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Chapter 11

Deques { Double Ended Data

Structures

Chapter Overview

In this chapter we will not only introduce the deque data structure from the standard
template library, but also use the data type to illustrate two important general search
techniques, depth and breadth �rst search. Next, we will once again revisit the topic of
inheritance, introduced in Chapter 9, showing how inheritance can be used to construct
frameworks, which are skeleton applications used as the basis for solving similar problems.
Finally, we conclude the chapter by presenting a simpli�ed deque implementation, similar
to the standard library data structure.

� The deque abstraction

� Depth and Breadth �rst searching

� Frameworks

� A Simpli�ed Implementation

11.1 The Deque abstraction

The deque data type (pronounced either \deck" or \DQ") is one of the most interesting
data structures in the standard template library. Of all the STL containers, the deque is
the least conventional. It represents a data type that is seldom considered to be one of the
\classic" data abstractions, as are vectors, lists, sets or trees. Nevertheless, the deque is a
powerful and versatile abstraction.
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The operations provided by the deque data type, shown in Figure 11.1, are a combination
of those provided by the classes vector and list. Like a vector, the deque is a randomly
accessible structure. This means that instances of the class deque can be used in most
situations in which a vector might be employed. Like a list, elements can be inserted into
the middle of a deque, although such insertions are not as e�cient as they are with a list.

The term deque is short for Double-Ended QUEue, and describes the structure well. The
deque is a combination of stack and queue, allowing elements to be inserted at either end.
Whereas a vector only allows e�cient insertion at one end, the deque can perform insertion
in constant time at either the front or the end of the container. Like a vector, a deque is
a very space e�cient structure, using far less memory for a given size collection than will,
for example, a list. However, again like a vector, insertions into the middle of the structure
are permitted, but are not e�cient. An insertion into a deque may require the movement
of every element in the collection, and is thus O(n) worst case.

� - � -

One of the most common uses for a deque is as an underlying container for either a
stack or a queue. The deque is a preferable container for such employment if the size of the
collection remains relatively stable during the course of execution, while if the size varies
widely a list or vector is preferable. In many cases the decision concerning which structure
is most appropriate can only be made by performing direct measurement of program size
or execution time.

Because the meaning of the operations on a deque are similar to those of a vector or a
list we will not describe them in detail. Instead, we will proceed to an example program
that makes use of the features provided by a deque.

11.2 Application{Depth and Breadth First Search

In this section we will examine a program that will discover a path through a maze, such
as the one shown below. We will assume that the starting point for the search is always in
the lower right corner of the maze, and the goal is the upper left corner.

F

S
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Constructors and Assignment

deque<T> d; default constructor
deque<T> d (anInt); construct with initial size
deque<T> d (anInt, a T value); construct with initial size and initial value
deque<T> d (aDeque); copy constructor
d = aDeque; assignment of deque from another deque
d.swap (aDeque); swap contents with another deque

Element Access and Insertion

d[i] subscript access, can be assignment target
d.front () �rst value in collection
d.back () �nal value in collection
d.insert (iterator, value) insert value before iterator
d.push front (value) insert value at front of container
d.push back (value) insert value at back of container

Removal

d.pop front () remove element from front of vector
d.pop back () remove element from back of vector
d.erase (iterator) remove single element
d.erase (iterator,iterator) remove range of elements

Size

d.size () number of elements currently held
d.empty () true if vector is empty

Iterators

deque<T>::iterator itr declare a new iterator
d.begin () starting iterator
d.end () stopping iterator
d.rbegin () starting iterator for reverse access
d.rend () stopping iterator for reverse access

Table 11.1: Summary of deque operations
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Our purpose in presenting this example is not only to contrast two di�erent types of
search techniques, but also to demonstrate the operations of the deque data type, and
�nally to show how a deque can be used either in a stack-like or queue-like fashion. These
two broad approaches to searching are known as depth �rst search and breadth �rst search.

We want the maze searching program to be general, able to solve any two dimensional
maze and not simply the example maze shown above. We therefore design a scheme so that
the description of the maze can be read from an input �le. Di�erent �les can be used to
test the program on a variety of di�erent mazes. To see how to do this, note that a maze
can be described as a sequence of squares, or cells. The example maze shown above, for
example, is a �ve by �ve square of 25 cells. Each cell can be characterized by a number,
which describes the surrounding walls. Sixteen numbers are su�cient. In this fashion we
have the following vocabulary for describing cells:

0 1 2 3 4 5 6 7

8 9 10 11 12 13 14 15

The pattern of the numeric values becomes apparent if one considers the number not as
a decimal value, but as a binary pattern. The 1's position indicates the presence or absence
of a south wall, the 2's position the east wall, the 4's position the north wall, and the 8's
position the west wall. A value such as 13 is written in binary as 1101. This indicates there
are walls to the north, west, and south, but not the east.

