
394

Chapter 15

Priority Queues

Chapter Overview

A priority queue is a data structure useful in problems where it is important to be able
to rapidly and repeatedly �nd and remove the largest element from a collection of values.
In this chapter we will present two di�erent implementations of priority queues. The �rst
technique uses an abstraction called a heap, and is constructed as an adaptor built on top
another form of container, typically a vector or deque. The heap data structure is then
used to demonstrate yet another approach to sorting a collection of values. The second
implementation strategy is the skew heap. The skew heap is notable in that it does not
provide guaranteed performance bounds for any single operation, but it can be shown that
if a number of operations are performed over time the average execution time of operations
will be small.

As a demonstration one of the more common uses of heap, the chapter concludes with a
discussion of discrete event driven simulation. This topic is approached by �rst developing
a general framework for simulations, then specializing the framework using inheritance.

� The priority queue data abstraction

� Heaps and heap sort

� Skew heaps

� A framework for simulation

� Discrete Event-driven simulation

395

396 CHAPTER 15. PRIORITY QUEUES

15.1 The Priority Queue Data Abstraction

An everyday example of a priority queue is the \to do" list of tasks waiting to be performed
that most of us maintain to keep ourselves organized. Some jobs, such as \clean desktop",
are not imperative and can be postponed arbitrarily. Other tasks, such as \�nish report by
Monday" or \buy owers for anniversary", are time crucial and must be addressed more
rapidly. Therefore, we sort the tasks waiting to be accomplished in order of their importance
(or perhaps based on a combination of their critical importance, their long term bene�t,
and how much fun they are to do) and choose the most pressing.

For a more computer-related example, an operating system might use a priority queue
to maintain a collection of currently active processes, where the value associated with each
element in the queue represents the urgency of the task. It may be necessary to respond
rapidly to a key pressed at a workstation, for example, before the data is lost when the next
key is pressed. Other tasks can be temporarily postponed in order to handle those that are
time critical. For this reason a priority queue is used so that the most urgent task can be
quickly determined and processed.

Another example might be �les waiting to be output on a computer printer. It would be
a reasonable policy to print several one page listings before a one hundred-page job, even if
the larger task was submitted earlier than the smaller ones. For this reason a queue would
maintain �les to be printed in order of size, or a combination of size and other factors, and
not simply on time of submission.

A simulation, such as the one we will describe in Section 15.4, can use a priority queue
of \future events", where each event is marked with a time at which the event is to take
place. The element in this collection with the closest following time is the next event that
will be simulated. As each event is executed, it may spawn new events to be added to the
queue. These are only a few instances of the types of problems for which a priority queue
is a useful tool.

In terms of abstract operations, a priority queue is a data structure that takes elements
of type value type and implements the following �ve operations:

void push(value type) add a new value to the collection
value type & top() return a reference to the largest element in collection
void pop() delete the largest element from the collection
int size() return the number of elements in the collection
bool empty() return true if the collection is empty

Although the de�nition speaks of removing the largest value, in many problems the value
of interest is the smallest item. As we will see in some of the later examples, such uses can
be provided by inverting the comparison test between elements.

Note that the name priority queue is a misnomer in that the data structure is not a
queue, in the sense we used the term in Chapter 10, since it does not return elements in a
strict �rst-in �rst-out sequence. Nevertheless, the name is now �rmly associated with this
particular data type.

15.1. THE PRIORITY QUEUE DATA ABSTRACTION 397

There are at least three obvious, but ine�cient, ways to implement a priority queue.
One approach would be to insert new elements at the front of a list, thus requiring only
constant time for addition. The generic algorithm max element() can be used to discover
the largest element. The max element() algorithm traverses the list to �nd the largest value,
requiring O(n) time. Keeping the list ordered by value would make for rapid discovery of
the maximum, but necessitate O(n) time for insertion.

Another approach to implementing a priority queue is to take a collection of items and
sort them. From the sorted collection we could obtain not only the largest element, but the
next largest, and the next, and so on. But as we have seen, sorting is a relatively expensive
operation. Furthermore, it is di�cult to insert new values into a sorted collection. Since we
are interested only in �nding the largest element in the collection, we can employ techniques
that are much more e�cient. In particular, we will develop data structures in which we can
�nd the largest element in a collection of n elements in constant time, and we can �nd and
remove the largest element in time proportional to logn.

There is one more method that is obvious, and not obviously ine�cient. In Chapter 12
we examined the STL set data structure. Recall that a new element could be added to a set
in O(log n) steps. If we reverse the comparison operator when we create the set, then the
value associated with the iterator aSet.begin() represents the largest value, and can also be
used to delete this value from the collection. A careful examination of the iterator procedure
will show that this requires no more than O(logn) steps. Thus, using a set one can perform
both insertions and removals in logarithmic time.

The reason for rejecting the set is not asymptotic ine�ciency, but practical realistic
ine�ciency. A set is maintaining more information than we need. We can develop alternative
data structures that, while they have no better asymptotic e�ciency (they are still O(logn)),
generally yield execution times much better than would be possible using the set data type.

We will investigate two data structures that can be used to implement priority queues.
The �rst is provided as a basic data type by the standard library, while the second will
be developed independently. The standard data structure is called a heap, and maintains
the values of the collection in an array. The operations to add or remove an element to or
from the heap are relatively e�cient, however the heap su�ers from the problem common
to many array-based algorithms. This is that the array will be expanded as necessary to
the maximum size, but will not be made smaller as the heap is reduced. In this fashion the
array holding the heap will be the largest size needed to hold the values at any one point
in time.

