
The Little Application Framework

Tim Budd

March 13, 1995

1 Introduction

This document describes LAF, the Little Application Framework. LAF is in-
tended to be a simple, platform independent framework for developing programs
in C++, mainly for instructional purposes. The intent in using LAF, as in all
frameworks, is to provide a mechanism to more easily create relatively complex
applications by hiding details of implementation. Versions of LAF are available
for the macintosh (developed using the Symantic C++ compiler), and the PC
(developed using the Borland C++ compiler). Versions for other platforms are
under development.

Like most object-oriented application frameworks, the creation of a new
application using LAF makes extensive use of inheritance. There are seven
main classes provided by LAF, three of which are used mainly as a basis for
subclassing. These seven classes are application, button, menu, menuItem,
staticText, editText, and debugBox. The three classes normally subclassed
are application, button, and menuItem. These will all be described in more
detail in subsequent sections.

Fundamentally, an application is created by subclassing the class application,
and overriding certain methods. The arguments required by the constructor for
the parent class di�er sightly depending upon which platform is targeted. Sec-
tion 7 will describe in more detail the platform speci�c features of the LAF.

The main event loop is started by invoking the method run, inherited from
class application. This method does not return. Execution is terminated
when the user selects the quit menu item, closes the application window, or
invokes the quit() method inherited from class application.

The simplest application possible is shown in Figure 1. Notice that creating
the application consists of (a) de�ning the application class, (b) creating an
instance of the class, and (c) invoking the run method for the instance of the
application class. In this particular case the application does nothing more
than display a window on the users screen, and wait for the user to quit the
application.

1

class simpleApp : public application f
public:

simpleApp() : application("simple application") f g
g;

void main() f
simpleApp theApp;

theApp.run();
g;

Figure 1: A Simple Application

2 The class application

The functionality provided by the class application is shown in Figure 2. The
following sections will describe these methods in greater detail.

2.1 Starting and Stopping the Application

The function initialization is used to initialize features of an application
prior to execution. Subclasses should rede�ne this function if they have applica-
tion speci�c initialization to perform. This method is invoked automatically by
the framework, and need not be directly executed by the user. Several methods,
notably attachButton attachMenu, attachEditText and attachStaticText,
can only be invoked from within the initialization method.

The function run starts the application. Normally this is the last function
called in the procedure main. The function does not return. The method quit

can be called to halt the running application.

2.2 Scheduling Update Events

The methods update() or clearAndUpdate() are invoked whenever the user
desires to schedule a screen refresh. Most often this is necessary following a
response to an event, such as a mouse-down event, or a key-press event. The
clear method �rst clears the screen before the refresh. In order to perform the
refresh, the application paint() method will be invoked. The user typically
does not invoke the paint() method directly.

2.3 Redrawing the Screen Image

The method paint() is used to redraw the screen image. This method is usually
overridden in application classes to provide application speci�c behavior. This

2

initialization() initialize the application
run() begin execution for the application
quit() halt the application
update() schedule window for updating
clearAndUpdate() clear window, schedule for updating
paint() redisplay the screen
mouseButtonDown(int, int) coordinates of mouse down event
keyPressed(char) character of key
top() coordinate of top of screen
botton() coordinate of bottom of screen
left() coordinate of left of screen
right() coordinate of right of screen
height() height of window
width() width of window
textPosition(int &, int &) return current text position
setPosition(int x, int y) set the position of the pen
print(char *) print text at current position
circle(int x, int y, int r) circle centered at x,y with radius r
point(int x, int y) point (small �lled circle)
line(int, int, int, int) draw line
rectangle(int, int, int, int) rectangle, upper left and lower right
setPen(color, lineStyle, width) set pen characteristics
gridOn(color, int) set grid with given distances
gridO�() turn o� grid
attachButton(...) attach button to window
attachMenu(...) attach menu to window
attachStaticText(...) attach static text object
attachEditText(...) attach edit text object

Figure 2: Methods Provided by class application

3

function should not be directly called by the user, instead the method is invoked
in response to a call on the method update() or clearAndUpdate().

2.4 Mouse and Key-Press Events

When the button on the mouse is pressed the method mouseButtonDown is
invoked. The two integer arguments represent the coordinates of the cursor,
relative to the application window, at the time the mouse was pressed. The
default behavior associated with this method is to do nothing. This method
must be subclassed by the application class to perform any action.