Using this scheme, the example maze could be described by 25 integer values. In the fol-
lowing we have superimposed these values on the maze, to better illustrate their relationship
to the original structure.

9 1 1 3 11

14 14 10 12 2

9 5 2 13 2

10 9 4 3 10

14 12 5 4 6

This external representation of the maze must be mapped on to an internal represen-
tation. The internal representation need not match the external representation, as long as
there is a means of conversion between the two. The internal representation will again be
a sequence of cells. Each cell is an instance of the class cell. Instances of class cell maintain
three data �elds:
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� A number. This is an integer value used to identify the cell. Cells are numbered
consecutively from left to right and top to bottom.

� A list of neighboring cells. Each cell will have an entry in this list for all other neighbor
cells that can be reached.

� A Boolean value, named visited, that will be used to mark a cell once it has been visited.
Traversing a maze often results in dead-ends, and the need to back up and start again.
Marking visited cells avoids repeating e�ort and potentially walking around in circles.

A class description for cell is shown below. The member function addNeighbor simply
inserts a value into the list of neighbors. The member function visit will encode the searching
algorithm. We will defer a description of this until after we have outlined the rest of the
program.

class cell f
public:

// constructor

cell (int n) : number(n), visited(false) f g

// operations

void addNeighbor (cell � n) f neighbors.push back(n); g
void visit (deque<cell �> &);

protected:

int number;

bool visited;

list <cell �> neighbors;

g;

The class that represents the entire maze structure is called maze, and has the following
structure:

class maze f
public:

maze (istream &);

void solveMaze ();

protected:

cell � start;

bool finished;

deque <cell �> path;

g;
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The class maze maintains three data �elds. The �rst is a pointer to the starting cell.
The second is a Boolean ag that is set to true once the goal cell has been reached. The
third data �eld is a deque, used to hold the path (or paths) currently being traversed.

The constructor for the class maze, shown in Figure 11.1, reads the maze description
from an input �le (passed as argument), converting from the external representation to the
internal representation. The �rst two integer values in the �le represent the number of rows
and columns of the maze. In order to set the links properly, a vector is maintained that
represents the cells in the row previous to the row currently being read from the input �le.
(This is the row to the immediate north of the current). Recall that the two argument form
used in the constructor for this vector initializes each entry to the second argument value,
in this case a null pointer value. After each new cell has been processed, the entry in this
vector for the corresponding column has changed. The following picture illustrates the use
of this vector. Here the �rst two rows have been processed, and the �rst two columns in the
third row. The boxed elements indicate the current value of the vector. Note that the value
of the vector with the same column number as the present element is the neighbor to the
north, while the value with the index one smaller than the current column is the neighbor
to the east.

9 5 2

10 9 4 3 10

14 12 5 4 6

As each new value is read, it is determined whether or not it has a link to the north
(to the previous row) or to the west (to the most recently processed cell). If so, then links
are established. Notice that links cannot be created to the east and south, since these cells
have not yet been created. However, note that a link to the south or east corresponds to a
link from the north or west in the adjoining cells, so by making both sets of connections at
once it is only necessary to recognize north and west connections. After the cell has been
completely processed, it is assigned to the corresponding position in the vector, and the
next element is read.

9 5 2 13

10 9 4 3 10

14 12 5 4 6

This process continues until all the maze description values have been read. Having
entered the maze data, we can now describe the algorithm used to solve the maze. The
fundamental problem occurs when there is a choice of several directions to pursue. In our
example maze, this occurs immediately after the �rst step, when there are possible moves
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maze::maze (istream & infile)

// initialize maze by reading from �le

f
int numRows, numColumns;

int counter = 1;

cell � current = 0;

// read number of rows and columns

infile >> numRows >> numColumns;

// create vector for previous row

vector <cell �> previousRow (numRows, 0);

// now read data values

for (int i = 0; i < numRows; i++)

for (int j = 0; j < numColumns; j++) f
current = new cell(counter++);

int walls;

infile >> walls;

// make north connections

if ((i > 0) && ((walls & 0x04) == 0)) f
current->addNeighbor (previousRow[j]);

previousRow[j]->addNeighbor (current);

g
// make west connections

if ((j > 0) && ((walls & 0x08) == 0)) f
current->addNeighbor (previousRow[j-1]);

previousRow[j-1]->addNeighbor (current);

g
previousRow[j] = current;

g
// most recently created cell is start of maze

start = current;

finished = false;

g

Figure 11.1: Constructor for class maze.
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both north and west. One or the other paths must be selected. However, since a selection
may ultimately be wrong (resulting in a dead end), it is important to keep track of the
alternative possibilities. We do so using a deque. At each step the deque will hold pointers
to cells that are known to be reachable, but have not yet been visited.