The second data structure, a skew heap, avoids the maximum size di�culty by main-
taining the heap values in a binary tree. But solving one problem comes only at the cost of
introducing another, namely the di�culty of keeping the tree relatively well balanced. Skew
heaps are interesting in that the worst case cost for insertions and deletions is a relatively
slow O(n), but one can show that this worst case behavior does not occur frequently and
cannot be sustained. In particular, the occurrence of a worst case situation must necessarily
be followed by several insertions and deletions that are much faster. Thus, amortized over
a number of insertions and deletions, the average cost of operation is still relatively good.

398 CHAPTER 15. PRIORITY QUEUES

Another advantage of the skew heap will be that it provides a fast implementation for the
operation of merging two priority-queue heaps to form a new queue.

15.2 Heaps

A heap is a binary tree in which every node possesses the property that its value is larger
than or equal to the value associated with either child node. This is referred to as the heap

order property . A simple induction argument establishes that the value associated with each
node in a heap must be the largest value held in the subtree rooted at the node. It follows
from this property that the largest element in a heap will always be held by the root node.
This is unlike a search tree, where the largest element was always held by the rightmost
node. Discovering the maximum value in a heap is therefore a trivial operation.

Recall from Chapter 13 that a complete binary tree is a binary tree that is entirely �lled
(in which every node has two children), with the exception of the bottom level, which is �lled
from left to right. Figure 15.1 shows a complete binary tree that is also a heap. The key
insight behind the heap data structure is the observation, which we noted in Chapter 13,
that because a complete binary tree is so regular, it can be represented e�ciently in an
array. The root of the tree will be maintained in position 0 of the array. The two children
of node n will be held in positions 2n+ 1 and 2n+ 2. The array corresponding to the tree
in Figure 15.1 is the following:

16 14 9 10 12 7 8 5 2 11 3

0 1 2 3 4 5 6 7 8 9 10

Note that a vector that is sorted largest to smallest is also a heap, but the reverse is not
true. That is, a vector can maintain a heap and still not be ordered.

Given the index to a node, discovering either the parent or the children of that node
is a simple matter of division or multiplication. No explicit pointers need be maintained
in the array structure, and traversals of the heap can be performed very e�ciently. Notice
that the property of completeness is important to ensure there are no \gaps" in the array
representation.

The standard library class priority queue constructs a heap on top of a randomly accessible
data structure, usually either a vector or a deque. Like the stack and queue data types
(Chapter 10), the underlying container is provided as a template argument. An optional
second template argument (not shown) represents the function to be used in comparing two
elements.1 We will see an example that uses this argument in Section 15.4. To declare
a priority queue, the user must state both the priority queue type and the type of the
underlying container, as in the following example:

1See Section A.3 in Appendix A.

15.2. HEAPS 399

16������9
XXXXXXz

14
�

�
�

��+

Q
Q
Q
QQs

10

�
�
��

A
A
AU

5 2

12

�
�
��

A
A
AU

11 3

9

�

J
J
Ĵ

7 8

Figure 15.1: A complete binary tree in heap form

// create a priority queue of integers

priority queue < vector<int> > aQueue;

Figure 15.2 gives the class declaration and member functions for this data type. Notice
that operations are either de�ned by the underlying structure, or by one of the generic heap
functions we will shortly de�ne.

The operations of insertion (performed by push(newElement)) and deletion (performed
by pop()) are more complex than the others, and involve calling an auxiliary function. We
will deal with insertion �rst. When a new element in added to the priority queue, it is
obvious that some value must be moved to the end of the array, to maintain the complete
binary tree property. However, it is likely that the new element cannot be placed there
without violating the heap order property. This violation will occur if the new element is
larger than the parent element for the location. A solution is to place the new element in
the last location, then move it into place by repeatedly exchanging the node with its parent
node until the heap order property is restored (that is, until the new node either rises to
the top, or until we �nd a parent node that is larger than the new node). Since the new
element rises until it �nds a correct location, this process is sometimes known as a percolate

up.
The insertion method for percolating a value into place is shown in Figure 15.3. We

have added the invariants required to prove the correctness of the procedure (see sidebar).
Since the while loop moves up one level of the tree each cycle, it is obvious it can iterate no
more than logn times. The running time of the insertion procedure is O(logn). (Note that
before calling push heap, the new element is pushed on to the end of the container. For the
vector data structure, this operation could, in the worst case, require O(n) steps, if a new
bu�er is allocated and elements are copied. This could potentially increase the execution
time of the entire operation.)

400 CHAPTER 15. PRIORITY QUEUES

//

// class priority queue

// a priority queue managed as a vector heap

//

template <class Container> class priority queue f
public:

typedef Container::value type value type;

// priority queue protocol

bool empty () f return c.empty(); g
int size () f return c.size(); g
value type & top () f return c.front(); g
void push (value type & newElement)

f c.push back(newElement);

push heap(c.begin(), c.end()); g
void pop ()

f pop heap (c.begin(), c.end());

c.pop back(); g
protected:

Container c; // container of values

g;

Figure 15.2: Declaration for the class priority queue

Heaps and Heaps

The term heap is used for two very di�erent concepts in computer science. The
heap data structure is an abstract data type used to implement priority queues, as
well as being used in a sorting algorithm we will discuss in a later chapter. The terms
heap, heap allocation, and so on, are also frequently used to describe memory that
is allocated and released directly by the user, using the new and delete operators.
You should not confuse the two uses of the same term.

15.2. HEAPS 401

template <class Iterator>

void push heap(Iterator start, Iterator stop)

// initial condition:

// iterator range describes a heap, except that

// �nal element may be out of place

f
// position is index of out of place element

// parent is index of parent node

unsigned int position = (stop - start) - 1;

unsigned int parent = (position - 1) / 2;

// now percolate up

while (position > 0 && start[position] < start[parent]) f
// inv: tree rooted at position is a heap

swap (start[position], start[parent]);

// inv: tree rooted at parent is a heap

position = parent;

parent = (position - 1) / 2;

g
// inv: entire structure is a heap

g

Figure 15.3: Method for insertion into a heap

402 CHAPTER 15. PRIORITY QUEUES

Proof of Correctness: push heap

The proof of correctness for the algorithm named push heap begins with the
assumption that the collection represented by the iterator range represents a valid
heap, with the possible exception of the very last element, which may be out of
order. The sole task of the algorithm is to move this one element into place.