Notice that the mouse down event does not usually perform any actions
which directly modify the image on the screen. (In the PC version of LAF,
it cannot perform such actions). Instead, the mouse down function typically
records whatever information may be necessary, then invokes either the method
update() or clearAndUpdate() in order to force a screen redrawing.

If a coordinate grid is being used (see next section) then note that the mouse
coordinates are changed to the nearest grid point.

When the user presses a key the method keyPressed will be invoked. This
method takes as argument the character representing the key.

2.5 Window Coordinates

The methods top(), bottom(), left(), and right() return the basic screen
coordinates of the application window, expressed in pixels. Note that these
values are given in the global coordinate system, where 0,0 is the upper left-
hand portion of the screen. Almost all other functions which use coordinates
use the application relative number, where 0,0 is the upper left-hand portion of
the application window.

The methods height() and width() yield the height and width of the screen
(the di�erence between top and bottom, and between right and left, respec-
tively).

2.6 Graphics and Drawing Functions

A number of simple printing and drawing routines are available as methods in
class application. Normally Calls on graphics functions are executed during
screen update (the notable exception is the method print). This means that
such calls are made from the paint() method, or from a method invoked by
the paint() method. This restriction is more or less �rm depending upon the
platform, but is nevertheless a good rule of thumb. (The restriction is �rm in
the PC version of LAF, slightly less �rm in the Macintosh version).

The coordinates for drawing are the same as for mouse down events. This
means that the value 0,0 represents the upper left corner, and x-axis values

4

increase as one moves right, while y-axis values increase as one moves down.
The latter is often counterintuitive to the beginning programmer.

In the function circle the �rst two arguments represent the x and y values
of the center, while the third argument represents the radius. The function
point draws a circle of radius 1.

In the function line the �rst two arguments represent the starting location,
while the second two represent the ending point.

For the function rectangle the �rst two arguments represent the upper left
corner of the rectangle, while the third argument represents the width (change
in x-axis) and the last integer argument represents the height (change in y-axis).

2.7 Printing

The method setPosition can be used to move to a given position in the window.
The method print then prints a text value in the given position. Newlines
are honored in the text, so multiple rows of text can be printed. The method
textPosition can be used to determine the current text position; the arguments
are passed by reference.

Unlike the other graphics functions, which must be invoked from within the
paint method from a function executed by the paint method, calls on print

cannot be made in the paint method. (This may be a bug, or a mac-speci�c
item. Need to check on this.)

2.8 Drawing Simple Polygons

There are a number of methods that can be used to draw simple polygons.
Note that the coordinates used in these drawing functions represent the local
coordinates for the window, not the global screen coordinates. The following
command, for example, will print a circle of width 20 at the exact center of the
screen.

circle(width() / 2, height() / 2, 20);

2.9 Setting the Pen Characteristics

The method setPen can be used to set the characteristics of the pen used in
the draw operations. The �rst argument is the pen color. The pallet of colors
available di�ers on di�erent platforms, as summarized in the following chart:

PC black, blue, green, cyan, red, magenta, brown, gray,
white, brightBlue, brightGreen, brightCyan, brightRed,
rightMagenta, brightYellow, brightGray

Mac blackColor, whiteColor, redColor, greenColor, blueColor, cyanColor,
magentaColor, yellowColor

5

The second argument to the setPen function is the pattern. Again, the set
of values di�ers depending upon the platform:

PC solidLine, dashedLine, dottedLine, nullLine
Mac white, black, gray, ltGray, dkGray

The last argument to the setPen method is the pen width, in pixels.

2.10 A Coordinate Grid

The method gridOn turns on a display of a coordinate grid of dots. When the
grid is on, a pixel of the given color is displayed at each coordinate location
which is a multiple of the size given by the second argument. Mouse down
events are changed to re
ect the closest grid coordinate point.

3 Buttons

A button is formed by subclassing the class button, creating an instance of the
subclass, and attaching the button to the window. The subclass must rede�ne
the method pressed, which will be invoked each time the button is pressed.

To attach a button to a window the method attachButton is invoked. Be-
cause of order of initialization constraints, this method must only be invoked
within the initializationmethod for an application. There are six arguments
to this method.

attachButton(button *, char * title, int x, int y, int width, int height)

The �rst argument is a pointer to the button object. The second argument
is the text to display on the face of the button. Notice this text is not considered
to be part of the button itself, but merely part of the way the window displays
the button. The four integer arguments represent the upper left corner of the
button, and the width and height of the button.