Describing the �rst few steps in the process will clarify the approach. There is only
one cell reachable from the starting position, and thus initially the deque contains only one
element. The following also repeats the maze, with the cells showing their given number.

the deque

front 20 back

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

21 22 23 24 25

This value is pulled from the deque, and the neighbors of the cell inserted back into the
deque. This time there are two neighbors, so the deque will have two entries:

front 19 15 back

Only one value can be explored at any time. So the �rst element is removed from the
deque, and its neighbors inserted, and so on repeatedly. Two steps later we again have a
choice, and both neighbors are inserted into the deque. At this point, the deque as the
following contents:

front 22 18 15 back

The next cell to be explored will be 22, but cells 18 and 15 are also known to be reachable,
and are waiting to be considered should the current path not prove to be a solution. This
in fact occurs when we reach cell 16, at which point the deque looks as follows:

front 16 17 18 15 back

Since cell 16 adds no new values to the deque (having no unvisited neighbors) the next
entry is automatically popped from the deque. In this fashion we start pursuing the path
from 17, which also immediately dead-ends. Finally, the entry 18 is popped from the deque,
and the search continues. The solution is ultimately found in �fteen steps. The following
shows the path to the solution, with the cells numbered in the order in which they were
considered.
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The code to perform this search is found in two methods. The overall control is the
function solveMaze in class maze. This function pulls cells from the deque as long as the
deque remains nonempty and the solution has not yet been found.

void maze::solveMaze ()

// solve the maze puzzle

f
start->visit (path);

while ((! finished) && (! path.empty ())) f
cell � current = path.front ();

path.pop front ();

finished = current->visit (path);

g
if (! finished)

cout << "no solution found\n";

g

When each cell is visited, it places all unvisited neighbors into the deque.

bool cell::visit (deque<cell �> & path)

// visit cell, place neighbors into queue

// return true if solution is found

f
if (visited) // already been here

return false;

visited = true; // mark as visited

cout << "visiting cell " << number << endl;

if (number == 1) f
cout << "puzzle solved\n";

return true;

g

// put neighbors into deque

list <cell �>::iterator start, stop;
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start = neighbors.begin ();

stop = neighbors.end ();

for ( ; start != stop; ++start)

if (! (�start)->visited)

path.push front (�start);

return false;

g

The strategy embodied in this code doggedly pursues a single path until it either reaches
a dead-end or until the solution is found. When a dead-end is encountered, the most recent
alternative path is reactivated, and the search continues. This approach is called depth-�rst

search, since it moves deeply into the structure before examining alternatives. Depth �rst
search is the type of search a single individual might perform in walking through a maze.

Suppose, on the other hand, that there is a group of people walking through the maze.
When a choice of alternative directions is encountered, the group may decide to split itself
into two smaller groups, and pursue each path simultaneously. When another choice is
reached the group again splits, and so on. In this manner all potential paths are investigated
at the same time. Such a strategy is known as breadth �rst search.

What is intriguing about the maze searching algorithm is that the code for breadth �rst
search is almost identical to the code for depth �rst search. In fact, all that is necessary is
to change the command path.push front in the visited member function to instead perform
a path.push back.

bool cell::visit (deque<cell �> & path)

f

...

for ( ; start != stop; ++start)

if (! (�start)->visited)

path.push back (�start); // <- note change

return false;

g

In doing so, we change our use of the deque from being stack-like, to being queue-like.
This can be illustrated by once more describing the state of the deque at various points
during execution. For example, after the �rst step, the deque has the following values.
Note how the elements are in the opposite order from the one they held in the depth �rst
searching algorithm.

front 15 19 back
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The element 15 is pulled from the deque, but its neighbors, the cells 10 and 14, are placed
on the back of the queue. The next node to be investigated will therefore not be one of the
immediate neighbors of the most recent node, but an entirely di�erent path altogether.

front 15 10 14 back

A few steps later the search has been split several times, and the deque contains the
following values:

front 17 21 2 8 8 12 back

As one might expect, a breadth �rst search is more thorough, but may require more time
than a depth �rst search. Recall that the depth �rst search was able to discover the solution
in 15 steps. The depth �rst search is still looking after 20 steps. The following describes
the search at this point.

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

Trace carefully the sequence of the last few cells that were visited. Note how the search
has jumped around all over the maze, exploring a number of di�erent alternatives at the
same time. Another way to imagine breadth �rst search is that it describes what would
happen if one were to pour ink into the maze at the starting location, as the ink slowly
permeates every path until the solution is reached.

