
Chapter 13

Implementing the

Object-Oriented Paradigm

In this chapter we will discuss some of the di�culties involved in implementing those features
of Leda that are relevant to the object-oriented paradigm.

13.1 Memory Layout

In Chapter 10 we introduced the concept of a polymorphic variable. That is, in an object-
oriented language it is possible to declare a variable which can hold a number of di�erent
types of values over the course of execution. The only limiting restriction in this regard
is that all such values must be instances of classes which inherit from a single common
ancestor class, which must be the class used in the declaration of the polymorphic variable.
In Chapter 12 we discussed some of the many uses for such values.

The presence of polymorphic variables introduces a number of interesting problems for
the language implementor, problems which are not found in the implementation of more
conventional languages. The �rst such di�culty we will consider is concerned with the
allocation of memory space for variables and for values.

In a conventional language, variables are allocated a �xed amount of space in a �xed
location in memory, or in a �xed location in a block of memory called an activation record

that is allocated once at the beginning of a function invocation, and released when a function
terminates.

Suppose, for example, that we imagine a function which uses one local integer variable
named x, and also declares one local variable named poly which is a record containing three
integer data �elds. An activation record for such a procedure might look as follows:1

1In practice activation records also contain space for parameter values, and for various \bookkeeping"

229



230 CHAPTER 13. IMPLEMENTING THE OBJECT-ORIENTED PARADIGM

x

poly -- third field

poly -- second field

poly -- first field

Now imagine that poly is not a simple record structure, but is instead a polymorphic
variable declared as being an instance of a class which de�nes three integer data �elds. The
de�ning characteristic of polymorphic variables was that they can hold values that were
generated from subclasses. So next imagine that a subclass of the class from which poly

was declared de�nes two additional integer data �elds, and that an attempt is made to
assign a value generated by this subclass to the variable poly.

The value on the right of the assignment contains �ve integer data �elds. The memory
allocated to poly contains space only for three integer data �elds. Simply put, the problem
is that we are trying to store more information into a �xed size box than it can hold:

poly -- third field

poly -- second field

poly -- first field

(

fifth field

fourth field

third field

second field

first field

The solution in Leda is to eliminate altogether the idea that a variable de�nes a �xed
size box.2 Instead, all variables are in reality pointers. When a value is assigned to a
variable, only this pointer �eld is changed. The value to which it points can then be any
size whatsoever, with no limitations being imposed at compile time.

poly -

fifth field

fourth field

third field

second field

first field

Unfortunately, a negative consequence of this decision is that it naturally leads to the
pointer semantics for assignment which, as we noted at the beginning of Chapter 10, can
occasionally be somewhat confusing.

values, such as return address �elds. These details are unimportant for our discussion here.
2Note that this is not the only solution. The language C++, for example, takes an entirely di�erent

approach, simply slicing o� the extra �elds during assignment.



13.2. DYNAMIC ALLOCATION 231

13.2 Dynamic Allocation

It is common that a value can be created and bound to a variable in a way that ensures the
value will outlive the context in which it is created. This can occur, for example, if a value
is assigned to a variable from a surrounding context. To illustrate, consider the following
program, which uses the functional version of the list abstraction from Chapter 4:

var

aList : List[integer];

function escape ();

begin

aList := List[integer](17, emptyList);

end;

The value created inside the function escape must exist even after the function has
returned. It is for this reason that very few values created in Leda can be allocated in
a stack-like fashion, as is common in languages such as Pascal or C. Instead, all values in
Leda are dynamically allocated on a heap, and must be reclaimed by a memory management
mechanism, such as a garbage collection system.

13.3 Class Pointers

An important property of polymorphic variables is that the selection of which of many
possible versions of an overridden function to invoke in any particular situation depends upon
the actual, run-time or dynamic type held by such a variable, and not on the de�ned, or static
type with which it was declared. Thus, it is a requirement of all object-oriented languages
that all such values possess at least a rudimentary form of \self-knowledge" concerning their
own type, and be able to use this knowledge in the selection of a function to execute.

In Leda this self-knowledge is embodied in a data �eld that declared in class object,
and thus is common to all objects (see Figure 13.1). This �eld is declared as an instance of
class Class. Class Class maintains information speci�c to each de�ned class. In particular,
this information includes the name of the class as a string, the number of data �elds de�ned
in each class (that is, the size of each instance), and a pointer to the parent class.

The method isInstance takes as argument a value, and returns true if the value is an
instance of a given class (either directly or through inheritance). To do this, the function
makes use of the relational operators, which have been rede�ned to indicate the class-subclass
relationship. The less-than operator takes two classes, and returns true if the parent class
of the left argument, or any ancestor of this parent, is the same as the right argument.
The default meaning of the equality operator indicates whether the two arguments (that is,



232 CHAPTER 13. IMPLEMENTING THE OBJECT-ORIENTED PARADIGM

class object;

var

classPtr : Class; f pointer describing object g

...

end;

class Class of ordered[Class];

var

name : string;

size : integer;

parent : Class;

function asString()->string;

begin

return name;

end;

function less (arg : Class)->boolean;

begin

if self == arg then f equal, not less g
return false;

if parent == arg then

return true;

return parent <> self & parent < arg;

end;

function isInstance (val : object)->boolean;

begin

return val.classPtr <= self;

end;

end;

function typeTest [T : object] (val : object, aClass : Class)->T;

begin

if aClass.isInstance(val) then

return cfunction Leda object cast(val)->T;

return NIL;

end;

Figure 13.1: The class pointer and the class Class



13.4. SUBCLASSES AS EXTENSIONS 233

two classes) are identically the same. As we saw in Chapter 12, the remaining relational
operators are all de�ned in terms of these two functions.