Throughout the algorithm, the variable position will maintain the index posi-
tion of this value, while the variable parent will maintain the index position of the
parent node.

The while loop at the heart of the algorithm has two test conditions. Both must
be true for the loop to execute. Together, the two conditions assert that the position
has a parent (that is, the position is not yet the root note), and that the parent
value is smaller than the position, in contradiction to the heap order property. The
following illustrates this situation.

5

��	 @@R

9

12

=>

5

��	 @@R

12

9

The invariant at the top of the loop body asserts that the subtree rooted at
position represents a heap. This will trivially be true the �rst time the while loop
is executed, since the subtree represents only a leaf. Since the parent node is already
larger than the other child (if the parent has two children), simply swapping the
position with the parent is su�cient to locally reestablish the heap order property.
(To see why, note that any children of node position must have originally been
children of node parent, and must therefore be smaller than the parent.) Following
the swap, the tree rooted at the index value parent will therefore be a heap. This
value becomes the new position, and we determine the new parent index.

The while loop terminates either when the value percolates all the way to the top
of the heap, or when a node is encountered which is larger than the new value. In
the �rst case the �nal loop invariant is asserting that the entire structure represents
a heap. If, on the other hand, the loop terminates because of the second case, we
know that the subtree rooted at parent has the heap order property. But since this
subtree holds the only value that could have been out of order, we therefore can
conclude that the entire structure must have the heap order property.

15.2. HEAPS 403

14������9
XXXXXXz

3
�

�
�

��+

J
J
Ĵ

10

�
�
��

A
A
AU

5 2

12

�
�
��

A
A
AU

11 16

9

�

J
J
Ĵ

7 8

Figure 15.4: A value percolating down into position.

The deletion procedure is handled in a manner similar to insertion. We swap the last
position into the �rst location. Since this may destroy the heap order property, the ele-
ment must percolate down to its proper position by exchanging places with the larger of
its children. For reasons that will shortly become clear, we invoke another routine named
adjust heap to do this task.2 Figure 15.4 shows an intermediate step in this process. The
value 3 has been promoted to the root position, where it has subsequently been swapped
with the larger of its two children. The value 3 will now be compared to the values 10 and
12, and will be swapped with the larger value. This will continue until either the value is
larger than both children, or until we reach the leaf level of the tree. The code to perform
deletion is shown in Figure 15.5.

Since at most three comparisons of data values are performed at each level, and the while
loop traces out a path from the root of the tree to the leaf, the complexity of the deletion
procedure is also O(log n).

15.2.1 Application { Heap Sort

The heap data structure provides an elegant technique for sorting an array. The basic idea
is to �rst form the array into a heap. To sort the array, the top of the heap (the largest
element) is swapped with the last element of the array, and the size of the heap is reduced
by one. The e�ect of the swap, however, may be to destroy the heap property. But this
is exactly the same condition we encountered in deleting an element from the heap. And,
not surprisingly, we can use the same solution. Heap order is restored by invoking the
adjust heap procedure.

2The procedure adjust heap is not de�ned by the standard library, and is therefore not guaranteed to

exist in all implementations.

404 CHAPTER 15. PRIORITY QUEUES

template <class Iterator>

void pop heap (Iterator start, Iterator stop)

f
unsigned int lastPosition = (stop - start) - 1;

// move the largest element into the last location

swap (start[0], start[lastPosition]);

// then readjust

adjust heap(start, lastPosition, 0);

g

template <class Iterator>

void adjust heap

(Iterator start, unsigned heapSize, unsigned position)

// initial conditions:

// collection represents a heap, except that element

// at index value position may be out of order

f
while (position < heapsize) f

// To �x, replace position with the larger

// of the two children

unsigned int childpos = position � 2 + 1;

if (childpos < heapsize) f
if ((childpos + 1 < heapsize) &&

start[childpos + 1] > start[childpos])

childpos++;

// childpos is larger of two children

if (start[position] > start[childpos])

// structure is now heap

return;

else

swap (start[position], start[childpos]);

g
position = childpos;

g
g

Figure 15.5: Method for deletion from a heap

15.2. HEAPS 405

Proof of Correctness: adjust heap

The adjust heap algorithm is in some ways the opposite of the push heap

procedure. Here, the assumption is that the structure of the given size beginning at
the starting iterator is a heap, except that the value with the index value position
may be out of order.

To reestablish the heap order property, the two children of node position are
examined. The value indexed by childpos is set to the larger of the two children.
If this value is smaller than the value in question, then the heap order property does
in fact hold, and therefore the entire structure must be a heap. If, on the other
hand, the larger child is also larger than the value in question, then they must be
swapped. This is illustrated in the following picture:

12

��	 @@R

5

9

=>

5

��	 @@R

12

9

Note that since the element was swapped with the larger of the two children,
the new root must therefore be not only larger than the element in question, but
also larger than the smaller child. Thus we need not consider the subtree rooted
at the smaller child. But it is now necessary to continue to examine the subtree
rooted at the position into which the value in question was swapped. The larger
child position becomes the new value held by the variable position, and the while
loop continues.

The algorithm terminates either when the value in question �nds its location
(being larger than both children), or it reaches a point where it has no children.