Depth �rst and breadth �rst are both valuable techniques in a variety of searching
problems, and arise in a number of di�erent forms and contexts. The following di�erences
can be noted in comparing breadth-�rst and depth-�rst searching.

� Since all paths of length one are investigated before examining paths of length two,
and all paths of length two before examining paths of length three, a breadth-�rst
search is guaranteed to always discover a path from start to goal containing fewest
steps, whenever such a path exists.

� Since one path is investigated before any alternatives are examined, a depth �rst search
may, if it is lucky, discover a solution more quickly than the equivalent breadth-�rst
algorithm. Notice this occurs here, where the goal is encountered after examining
only 15 locations in the depth-�rst algorithm, while the goal is only reached after
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Figure 11.2: Legal knight moves

25 iterations in the breadth-�rst algorithm. But this bene�t is not certain, and a
bad selection of alternatives to pursue can lead to many dead-end searches before the
proper path to the goal is revealed.

� In particular, suppose for a particular problem that some but not all paths are in�nite,
and there exists at least one path from start to goal that is �nite. Breadth-�rst search
is guaranteed to �nd a shortest solution. Depth �rst search may have the unfortunate
luck to pursue a never-ending path, and can hence fail to �nd a solution.

11.3 Application{A Framework for Backtracking

If we generalize the approach used in the depth �rst search solution of the maze, we discover a
technique termed backtracking. To use backtracking, a problem must have the characteristic
that a solution is discovered as a sequence of steps. At some of these steps there may be
multiple alternative choices for the next step, and insu�cient information to decide which
alternative will ultimately be the correct choice. A stack is used to record the state of the
computation at the point of choice, permitting the program to subsequently \restart" the
calculation from that point and pursue a di�erent alternative.

To illustrate the idea of backtracking, we will analyze a classic puzzle involving the
knight chess-piece. In chess, a knight can legally move in an \L" shaped pattern, either
one forward or backward and two left or right, or two forward or backward and one left or
right. Figure 11.2 illustrates the legal moves for a knight starting in the given position on a
conventional 8-square chess board. A piece may not move o� the board, so near the edges
of the board the number of legal moves may be less than eight.

A knights-tour is a sequence of 64 moves in which a knight visits, using only legal moves,
each and every square on the board once. The classic knights-tour problem is to discover



11.3. APPLICATION{A FRAMEWORK FOR BACKTRACKING 271

a knights tour starting from a speci�c location. For example, the following table shows the
steps in a complete knights-tour starting from the upper left corner.

1 10 31 64 33 26 53 62

12 7 28 25 30 63 34 51

9 2 11 32 27 52 61 54

6 13 8 29 24 35 50 41

3 18 5 36 49 40 55 60

14 21 16 23 46 57 42 39

17 4 19 48 37 44 59 56

20 15 22 45 58 47 38 43

As an illustration of backtracking, consider the following state in which our program
�nds itself rather early in the search for a solution after having successfully performed 57
moves. There is no legal unvisited location to which the piece at move 57 can advance.
The program will \back-up" to move 56, and try a di�erent alternative. But in fact there
is no other alternative possible at move 56, and so the program will back up to move 55,
and then to 54, 53, and 52. It is only at move 52 that a new untried legal alternative
is discovered, namely to move to the bottom left corner. This move is tried, but then
immediately abandoned since there is no successor. No further alternative is possible for
move 52, nor for move 51, or 50. We must backtrack all the way to move 49 before we can
�nd another possibility, which is to make the new move 50 be the now vacant location of
the previous move 52.

1 10 31 33 26 57 42

12 7 28 25 30 43 50

9 2 11 32 27 34 41 56

6 13 8 29 24 49 44 51

3 18 5 38 35 40 55

14 21 16 23 48 37 52 45

17 4 19 36 39 46 54

20 15 22 47 53

Non-recursive programs that solve a problem using backtracking generally have a very
similar structure. We can use this observation to develop a generic framework for such
problems. A framework is a class (or, in more complicated situations, a set of classes and
functions), that together provide the skeleton outline for the solution to some problem,
but do not provide any speci�c details. The most common frameworks are associated with
graphical user interfaces, but many other types of frameworks are possible. To generate a
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solution to a speci�c problem the programmer specializes the framework, generally using
inheritance.

11.3.1 Specialization using Inheritance

As we noted in Chapter 9, inheritance is a powerful mechanism for quickly and easily
creating new data abstractions that are variations or extensions of existing software. To use
inheritance, the programmer writes the name of the existing class (called the parent class)
following the name of the new class. By doing so, the new class (called the child class, or
sometimes the derived class) is then treated as an extension of the older class. All data
�elds, all member functions of the existing structure are therefore immediately accessible in
the new structure. In addition, the programmer can add new data �elds and new functions.