The function isInstance uses the ability to do relational tests on classes in order to
determine if an argument value is an instance of the receiver class. The isInstance function
is utilized in one of the more unusual functions provided as part of the standard run-time
library. This function is named typeTest, and is used to perform \reverse polymorphism";
that is, to take a value declared as holding an instance of a parent class, and determine
whether or not it is, in fact, maintaining a value generated from a given child class. The
cfunction invoked to perform the type conversion in this situation performs no action, and
merely serves to foil the type checking mechanism. If the argument value is not an instance
of the given class, then the unde�ned value NIL is returned.

13.4 Subclasses as Extensions

Data �elds de�ned within a class in Leda are handled in a similar fashion to data �elds
in records in languages such as Pascal or C. That is, the data �elds are simply catenated
together in a contiguous fashion in memory, end to end, to yield a block of values which
together constitute the state of the object. For example, suppose an object represents an
instance of a class A in which are de�ned three data values, x, y and z. We can imagine A
looking something like the following:

z

y

x

classPtr

An important feature of subclassing is that a child class strictly extends the number
of data �elds held by each instance, never decreases this size. Furthermore, and just as
importantly, we can arrange so that the location of each �eld inherited from a parent class
is found in the same location relative to the start of the object, regardless of the class from
which the instance was generated. That is, suppose we now imagine a subclass of A named
B which de�nes three new data �elds p, q and r, and a second subclass of A named C which
de�nes two �elds m and n. A value from each of these classes can be imagined as looking
something like the following:



234 CHAPTER 13. IMPLEMENTING THE OBJECT-ORIENTED PARADIGM

z

y

x

classPtr

instance of A

r

q

p

z

y

x

classPtr

instance of B

n

m

z

y

x

classPtr

instance of C

It is because the location of the inherited data �elds are known to be �xed, regardless
of the class from which the items were generated, that the compiler is able to produce
code for functions de�ned in the parent classes. That is, class A can de�ne functions which
manipulate the three values x, y and z. These functions will continue to operate even if
they are manipulating an instance of B or C, instead of an instance of class A.

13.5 Virtual Dispatch Tables

A feature similar to the extension of subclass data areas from the data areas generated
by parent classes is involved in the technique used to implement the mechanism of function
overriding. The actual representation of an instance of class Class includes more than simply
the data �elds de�ned in that class, but is extended to include, as well, �elds containing
pointers to functions which are implemented in the given class. That is, the instance of
class Class containing information about the class boolean in the standard library looks
something like the following:



13.5. VIRTUAL DISPATCH TABLES 235

boolean.and

boolean.or

boolean.not

equality.notEquals

equality.equals

object.notSameAs

object.sameAs

object.asString

parent = equality[boolean]

size = 2

name = "boolean"

classPtr

The data �elds classPtr, name, size, and parent are generated by the variable decla-
rations in class object and boolean. The remaining �elds do not contain data values, but
pointers to functions. The �rst three are pointers to functions implemented in class object,
the next two are derived from functions de�ned in class equality, while the last three are
associated with functions in class boolean. This table of functions is traditionally known
as a virtual dispatch table (This is because in other object-oriented languages overridden
functions are described as \virtual", and the table is used to dispatch execution on such
functions.)

Subclasses can inherit functions, they can override existing functions, and they can
implement new functions. The class True, for example, inherits a number of functions from
class boolean, and overrides four. The virtual dispatch table generated for this class would
look as follows:



236 CHAPTER 13. IMPLEMENTING THE OBJECT-ORIENTED PARADIGM

True.and

True.or

True.not

equality.notEquals

equality.equals

object.notSameAs

object.sameAs

True.asString

parent = boolean

size = 2

name = "True"

classPtr

There are several features to note. The �rst is that inherited and overridden functions are
found in the same location in both the table generated for class boolean and that generated
for class True. In exactly the same way that the common location of data areas permits
a compiler to generate code that will work for any data value derived from a given class,
the same feature in the class table means that to invoke an inherited function it is simply
su�cient to execute the function found at a �xed location in the class table. Furthermore,
to override a function it is su�cient to simply replace the pointer in the class table with
the pointer to the new function. All functions that are not so replaced are then inherited
without change.

An invocation of a function inherited in a class structure is converted, using this mech-
anism, into an invocation of the function found by indexing the virtual dispatch table by a
�xed amount that can be determined at compile time. For example, to produce the printable
representation of a value the dispatch table is indexed into location 4 (index values start
at zero). The function found there will be the operation appropriate for the value being
manipulated, whether the value is a boolean, an integer, a string, or any other type. Note
that in each of these cases a di�erent function will be invoked, as each class overrides the
method asString in a di�erent manner.

Notes and Bibliography

I discuss a variety of di�erent implementation techniques for object-oriented languages in
more detail in my earlier book on object-oriented programming [Budd 91b]. Other expla-
nations can be found in [Cox 86, Ellis 90].

Many object-oriented languages include a feature called \multiple inheritance" with
which a class can inherit features from two or more parent classes. There are three reasons



13.5. VIRTUAL DISPATCH TABLES 237

why I have not included this feature in Leda. The �rst is that the semantics of multiple
inheritance are not at all clear in all situations (see [Budd 91b] or [Sakkinen 92] for a fuller
discussion of this point). The second is that in practice programs that use multiple inheri-
tance can usually be replaced by programs that use single inheritance that are just as concise
and clear, if not more so, than their multiple counterparts. Finally, the implementation of
multiple inheritance is considerably more di�cult than the implementation of single inher-
itance. In single inheritance, the initial portion of a class always has the same structure as
the structure of its parent from which it inherits features. But if a class inherits from two
or more classes, its initial portion can match the structure of one or the other parent, but
cannot match both.