An illustration of the creation of a button will be given in the examples
provided at the end of this document.

4 Menus

Menus are in many ways similar to buttons. There are two menu classes supplied
with the little application framework, menu and menuItem. The �rst of these
represents a category on the menu bar, while the second represents a speci�c
item from the category. When a menu item is selected by the mouse, the
selected method for the associated menu item is executed. Thus, in a manner
similar to the way in which behavior for buttons is specialized, application

6

setText(char *) set contents of text bu�er
<< char append char to text bu�er
<< char * append string to text bu�er
<< int append integer to text bu�er
text() return contents of text bu�er
size() return number of characters in bu�er

Figure 3: Functions de�ned for static and editable text boxes

speci�c behavior for menu items is provided by subclassing the menuItem class
and rede�ning the method selected.

Menus are typically created in the initializationmethod for an applica-
tion. Menu items are attached to their associated menus by invoking the method
addMenuItem(menuItem *). This is method takes as argument a pointer to the
menu item. Once all items have been inserted, the menu itself is attached to
the application by invoking the method attachMenu(menu *). An example
provided later in this document illustrates the use of menus and menu items.

5 Text Boxes

There are two kinds of text boxes supported by the LAF. These are static text
boxes, which can be assigned to but not edited, and editable text boxes. Figure 3
shows the operations permitted on these data types. Both forms of boxes will
be provided with scroll bars should the text they maintain not �t in the space
provided.

A static text box is used to display text that is not being edited. The ini-
tial text in the box is de�ned by an argument to the constructor. Two other
arguments to the constructor are optional. The �rst is an integer argument,
and represents the width of the rectangular box used to surround the text.
The default value is zero (that is, no visible box). The third argument indi-
cates whether the text should be left justi�ed (value leftText, right justi�ed
(rightText), or centered (centerText). The default value is left justi�ed.

As with buttons, a static text box must be attached to the application
window. This is accomplished using the method attachStaticText, which
takes arguments similar to the method attachButton.

attachStaticText(staticText *, int x, int y, int width, int height)

Text can be added to both static and editable text boxes using the stream
operators <<. Characters, strings and integers are recognized as arguments to
these operators. Output routines for other data types can be easily written.

7

Editable text boxes are similar to static text boxes, except that editing
operations are permitted.

6 Examples

Figure 4 illustrates a simple program which draws a circle of radius 20 each time
the mouse is clicked. Because the graphics routines can only be executed from
inside the paint method, the location of the mouse click is saved in a pair of
global variables. Since there is no application speci�c initialization in this case,
the initialization routine is not declared. Note that the application variable
itself is simply declared as a local variable in the main program.

Note that the programs in this section are illustrated using the Macintosh
version of LAF. On the PC and other platforms the constructor for the appli-
cation would be slightly di�erent. These di�erences are described in Section 7.

The next example program, shown in Figure 5, is slightly more complex.
This program illustrates the structure of a typical application and the use of
buttons. The program will display the text \hello world" each time the mouse
is pressed. Two buttons are provided in the upper right corner. One simply
quits the application (duplicating the action of both the go-away box and the
standard \quit" menu item.) The second button clears the screen.

This program illustrates a common phenomenon. Because the methods for
the buttons need to refer to methods from the application class, the application
object itself must be declared as a global variable. (In this case, the variable
theApp). Methods for the buttons then can modify the application by invoking
methods through this global variable. For this reason the declaration of the
global variable appears before the class de�nitions for the buttons, which in
turn must appear before the de�nition of the method initialization, in which
they are attached to the window.

Figure 6 illustrates a program similar to the previous, this time using menu
items rather than buttons for the quit and clear actions. The structure of the
program is, however, very similar. The text of the quit and clear buttons is
followed by a slash and a letter. On the macintosh, this will automatically
establish a short-cut key sequence for selecting the associated menu item.

Figure 7 illustrates the use of edit boxes. An edit box is created in the
upper left corner of the window. Key presses outside the edit box are caught
and appended to the end of the edit text. The user can also edit the text
directly, in the usual fashion. When the user clicks the mouse outside of the
edit box, the current contents of the box are copied on to the window. Static
text boxes are similar, only the text cannot be modi�ed in a static text box.