Slightly more surprising is that we can use the adjust heap procedure to construct an
initial heap from an unorganized collection of values held in a vector. To see this, note that
a subtree consisting of a leaf node by itself satis�es the heap order property. To build the
initial heap, we start with the smallest subtree containing interior nodes, which corresponds
to the middle of the data array. Invoking the adjust heap method for this value will ensure
the subtree satis�es the heap order property. Walking back towards the root of the tree,
we repeatedly invoke the adjust heap, thereby ensuring all subtrees are themselves heaps.
When we �nally reach the root, the entire tree will have been made into a heap. This
algorithm is implemented by the following procedure:

template <class Iterator>

406 CHAPTER 15. PRIORITY QUEUES

Proof of Correctness: make heap

To prove that the make heap algorithm creates a heap it is necessary to under-
stand the task being performed by the loop that is at the heart of the algorithm.
At each step of this algorithm, the assumption is that the subtrees representing the
children of node i are proper heaps, and the task to be performed is to make the
subtree rooted at node i into a heap.

Note that the value i is initialized to the value heapSize / 2, and moves down-
wards. Observe that all subtrees with index values larger than heapSize / 2 rep-
resent leaf nodes, and that leaf nodes possess the heap property (trivially, since
they have no children). Thus, the �rst time execution moves from the start of the
procedure to the assertion in the body of the loop, the assertions must be true.
We have already proven the adjust heap procedure, and therefore the invariant
following the procedure call must be true.

Now consider the case where we encounter the assertion at the beginning of the
loop body, after having executed some number of previous iterations of the loop.
In this case, the children of node i must either be leaves, or they must have been
previously processed. In either case, the subtrees rooted at the child nodes must be
heaps, and therefore following execution of the body of the loop, the subtree rooted
at node i must be a heap.

The establish the �nal condition, we simply note that either the loop was ex-
ecuted, in which case the �nal condition matches one of the loop invariants we
previously established, or the loop was never executed, which can only happen if
the heap contains only a single leaf. In the latter case, we have already noted that
a leaf node is a heap.

void make heap (Iterator start, Iterator stop)

f
unsigned int heapSize = stop - start;

for (int i = heapSize / 2; i >= 0; i--)

// assume children of node i are heaps

adjust heap(start, heapSize, i);

// inv: tree rooted at node i is a heap

// assert: structure is now a heap

g

To convert a heap into a sorted collection, we simply repeatedly swap the �rst and last
positions, then readjust the heap property, reducing the heap size by one element. This is
performed by the following procedure:

15.2. HEAPS 407

template <class Iterator>

void sort heap (Iterator start, Iterator stop)

f

unsigned int lastPosition = stop - start - 1;

while (lastPosition > 0) f

swap(start[0], start[lastPosition]);

adjust heap(start, lastPosition, 0);

lastPosition--;

g

g

Combining these two, the heap sort algorithm can be written as follows:3

template <class Iterator>

void heap sort(Iterator start, Iterator stop)

f // sort the vector argument using a heap algorithm

// �rst build the initial heap

make heap (start, stop);

// then convert heap into sorted collection

sort heap (start, stop);

g

To derive the asymptotic running time for this algorithm, recall we noted that the
adjust heap procedure requires O(logn) steps. There are n executions of adjust heap

to generate the initial heap, and n further executions to reheap values during the sorting
operation. Combining these tells us that the total running time is O(n logn). This matches
that of the merge sort algorithm (Section 8.3.3) and the quick sort algorithm (Section 14.5.1),
and is better than the O(n2) bubble and insertion sort algorithms (Section 5.1.4).

Of a more practical bene�t, note that the heap sort algorithm does not require any
additional space, since it constructs the heap directly in the vector input value. This was
not true of some of the previous sorting algorithms we have seen. Those algorithms must
pay the cost not only of the sorting itself, but of the allocation and deallocation of the data
structures formed during the process of ordering the elements.

An empirical analysis of the running time of the heap sort algorithm illustrates that
for almost all vector sizes heapsort is comparable in speed to quick sort. An advantage of
heap sort over quick sort is that the heap sort algorithm is less inuenced by the initial

3Note that make heap and sort heap are generic algorithms in the standard library, but heap sort is not.

408 CHAPTER 15. PRIORITY QUEUES

0

2

4

6

8

10

0 2000 4000 6000 8000 10000 12000 14000
elements in input vector

heap sort
quick sort

Figure 15.6: Empirical Timing of heap sort

distribution of the input values. You will recall that a poor distribution of values can make
quick sort exhibit O(n2) behavior, while heap sort is O(n logn) in all circumstances.

15.3 Skew Heaps �

The obvious method to avoid the bounded-size problem of heaps is to use a tree repre-
sentation. This is not, however, quite as simple as it might seem. The key to obtaining
logarithmic performance in the heap data structure is the fact that at each step we were
able to guarantee the tree was completely balanced. Finding the next location to be �lled
in an array representation of a completely balanced binary tree is trivial; it is simply the
next location following the current top of the array. In a tree form this is not quite as
easy. Consider the tree shown in Figure 15.1 (page 399). Knowing the location of the last
element (the value 3) is of no help in discovering where the next element should be inserted
in order to maintain the balanced binary tree property. In fact, the next element is part of
an entirely di�erent subtree than that containing the current last element.

A skew heap avoids this problem by making no attempt to maintain the heap as a
completely balanced binary tree. As we saw when we examined search trees, this means that
a tree can potentially become almost linear, and we can place no guarantee on logarithmic

�Section headings followed by an asterisk indicate optional material.

15.3. SKEW HEAPS � 409

performance for any individual operation. But there is another critical observation we
can make concerning heaps, which is that the order of the left and right children for any
node is essentially arbitrary. We can exchange the left and right children of any node in a
heap without destroying the heap order property. We can make use of this observation by
systematically swapping the left and right children of a node as we perform insertions and
deletions. A badly unbalanced tree can a�ect the performance of one operation, but it can
be shown that subsequent insertions and deletions must as a consequence be very rapid. In
fact, if m insertions or deletions are performed, it can be shown (although the details are
beyond the discussion here) that the total time to perform all m operations is bounded by
O(m log n). Thus, amortized over time, each operation is no worse than O(logn).