We will illustrate the use of inheritance in the development of our framework for back-
tracking problems. The solution to a generic backtracking problem can be described as
follows:

template <class T> bool backtrackFramework<T>::run ()

f

// initialize the problem

initialize ();

done = false;

// do the main loop

while ((! done) && (! theStack.empty ())) f

// if we can't advance from current state

// then pop the stack

if (! advance(theStack.top ()))

theStack.pop ();

g

// return true if stack is not empty

return ! theStack.empty ();

g

A procedure initialize is used to establish whatever conditions need be set to start the
problem; including pushing the �rst state on the stack. A Boolean variable done indicates
when the problem is �nished. This variable may be set by the application speci�c code to
terminate the loop early if, for example, a solution is found. The heart of the algorithm is
a simple loop. At each step a procedure called advance is called, passing as argument the
current state. If it is possible to advance to a new state then execution continues, otherwise
the topmost state is popped o� the stack, and execution backtracks to a previous point.
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The method just given is from a class called backtrackFramework. The template pa-
rameter is the class used to encode state information. The complete class description is as
follows:

//

// class backtrackFramework

// general framework for solving problems

// involving backtracking

//

template <class T> class backtrackFramework f
public:

// protocol for backtrack problems

virtual void initialize ();

virtual bool advance (T newstate);

virtual bool run ();

protected:

stack < deque <T> > theStack;

bool done;

g;

Note that the general purpose class has no information speci�c to the knights tour
problem. In order to specialize this general approach to make a solution to the knights-
tour problem, we �rst need to describe how we record information concerning the current
position.

The encapsulation for the \state" of the search at any point will be an instance of a class
we will call Position. A Position corresponds to a location on the chess board. A position
will maintain a pair of x and y values corresponding to coordinates on the board, a variable
moveNumber that will record the sequence of moves in the solution, and a fourth integer
variable, named visited, that will indicate what subsequent moves have been attempted.
To encode this last value, we will simply try, at each step, the moves in order and numbered
as in Figure 11.2. A zero stored in the visited variable indicates the position has not yet
been used on the knights tour, while a non-zero value indicates the position has been used
on the knights tour, and furthermore the type of move that was used to generate the next
step.

The following is the class description for Position. The output operator is used to print
the �nal result.

//

// class Position

// record a position in the knights move tour
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//

class Position f // position in chessboard

public:

void init (int, int);

Position � nextPosition ();

protected:

// data �elds

// x and y are coordinate positions

int x, y;

// moveNumber records the sequence of steps

int moveNumber;

// visited is a bit vector marking what positions have been visited

int visited;

// internal method used to �nd the next move

Position � findMove(int visitedPosition);

// friends

friend class knightsTour;

friend ostream & operator << (ostream & out, Position & v);

g;

The chessboard itself will simply be declared as a two-dimensional matrix of positions,
named board. Because the array constructor does not permit the initialization of each
position individually, initialization of each element is performed with a loop that simply
invokes the init method for each value. We will see this shortly in the initialization portion
of the program.

A hallmark of object-oriented programming and the responsibility driven design tech-
nique we outlined in Chapter 2 is the concept of making data structures responsible for
their own operation. The Position data structure illustrates this idea. Each position is
responsible for �nding the next potential move in the solution. The process of �nding the
solution is performed by the method nextPosition. This method returns a pointer to a
position, returning a null pointer if no legal alternative exists. In order to discover a po-
sition, the method increments the value held in the variable visited, using the facilitator
method findMove to perform the encoding of the number into a position value. If the in-
cremented value of the visited variable denotes a position that is legal and not yet visited,
it is returned. Otherwise the loop continues. If all 8 possible moves have been examined,
then no alternative exists and a null value is returned. Before returning in this case we zero
the variable visited, so that the position can be revisited along a di�erent path. We saw
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this in the earlier example of backtracking, where position 52 was �rst abandoned but later
reached from a di�erent direction.

Position � Position::nextPosition()

f
while (++visited < 9) f

Position � next = findMove(visited);

// if there is a neighbor not visited then return it

if ((next != 0) && (next->visited == 0))

return next;

g
// can't move to any neighbor, report failure

visited = 0;

return 0;

g

The method findMove simply translates a value between 1 and 8 into a position, �ltering
out moves that are not on the board.

