
original InputStream was expected. Because it holds the original input stream, any
actions unrelated to the bu�ering activities are simply passed on to the original stream.



268 CHAPTER 15. DESIGN PATTERNS

A decorator, or wrapper class, is often a exible alternative to the use of subclassing.
Functionality can be added or removed simply by adding or deleting wrappers around
an object.

15.10 Proxy

problem: How do you hide details such as transmission protocols to remote objects?

solution: Provide a proxy that acts as a surrogate or placeholder for another object.

discussion: The idea of a proxy is that one object is standing in place of another. The
�rst object receives requests for the second, and generally forwards the requests to the
second, after processing them in some fashion.

example: An example proxy in the Java Library is the RMI, or Remote Method Invocation
system. The RMI is a mechanism that can be used to coordinate Java programs
running on two or more machines. Using the RMI, a proxy object is created that runs
on the same machine as the client. When the client invokes a method on the proxy,
the proxy transmits the method across the network to the server on another machine.
The server handles the request, then transmits the result back to the proxy. The proxy
hands the result back to the client. In this fashion, the details of transmission over
the network are handled by the proxy and the server, and are hidden from the client.

Client Proxy Server���Q
QQ���

15.11 Bridge

problem: How to decouple an abstraction from its implementation so that the latter can
vary independently.

solution: Remove implementation details from the abstraction, placing them instead in an
object that is held as a component in the abstraction.

example: Most of the component classes in the AWT make use of the bridge pattern. Fun-
damentally, this is because the actions necessary to implement a graphical component
vary in great detail from one platform to another. For example, the actions needed
to display a window are di�erent depending upon whether the underlying display
is X-Windows/Motif, Windows-95, or the Macintosh. Rather than placing platform
speci�c details in the class Window, instead each window maintains a component of



15.12. CHAPTER SUMMARY 269

type WindowPeer. The interface WindowPeer has di�erent implementations, depend-
ing upon the platform on which the application is being executed. This separation
allows a Java program that depends only on the class Window to be executed in any
environment for which there is a corresponding peer.

The Bridge pattern is in many ways similar to the Strategy pattern described earlier.
Di�erences are that bridges are almost always hidden from the client (for example, the
average Java programmer is generally unaware of the existence of the peer classes), and
are generally dictated by environmental issues rather than reecting design decisions.

15.12 Chapter Summary

An emerging new area of study in object-oriented languages is the concept of design patterns.
A design pattern captures the salient characteristics of a solution to a commonly observed
problem, hiding details that are particular to any one situation. By examining design
patterns, programmers learn about techniques that have proven to be useful in previous
problems, and are therefore likely to be useful in new situations.

Further Reading

The most important reference for design patterns is the book of the same name [Gamma 1995],
by Gamma, Helm, Johnson and Vlissides (commonly known as the Gang of Four, or GOF).
Another recent book on patterns is by RichardndexGabriel, Richard Gabriel [Gabriel 1996].

Study Questions

1. In what ways is an adapter similar to a proxy? In what ways are they di�erent?

2. In what way is the composition design pattern similar to the idea of composition
examined in Chapter 10?

3. In what ways is a strategy similar to a bridge? In what ways are they di�erent?

4. In what ways is an iterator similar to an adapter?

Exercises

1. What design pattern is exhibited by the class PrintStream (see Section 14.2)? Explain
your answer.