The second observation critical to the implementation of skew heaps is that both inser-
tions and deletions can be considered as special cases of merging two trees into a single heap.
This is obvious in the case of the deletion process. Removing the root of the tree results in
two subtrees. The new heap can be constructed by simply merging these two child trees.

template <class value type> void skewHeap<value type>::pop ()

// remove the minimum element from a skew heap

f
assert (! empty());

node<value type> � top = root;

root = merge(root->right(), root->left());

delete top;

g

Similarly, insertion can be considered a merge of the existing heap and a new heap
containing a single element.

template <class value type>

void skewHeap<value type>::push (value type & val)

// to add a new value, simply merge with

// a tree containing one node

f
root = merge(root, new node<value type>(val));

g

The skewHeap data structure, shown in Figure 15.7, implements both insertions and
deletions using an internal method merge. The recursive merge operation is shown below.
If either argument is empty, then the result of a merge is simply the other tree. Otherwise
we will assume the largest value is the root of the �rst tree, by returning the merge of the
arguments reversed if this is not the case. To perform the merge, we move the current left
child of the left argument to the right child of the result, and recursively merge the right
argument with the old right child.

410 CHAPTER 15. PRIORITY QUEUES

//

// class skewHeap

// heap priority queue implemented using skew heap merge

// operations

//

template <class value type> class skewHeap f
public:

// constructors

skewHeap () : root(0) f g
�skewHeap ();

// priority queue protocol

bool empty () f return root == 0; g
int size () f return root->size(); g
value type & top () f return root->value; g
void pop ();

void push (value type & value);

// additional method: splice two heaps together

void splice (skewHeap & secondHeap);

protected:

// root of heap

node<value type> � root;

// internal method to merge two heaps

node<value type> � merge (node<value type> �, node<value type> �);
g;

Figure 15.7: The skewHeap class declaration

15.3. SKEW HEAPS � 411

template <class value type>

node<value type> � skewHeap<value type>::merge

(node<value type> � h1, node<value type> � h2)

// merge two skew heaps to form a new heap

f
// if either tree is empty, return the other

if (! h1) return h2;

if (! h2) return h1;

// assume largest is root of h1

if (h2->value > h1->value)

return merge(h2, h1);

// reverse children and recurse

node<value type> � lchild = h1->left();

if (lchild) f
h1->left(merge(h1->right(), h2));

h1->right(lchild);

g
else // no left child

h1->left(h2);

return h1;

g

For example, suppose we are merging a heap containing the elements 2, 5 and 7 with a
heap containing the two elements 4 and 6. Since the element at the top of the left heap, 7,
is larger it becomes the new root. At the same time the old left child of the root becomes
the new right child. To form the new right child we recursively merge the old right child
and the original right argument.

5

��	

7

@@R
2

 merge! 6

��	
4

)

2 merge!

4

��	

6

7

@@R
5

The �rst step in the recursive call is to ip the arguments, so that the largest element
is held in the �rst argument. The top element of this heap then becomes the new root. As
before, the old left child of this value becomes the new right child. A recursive call is made

412 CHAPTER 15. PRIORITY QUEUES

Merging Heaps

The fact that skew heaps basically operate by merging two heaps to form a new
heap means that it is relatively easy to combine together two instances of the data
structure. We have taken advantage of this by providing a splice method that
takes another instance of skew heap as argument.

template <class value type> void skewHeap<value type>::splice

(skewHeap<value type> & secondHeap)

f // merge elements from a second heap into current heap

root = merge(root, secondHeap.root);

// empty values from second heap

secondHeap.root = 0;

g

The merge procedure used is the same as the merge used in implementing the
addition and removal methods, and can thus be expected to run very rapidly, in time
proportional to the longest path in the largest heap, not the number of elements in
the argument heap, as would be the case of the values were simply added one by
one.

An important feature to note, however, is that this operation e�ectively empties
the argument heap, by setting its root value to zero. The reason why this is neces-
sary has to do with the way in which our data structures are performing memory
management. In our scheme, each node in a tree must be \owned" by one and only
one data structure. This data structure is responsible for performing a deletion to
free up the memory used by the node when it is no longer being used as part of the
structure. If a single node were to be used in two di�erent structures it is possible,
indeed inevitable, that it would be deleted at two di�erent times by two di�erent
structures.

15.3. SKEW HEAPS � 413

to insert the right argument, 7, into the now empty former right child of the node 4. This
results in the node 7 being returned, and the �nal result produced.

6

��	
4

 merge! 2

7

@@R
5

)

2

��	

6

@@R
4

��	

7

@@R
5

To illustrate why the amortized analysis of skew heaps can be so good, note that the
worst case situation occurs when the left subtree contains a long path along the right child
links. For example consider the merging the singleton 2 into such a tree.

8

��	

9

@@R
7

��	 @@R
6 5

��	 @@R
4 3

2 merge!

)

6

��	

7

@@R
5

��	
4

@@R
3

 merge! 2

9

@@R
8

4

��	

5

@@R
3

 merge! 2

7

@@R
6

��	

9

@@R
8

)

2

��	

3

��	

5

@@R
4

��	

7

@@R
6

��	

9

@@R
8

The merge requires 4 steps. However, note that now the long right path has been
converted into a long left path. Thus, the next insertion will be relatively quick. Assume,
for example, we now insert the value 1.

414 CHAPTER 15. PRIORITY QUEUES

2

��	

3

��	

5

@@R
4

��	

7

@@R
6

9

@@R��	
8

��	
1

It is tempting to conjecture that after two insertions we would be back to the original
poor con�guration. But note that this has not occurred. The longest path is still a left
path, although it is now on the right side. It will be quite a few steps before the situation
can arise where a long right path can slow insertions.