Position � Position::findMove(int typ)

f int nx, ny;

switch(typ) f
case 1: nx = x - 1; ny = y - 2; break;

case 2: nx = x + 1; ny = y - 2; break;

case 3: nx = x - 2; ny = y - 1; break;

case 4: nx = x + 2; ny = y - 1; break;

case 5: nx = x - 2; ny = y + 1; break;

case 6: nx = x + 2; ny = y + 1; break;

case 7: nx = x - 1; ny = y + 2; break;

case 8: nx = x + 1; ny = y + 2; break;

g
// return null value on illegal positions

if ((nx < 0) jj (ny < 0))

return 0;

if ((nx >= boardSize) jj (ny >= boardSize))

return 0;

// return address of new position

return & board[nx][ny];

g
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We are �nally in a position to show how to use inheritance to specialize the general
purpose backtracking solution we created earlier in order to create a solution to the knights
tour problem. To create a solution to the knights tour problem we need to tie the Position
data structure into our backtracking framework. By saying that the new class knightsTour,
inherits from backtrackFramework (a process termed derivation), all the data �elds and
methods of the parent class are made available to the new class. In addition, those methods
that were labeled virtual in the parent class can be overridden, and provided with new
meanings. It is in this fashion that the initialize and the advance methods can be made
speci�c to the current problem. The complete class description is as follows:

//

// class knightsTour

// solve the n by n knights tour problem

//

class knightsTour : public backtrackFramework<Position �> f
public:

// rede�ne the backtracking protocol

virtual void initialize ();

virtual bool advance (Position �);

// new method

void solve ();

g;

The initialization method loops over each board position to establish the initial condi-
tions for each value. It then pushes the starting location, board position 0:0, on to the stack.
This board position is our initial state.

const int boardSize = 8;

Position board[boardSize][boardSize];

void knightsTour::initialize ()

f
// initialize the parent class

backtrackFramework<Position �>::initialize ();

// initialize chessboard

for (int i = 0; i < 8; i++)

for (int j = 0; j < 8; j++)

board[i][j].init(i, j);
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Overriding, Replacement and Re�nement

Placing the modi�er virtual in the parent class indicates that the given method
can potentially be replaced by a function de�ned in a child class. This is only a
potential, it need not be replaced, and if not the function in the parent will be used.

If a child class does override the parent class method, it is a complete replacement
of the method from parent class. Sometimes, as in the initialization method shown,
we instead want to combine the new code with that of the parent, making sure that
both are executed. In C++ this is accomplished by invoking the function in the
parent class from inside the code for the child class. In order to avoid confusion,
the fully quali�ed name, in this case

backtrackFramework<Position �>::initialize ();

is used to completely and fully specify exactly what function should be executed.

// set move number on �rst position

board[0][0].moveNumber = 1;

// push initial position

theStack.push(& board[0][0]);

g

To complete the framework we need only describe how to discover the next move from
any given position. This is performed by the method advance. The advance method is
given, in the argument, the current state. It asks a position to try to �nd a next position in
sequence. It does this by invoking the nextMove method we described earlier. The advance
function returns a true value if advancement is possible from the current position, and a
false value if no advancement can be made. An additional responsibility is to test to see if
the solution to the problem has been found. If so, then the done ag must be set.

bool knightsTour::advance(Position � currentPosition)

// try to advance from a given position

f
Position � newPosition = currentPosition->nextPosition ();

if (newPosition) f
// move forward

newPosition->moveNumber = currentPosition->moveNumber + 1;

theStack.push(newPosition);
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// if we have �lled all squares we are done

if (newPosition->moveNumber == boardSize � boardSize)

done = true;

// return success

return true;

g

else

return false; // can't move forward

g

The �nal method to describe is the one new method added by class knightsTour to
the framework protocol. This method simply starts the framework running. If success is
reported then the stack is popped in order to print the result.

void knightsTour::solve ()

f

// start framework

if (run ()) f // print solution

cout << "solution is:\n";

while (! theStack.empty ()) f

cout << � theStack.top () << \n;

theStack.pop ();

g

g

else

cout << "no solution ";

g

11.4 An Implementation

Of all the containers in the standard template library, the deque is the one with the least
obvious implementation approach. Techniques for implementing vectors, lists, queues, trees
and so on are all well known. But there are many possible techniques that can be used to
implement a deque, and the language de�nition does not constrain the software developer
of the abstraction in any signi�cant regard. In this section we will describe one possible
technique. The approach presented here has the advantage of being relatively simple, but
is not the only possibility.

The basic idea in this implementation is to internally represent a deque as a pair of
vectors. That is, while we visualize a deque as a linear structure, such as the following:
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� - 0 1 2 3 4 � -

it actually can be stored internally as two vectors. This allows values to be added at either
end. Note, however, that the �rst vector is \backwards", as the �rst element is at the top,
while the last element is at the bottom, in position 0.

2

1

0
2

1

0

6
?

3

4

6
?

0

1
vector index

Figure 11.3 gives a class description for our simpli�ed deque implementation, with many
of the shorter methods being de�ned as in-line procedures.