8

/�
circle program

�/

include "maclaf.h"

class circleApp : public application f
public:

circleApp() : application("hello world") f g;
virtual void mouseButtonDown(int, int);
virtual void paint();

g;

int savex = 0;
int savey = 0;

void circleApp::mouseButtonDown(int x, int y)
f

savex = x; // save coordinates of mouse down

savey = y;
update(); // update without erase

g

void circleApp::paint()
f

circle(savex, savey, 20); // draw a circle of size 20

g

void main() f
circleApp theApp; // create the application

theApp.run(); // run it

g

Figure 4: A Program the Responds to Mouse Events

9

/�
hello program with buttons

�/

include "maclaf.h"

class helloApp : public application f
public:

helloApp() : application("hello world") f g;
virtual void initialization();
virtual void mouseButtonDown(int, int);

g;

void helloApp::mouseButtonDown(int x, int y)
f

setTextPosition(x, y);
print("hello\nworld");
update(); // update without erase

g

helloApp theApp;

class quitButton : public button f
public:

void pressed() f theApp.quit(); g
g;

class clearButton : public button f
public:

void pressed() f theApp.clearAndUpdate(); g
g;

void helloApp::initialization()
f

app.attachButton(new quitButton, "quit", 5, 5, 50, 20);
app.attachButton(new clearButton, "clear", 5, 30, 50, 20);

g

void main() f theApp.run(); g

Figure 5: A Hello World Program with Buttons

10

/� hello program with menus �/

include "maclaf.h"

class helloApp : public application f
public:

helloApp() : application("hello world") f g;
virtual void initialization();
virtual void mouseButtonDown(int, int);

g;

void helloApp::mouseButtonDown(int x, int y)
f setTextPosition(x, y);

print("hello\nworld");
update(); // update without erase g

helloApp theApp;

class quitItem : public menuItem f
public:

quitItem() : menuItem("quit/Q") f g
void selected() f theApp.quit(); g

g;

class clearItem : public menuItem f
public:

clearItem() : menuItem("clear/C") f g
void pressed() f theApp.clearAndUpdate(); g

g;

menu theMenu("options");

void helloApp::initialization()
f theMenu.addMenuItem(new quitItem);

theMenu.addMenuItem(new clearItem);
app.attachMenu(& theMenu); g

void main() f theApp.run(); g

Figure 6: A Hello World Program with Menus

11

/�
edit box program

�/

include "maclaf.h"

class editApp : public application f
public:

editApp() : application("edit box application") f g;
virtual void initialization();
virtual void mouseButtonDown(int, int);
virtual void keyPressed(char);

g;

editBox ebox(" ");

void editApp::mouseButtonDown(int x, int y)
f

setTextPosition(x, y); // move to current location

print(ebox.text()); // print contents of edit box

update(); // update without erase

g

void editApp::keyPressed(char c)
f

ebox < < c; // append character to edit box

update(); // force refresh of image

g

editApp theApp;

void editApp::initialize()
f

theApp.attachEditText(&ebox, 10, 10, 100, 100);
g

void main() f theApp.run(); g

Figure 7: Application Program with Edit Boxes

12

7 Platform Speci�c Features

In this section we will describe the features of LAF which are speci�c to each
of the platforms to which it has been ported.

7.1 PC LAF

7.2 Mac LAF

On the macintosh the constructor for the application class requires only the
name of the window, as shown in Figures 5 through 7.

One method provided by the application class on the macintosh LAF which
is not provided by other version is eventTick. This function is executed once
every time an event is recognized. By scheduling an update (and thus forcing
a new event) within this function an animation-like e�ect can be created. An
example is shown in Figure 8. This program draws a circle moving from the
upper left to the lower right, like a ball.

13

/�
animation example

�/

include "maclaf.h"

class aniapp : public application f
public:

aniapp() : application("animation example") f g
virtual void eventTick();
virtual void paint();

g;

int savex = 0;
int savey = 0;

void aniapp::eventTick()
f

savex += 5;
savey += 10;

// stop animation at 300

if (savex < 300) update();
g

void aniapp::paint()
f

circle(savex, savey, 20); // draw a circle

g

void main() f aniapp theApp; theApp.run(); g

Figure 8: A Simple Animation

14