15.4 Application { Discrete Event-Driven Simulation

Imagine you are thinking about opening an ice cream store on a popular beach location.
You need to decide how large the store should be; how many seats you should have and so
on. If you plan too small, customers will be turned away when there is insu�cient space
and you will lose pro�ts. On the other hand if you plan too large, most of the seats will be
unused and you will be paying useless rent on the space, and hence losing pro�ts. So you
need to choose approximately the right number { but how do you decide?

One approach would be to perform a simulation. You �rst examine similar operations in
comparable locations, and form a model which includes, among other factors, an estimation
of the number of customers you can expect to arrive in any period of time, the length of
time they will take to decide upon an order, and the length of time they will stay after
having been served. Based on this you can design a simulation.

A discrete event-driven simulation is a popular simulation technique. Objects in the
simulation model objects in the real world, and are programmed to react as much as possible
as the real objects would react. A priority queue is used to store a representation of \events"
that are waiting to happen. This queue is stored in order based on the time the event should
occur, so the smallest element will always be the next event to be modeled. As an event
occurs, it can spawn other events. These subsequent events are placed into the queue as well.
Execution continues until all events have occurred, or until a preset time for the simulation
is exceeded.

To see how we might design a simulation of our ice cream store, consider a typical
scenario. A group of customers arrive at the ice cream store. From our measurements of
similar stores we derive a probability that indicates how frequently this occurs. For example
suppose we assume that groups will consist of from 1 to 5 people, selected uniformly over that

15.4. APPLICATION { DISCRETE EVENT-DRIVEN SIMULATION 415

range. (In actual simulations the distribution would seldom be uniform. For example groups
of size 2 and 3 might predominate, with groups of size 1 and groups larger than 3 being
relatively less frequent. The mathematics involved in forming non-uniform distributions
is subtle, and not particularly relevant to our discussion. We will therefore use uniform
distributions throughout.) These groups will arrive at times spaced from 1 to 10 minutes
apart, again selected uniformly. Once they arrive, a group will either be seated, or see that
there are no seats and leave. If seated they will take from 2 to 10 minutes to order, and
once they order they will remain from 15 to 35 minutes in the store. We know that every
customer will order from 1 to 3 scoops of ice cream, and that the store makes a pro�t of
$0.35 on each scoop.

To create a random integer between two values we can write a simple function that uses
the randomInteger class we introduced in Chapter 2. This new function takes the integer
endpoints, and returns a new value from a uniform distribution between the two points:

integer randBetween (integer low, integer high)

// return random integer between low and high

f
randomInteger randomizer;

return low + randomizer(high - low);

g

The primary object in the simulation is the store itself. It might seem odd to provide
\behavior" for an inanimate object such as a store, however we can think of the store as a
useful abstraction for the servers and managers who work in the store. The store manages
two data items; the number of available seats and the amount of pro�t generated. The
behavior of the store can be described by the following list:

� When a customer group arrives, the size of the group is compared to the number of
seats. If insu�cient seats are available the group leaves. Otherwise the group is seated
and the number of seats decreased.

� When a customer orders and is served the amount of pro�t is computed.

� When a customer group leaves the seats are released for another customer group.

A class description for IceCreamStore is shown in Figure 15.8. The implementation of
the methods are shown in Figure 15.9.

A Framework for Simulations

Rather than simply code a simulation of this one problem, we will generalize the problem
and �rst produce a generic framework for simulations. This is similar to the framework for
backtracking problems we presented in Chapter 10.

416 CHAPTER 15. PRIORITY QUEUES

class IceCreamStore f
public:

IceCreamStore()

: freeChairs(35), profit(0.0) f g

bool canSeat (unsigned int numberOfPeople);

void order(unsigned int numberOfScoops);

void leave(unsigned int numberOfPeople);

unsigned int freeChairs;

double profit;

g;

Figure 15.8: The class IceCreamStore.

At the heart of a simulation is the concept of an event. An event will be represented
by an instance of class event. The only value held by the class will be the time the event
is to occur. The method processEvent will be invoked to \execute" the event when the
appropriate time is reached.

//

// class event

// execution event in a discrete event driven simulation

//

class event f
public:

// constructor requires time of event

event (unsigned int t) : time(t) f g

// time is a public data �eld

unsigned int time;

// execute event by invoking this method

virtual void processEvent() f g
g;

The simulation queue will need to maintain a collection of di�erent types of events.
Each di�erent form of event will be represented by a di�erent derived classes of class event.
Not all events will have the same type, although they will all be derived from class event.

15.4. APPLICATION { DISCRETE EVENT-DRIVEN SIMULATION 417

bool IceCreamStore::canSeat (unsigned int numberOfPeople)

// if su�cient room, then seat customers

f
cout << "Time: " << time;

cout << " group of " << numberOfPeople << " customers arrives";

if (numberOfPeople < freeChairs) f
cout << " is seated" << endl;

freeChairs -= numberOfPeople;

return true;

g
else f

cout << " no room, they leave" << endl;

return false;

g
g

void IceCreamStore::order (unsigned int numberOfScoops)

// serve ice-cream, compute pro�ts

f
cout << "Time: " << time;

cout << " serviced order for " << numberOfScoops << endl;

profit += 0.35 � numberOfScoops;

g

void IceCreamStore::leave (unsigned int numberOfPeople)

// people leave, free up chairs

f
cout << "Time: " << time;

cout << " group of size " << numberOfPeople << " leaves" << endl;

freeChairs += numberOfPeople;

g

Figure 15.9: The methods implementing the class IceCreamStore.