The structure of most of the remaining operations is very similar. All are implemented
by performing operations on one or the other of the underlying vectors. The complicating
factor is that either vector could potentially be empty, in which case the operation must be
performed on the other. The method front, which returns the �rst element in the collection,
is typical:

template <class T> T & deque<T>::front ()

// return �rst element in deque

f
if (vecOne.empty ())

return vecTwo.front ();

else

return vecOne.back ();

g

If vector one is empty, then the �rst value in the deque is the �rst value in vector two.
If, on the other hand, vector one is not empty, then the �rst value in the deque is the last

value in the �rst vector. The method back is similar. The methods to remove an element
from either the front or the back of the collection are only slightly more complex:

template <class T> void deque<T>::pop front ()

// remove �rst element in deque
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//

// class deque

// double ended queue

template <class T> class deque f
public:

typedef dequeIterator<T> iterator;

typedef T value type;

// constructors

deque () : vecOne(), vecTwo() f g
deque (unsigned int size, T & initial) : vecOne (size/2, initial),

vecTwo (size - (size / 2), initial) f g
deque (deque<T> & d) : vecOne(d.vecOne), vecTwo(d.vecTwo) f g

// operations

T & operator [ ] (unsigned int);

T & front ();

T & back ();

bool empty () f return vecOne.empty () && vecTwo.empty (); g
iterator begin () f return iterator(this, 0); g
iterator end () f return iterator(this, size ()); g
void erase (iterator);

void erase (iterator, iterator);

void insert (iterator, T &);

int size () f return vecOne.size () + vecTwo.size (); g
void push front (T & value) f vecOne.push back(value); g
void push back (T & value) f vecTwo.push back(value); g
void pop front ();

void pop back ();

protected:

vector<T> vecOne;

vector<T> vecTwo;

g;

Figure 11.3: A simpli�ed implementation of the class deque.
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f
if (vecOne.empty ())

vecTwo.erase(vecTwo.begin ());

else

vecOne.pop back ();

g

If the �rst vector is empty, we must erase the �rst element in the second vector, otherwise
we can simply reduce the size of the �rst vector by one. Note that this approach may not
be the best solution, as the erase operation on vector two is almost undoubtedly very costly.
Often sequences of pushes and pops occur one after another. This would occur, for example,
if the deque were used as a stack or as a queue. Rather than each pop front causing an erase,
a better alternative in this case would be to move some number of elements (for example
half) from the second vector back to the �rst. Subsequent pop front operations would then
encounter the more e�cient pop back alternative, rather than the erase. The development
of this possibility will be explored in some of the exercises at the end of the chapter.

The subscript operator changes the index values into a subscript that is appropriate
for one of the underlying vectors. Notice that the subscripts must be reversed for the �rst
vector:

template <class T> T & deque<T>::operator [ ] (unsigned int index)

// return given element from deque

f
int n = vecOne.size ();

if (index <= n)

return vecOne [ (n-1) - index ];

else

return vecTwo [ index - n ];

g

11.4.1 Deque Iterators

An iterator for our deque abstraction is most easily constructed by using the subscript
operator to access the underlying element. Such an approach is shown in the class description
in Figure 11.4.

As with many of the iterator implementations we present, a major di�culty arises from
the need to support both a pre�x and a post�x form of the iterator operation. The pre�x
form is implemented in-line, as it simply changes the state of the current iterator and returns.
The post�x form must change the current state, but return an iterator that describes the
location prior to the change. This is most easily accomplished by cloning the current iterator,
which will preserve the initial state, then updating the value, and �nally returning the clone.



282 CHAPTER 11. DEQUES { DOUBLE ENDED DATA STRUCTURES

//

// class dequeIterator

// iterator protocol for deque

template <class T> class dequeIterator f
friend class deque<T>;

typedef dequeIterator<T> iterator;

public:

// constructors

dequeIterator (deque<T> � d, int i) : theDeque(d), index(i) f g
dequeIterator (deque<T>::iterator & d)

: theDeque(d.theDeque), index(d.index) f g

// iterator operations

T & operator � () f return (�theDeque)[index]; g
iterator & operator ++ (int) f ++index; return this; g
iterator operator ++ (); // pre�x change

iterator & operator -- (int) f --index; return this; g
iterator operator -- (); // post�x change

bool operator == (iterator & r)

f return theDeque == r.theDeque && index == r.index; g
bool operator < (iterator & r)

f return theDeque == r.theDeque && index < r.index; g
T & operator [ ] (unsigned int i)

f return (�theDeque) [index + i]; g
void operator = (iterator & r)

f theDeque = r.theDeque; index = r.index; g
iterator operator + (int i)

f return iterator(theDeque, index + i); g
iterator operator - (int i)

f return iterator(theDeque, index - i); g

protected:

deque<T> � theDeque;

int index;

g;

Figure 11.4: Implementation of a deque iterator.
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template <class T> deque<T>::iterator dequeIterator<T>::operator ++ (int)

// post�x form of increment

f
// clone, update, return clone

deque<T>::iterator clone(theDeque, index);

index++;

return clone;

g

Having described the structure of deque iterators, we can now return to the description
of those deque methods that make use of iterators. The method erase recovers the index
position from the iterator, and erases an element from the appropriate vector. It uses the
fact that vectors construct random access iterators, and so we can easily create the iterator
that corresponds to a given index position within a vector.

template <class T> void deque<T>::erase (deque<T>::iterator & itr)

// erase value from deque

f
int index = itr.index;

int n = vecOne.size ();

if (index < n)

vecOne.erase (vecOne.begin () + ((n-1) - index));

else

vecTwo.erase (vecTwo.begin () + (n - index));

g

The insert method is similar, and will not be shown. The erase method that removes a
range of values is more complicated, since the range may cross the boundary between the two
vectors. The implementation of this method therefore divides into three cases, depending
upon whether all the elements to be removed are in the �rst vector, are all in the second
vector, or whether some are in the �rst vector and some are in the second. The development
of this code will be left as an exercise.

11.5 Chapter Summary

Key Concepts

� deque

� Depth �rst search
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� Breadth �rst search

� Backtracking

� Framework

� Inheritance

� virtual member functions

The deque, or double-ended-queue, is a data structure that provides a combination of
features from both the vector and list data types. Like a vector, a deque is a randomly
accessible and indexed data structure. Like a list, elements can be e�ciently inserted at
either the front or the end of the structure. Thus a deque can be used in either a stack-like
or a queue-like fashion.

We have illustrated the use of the deque by developing a program that can �nd a path
through a simple maze. By storing the intermediate steps in a stack, the search technique
will explore one path entirely to completion before examining alternatives. This is known
as depth �rst search. By changing the use of the deque to a queue-like form, all paths are
explored in parallel. This is known as breadth �rst search.

We have introduced backtracking as a general problem solving technique, applicable
whenever the \state" of the task at hand can be captured and stored at the point where
one of many alternative possibilities must be selected.

Finally, we introduced the idea of a software framework. A framework describes the
general structure of a solution to a problem, without de�ning any speci�c details. These
details can then be �lled in, typically using inheritance, to specialize the framework for the
solution of a given problem. A framework thus provides reuse not only for code but also for
the reuse of an idea or approach to solving a class of similar problems.

Study Questions

1. Give a short characterization of the deque data type.

2. What vector operations are not supported by the class deque? What list operations?

3. Give the integer encoding of the following simple six-cell maze:

F

S

4. Show the state of the deque in the maze example (Section 11.2) after �ve moves have
been performed.
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5. How does breadth �rst search di�er from depth �rst search?

6. What requirements must be satis�ed in order to use backtracking in the solution of a
problem?

7. What is a framework?

8. What is the underlying representation used to hold the values in the implementation
of the deque described in this chapter?

Exercises

1. Consider the following graph. Starting from node A, list the vertices as they might
be visited in a breadth �rst search, and as they might be visited using a depth �rst
search. Note that there are many di�erent sequences for both forms of search.

A

@@

��
B

C

E

��

@@

J

F

D

��
G
@@

��

I

H

2. The maze solving program exploits a redundancy in the maze encoding. This re-
dundancy come from the assumption that if one can move east from one cell to the
next, one can also move west from the second cell back to the �rst. The constructor
maze::maze makes use of this redundancy, by only processing openings to the north
and west.

However, this redundancy is not intrinsic to the numeric encoding of the maze. A
\one-way" opening could easily be described as a cell with value 3, for example, being
next to a call with value 7. From the 7 cell one could move to the 3 cell, but from the
3 cell one could not move back to the 7 cell.

To change our maze solving program it is only necessary to change the constructor that
translates the external encoding into the internal encoding. Show the modi�cations
that must be provided to permit this form of maze.

3. A di�culty occurs when the �rst element is removed from a deque, but the �rst vector
in the internal representation is empty. The pop then causes the �rst element to be
removed from the second vector. This is potentially costly if a number of pops are
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performed in sequence. A better alternative is to �rst move half the elements from
the second vector into the �rst vector, so that subsequent pops are implemented as
operations on the �rst vector. Write implementations for pop front and pop back that
use this idea.

4. The implementation of the erase method that takes a range of values as argument
must recognize three di�erent cases:

(a) Both beginning and end of range are found in the �rst vector.

(b) Both beginning and end of range are found in the second vector.

(c) Beginning of range is found in �rst vector, end of range in second vector.

Implement the code for the erase method that handles each of these cases.