418 CHAPTER 15. PRIORITY QUEUES

Polymorphic Variables

A variable that can hold many di�erent types of values is called polymorphic (poly
= many, morph = form). In object-oriented languages, such as C++, polymorphic
variables are linked to the class-derived class hierarchy. A variable declared as a
pointer to a parent class, such as the class event, can in fact hold a value that is a
derived class type, such as arriveEvent.

In C++ polymorphic variables can only occur through the use of pointers or
references. This is due to the way memory is allocated by the C++ system. Note
that the storage required by the child class is larger than the storage required by the
parent class. (The parent class had only one integer data �eld, while the child class
has two). Memory for all elements of a vector must be the same{this is necessary
for the e�cient indexing ability characteristic of vectors. These two requirements
conict with one another. However, the space required to hold a pointer is �xed,
regardless of the type of value it points to. It is for this reason that C++ only
allows pointer values to be polymorphic.

(This is sometimes called a heterogeneous collection, and the value that points to an event is
sometimes called a polymorphic variable.) For this reason the collection must store pointers

to events, instead of the events themselves.
Since comparison of pointers cannot be specialized on the basis of the pointer types,

we must instead de�ne an explicit comparison function for pointers to events. When using
the standard library this is accomplished by de�ning a new structure, the sole purpose of
which is to de�ne the function invocation operator (the () operator) in the appropriate
fashion. Since in this particular example we wish to use the priority queue to return the
smallest element each time, rather than the largest, the order of the comparison is reversed,
as follows:

class eventComparison f
public:

bool operator () (event � left, event � right)

f return left->time > right->time; g
g;

We are now ready to de�ne the class simulation, which provides the basic structure for
the simulation activities. The class simulation provides two basic functions. The �rst is used
to insert a new event into the queue, while the second runs the simulation. A data �eld is
also provided to hold the current simulation \time".

15.4. APPLICATION { DISCRETE EVENT-DRIVEN SIMULATION 419

class simulation f
public:

simulation () : eventQueue(), currentTime(0) f g

void scheduleEvent (event � newEvent)

f eventQueue.push (newEvent); g

void run();

unsigned int currentTime;

protected:

priority queue<vector<event �>, eventComparison> eventQueue;

g;

Notice the declaration of the priority queue used to hold the pending events. In this
case we are using a vector as the underlying container. We could just as easily have used a
deque. Note also the way in which the comparison function class is provided as the second
template argument.

The heart of the simulation is the member function run(), which de�nes the event loop.
This procedure makes use of three of the �ve priority queue operations, namely top(),
pop(), and empty(). It is implemented as follows:

void simulation::run()

// execute events until event queue becomes empty

f
while (! eventQueue.empty()) f

event � nextEvent = eventQueue.top();

eventQueue.pop();

time = nextEvent->time;

nextEvent->processEvent();

delete nextEvent;

g
g

Ice Cream Store Simulation

Having created a framework for simulations in general, we now return to the speci�c simu-
lation in hand, the ice cream store. An instance of class simulation is de�ned as a global
variable, called theSimulation. An instance of iceCreamStore is accessible via the name
theStore.

420 CHAPTER 15. PRIORITY QUEUES

As we noted already, each activity is matched by a derived class of event. Each derived
class of event includes an integer data �eld, which represents the size of a group of customers.
The arrival event occurs when a group enters. When executed, the arrival event creates and
installs a new order event:

class arriveEvent : public event f
public:

arriveEvent (unsigned int time, unsigned int gs)

: event(time), groupSize(gs) f g
virtual void processEvent ();

protected:

unsigned int groupSize;

g;

void arriveEvent::processEvent()

f
if (theStore.canSeat(groupSize))

theSimulation.scheduleEvent

(new orderEvent(time + randBetween(2,10), groupSize));

g

An order event similarly spawns a leave event:

class orderEvent : public event f
public:

orderEvent (unsigned int time, unsigned int gs)

: event(time), size(gs) f g
virtual void processEvent ();

protected:

unsigned int groupSize;

g;

void orderEvent::processEvent()

f
// each person orders some number of scoops

for (int i = 0; i < groupSize; i++)

theStore.order(1 + rand(3));

theSimulation.scheduleEvent

(new leaveEvent(time + randBetween(15,35), groupSize));

g;

Finally, leave events free up chairs, but do not spawn any new events:

15.4. APPLICATION { DISCRETE EVENT-DRIVEN SIMULATION 421

class leaveEvent : public event f
public:

leaveEvent (unsigned int time, unsigned int gs)

: event(time), groupSize(gs) f g
virtual void processEvent ();

protected:

unsigned int groupSize;

g;

void leaveEvent::processEvent ()

f
theStore.leave(groupSize);

g

The main program simply creates a certain number of initial events, then sets the sim-
ulation in motion. In our case we will simulate two hours (120 minutes) of operation, with
groups arriving with random distribution between 2 and 5 minutes apart.

void main() f
// load queue with some number of initial events

unsigned int t = 0;

while (t < 120) f
t += randBetween(2,5);

theSimulation.scheduleEvent(new arriveEvent(t, randBetween(1,5)));

g

// then run simulation and print pro�ts

theSimulation.run();

cout << "Total profits " << theStore.profit << endl;

g

An example execution might produce a log such as the following:

customer group of size 4 arrives at time 11

customer group of size 4 orders 5 scoops of ice cream at time 13

customer group size 4 leaves at time 15

customer group of size 2 arrives at time 16

customer group of size 1 arrives at time 17

customer group of size 2 orders 2 scoops of ice cream at time 19

customer group of size 1 orders 1 scoops of ice cream at time 19

customer group size 1 leaves at time 22

422 CHAPTER 15. PRIORITY QUEUES

...

customer group of size 2 orders 3 scoops of ice cream at time 136

customer group size 2 leaves at time 143

total profits are 26.95

15.5 Chapter Summary

A priority queue is not a queue at all, but is a data structure designed to permit rapid
access and removal of the largest element in a collection. Priority queues can be structured
by building them on top of lists, sets, vectors or deques. The vector or deque version of a
priority queue is called a heap. The heap structure forms the basis of a very e�cient sorting
algorithm.

A skew heap is a form of heap that does not have the �xed size characteristic of the vector
heap. The skew heap data structure is interesting in that it can potentially have a very poor
worst case performance. However, it can be shown that the worst case performance cannot
be maintained, and following any occurrence the next several operations of insertion or
removal must be very rapid. Thus, when measured over several operations the performance
of a skew heap is very impressive.

A common problem addressed using priority queues is the idea of discrete event-driven
simulation. We have illustrated the use of heaps in an example simulation of an ice-cream
store. In Chapter 19 we will once more use a priority queue in the development of an
algorithm for computing the shortest path between pairs of points in a graph.

Key Concepts

� Priority Queue

� Heap

� Heap order property

� Heap sort

� Skew heap

� Discrete event driven simulation

References

The binary heap was �rst proposed by John Williams in conjunction with the heapsort algo-
rithm [Williams 64]. Although heapsort is now considered to be one of the standard classic
algorithms, a thorough theoretical analysis of the algorithm has proven to be surprisingly

15.5. CHAPTER SUMMARY 423

di�cult. It was only in 1991 that the best case and average case execution time analysis of
heapsort was reported [Scha�er 91].

Skew heaps were �rst described by Donald Sleator and Robert Tarjan in [Sleator 86].
An explanation of the amortized analysis of skew heaps is presented in [Weiss 92]. The
ice cream store simulation is derived from a similar simulation in my earlier book on
Smalltalk [Budd 87].

Study Questions

1. What is the primary characterization of a priority queue?

2. Why is a priority queue not a true queue?

3. How could a priority queue be constructed using a list?

4. What is the heap data structure?

5. What are the two most common uses of the term heap in computer science?

6. What is the heap order property?

7. What is a complete binary tree?

8. Give a vector of ten elements ordered largest to smallest, then show the corresponding
complete binary tree. Why will the tree always be a heap?

9. What is the di�erence between the procedures sort heap and heap sort?

10. In the skew heap data structure, what is similar about the push and pop routines?

11. What is a discrete event-driven simulation?

12. What is a heterogeneous collection?

13. What is a polymorphic variable?

Exercises

1. Complete the design of a priority queue constructed using lists. That is, develop a data
structure with the same interface as the priority queue data type, but which uses
lists as the underlying container and implements the interface using list operations.

2. While it is possible to implement iterators for the heap data structure, argue why it
makes little sense to do so.

3. Give an example of a priority queue that occurs in a non-computer science situation.

424 CHAPTER 15. PRIORITY QUEUES

4. Explain how the skewHeap data structure could be changed so that the smallest item
was the value most easily accessible, instead of the largest value.

5. Show what a heap data structure looks like subsequent to insertions of each of the
following values:

4 2 5 8 3 6 1 10 14

6. Show what a skewHeap data structure looks like subsequent to insertions of each of
the following values:

4 2 5 8 3 6 1 10 14

7. Consider the following alternative implementation of push heap:

template <class Iterator>

void push heap (Iterator start, Iterator stop)

f
unsigned int heapsize = stop - start;

unsigned int position = heapsize - 1;

// now restore the possibly lost heap property

while (position > 0) f
// reheap the subtree

adjust heap(data, heapsize, position);

// move up the tree

position = (position-1)/2;

g
g

(a) Prove that this algorithm will in fact successfully add a new element to the heap.

(b) Explain why as a practical matter this algorithm is less desirable than the algo-
rithm presented in the text.

8. Using the techniques described in Problem 4.3, Chapter 4 (page 86), test the hypoth-
esis that heap sort is an O(n logn) algorithm. Using the coe�cient c you compute,
estimate for the heap sort algorithm how long it would take to sort a vector of 100,000
elements. Is your value in agreement with the actual time presented is the second
table in Appendix B? Why do you think the values computed for small vectors repre-
sent a better predictor of performance for heap sort than did the equivalent analysis
performed for tree sort?

15.5. CHAPTER SUMMARY 425

9. Another heap-based sorting algorithm can be constructed using skew heaps. The idea
is to simply copy the values from a vector into a skew heap, then copy the values
one-by-one back out of the heap. Write the C++ procedure to do this.

10. Perform empirical timings on the algorithm you wrote for the previous question. Use
as input vectors of various sizes containing random numbers. Compare the running
time of this algorithm to that of tree sort and heap sort.

11. Design a simulation of an airport. The airport has two runways. Planes arrive from the
air and request permission to land, and independently planes on the ground request
permission to take o�.

12. One alternative to the use of uniform distributions is the idea of a weighted discrete
probability. Suppose we observe a real store and note that 65% of the time customers
will order one scoop, 25% of the time they will order two scoops, and only 10% of the
time will they order three scoops. This is certainly a far di�erent distribution from
the uniform distribution we used in the simulation. In order to simulate this behavior,
we can add a new method to our class random.

(a) Add a method named weightedDiscrete to the class random. This method
will take, as an argument, a vector of unsigned integer values. For example, to
generate the distribution above the programmer would pass the method a vector
of three elements, containing 65, 25 and 10.

(b) The method �rst sums the values in the array, resulting in a maximum value. In
this case the value would be 100. A random number between 1 and this maximum
value is then generated.

(c) The method then decides in which category the number belongs. This can be
discovered by looping through the values. In our example, if the number is less
than 65, then the method should return 0 (remember, index values start at 0), if
less than or equal to 90, return 1, and otherwise return 2.

13. Modify the ice cream store simulation so it uses the weighted discrete random number
generated function implemented in the previous question. Select reasonable numbers
for the weights. Compare a run of the resulting program to a run of the program using
the uniform distribution.

