
Chapter 1

Thinking Object-Oriented

Although the fundamental features of what we now call object-oriented program-
ming were invented in the 1960's, object oriented languages really came to the
attention of the computing public-at-large in the 1980's. Two seminal events
were the publication of a widely-read issue of Byte (August 1981) that described
the programming language Smalltalk, and the �rst international conference on
object-oriented programming languages and applications, held in Portland, Ore-
gon in 1986.

Now, almost twenty years later, it is still the case that, as I noted in the �rst
edition of this book (in 1991):

Object-oriented programming (OOP) has become exceedingly pop-
ular in the past few years. Software producers rush to release object-
oriented versions of their products. Countless books and special is-
sues of academic and trade journals have appeared on the subject.
Students strive to list \experience in object-oriented programming"
on their r�esum�es. To judge from this frantic activity, object-oriented
programming is being greeted with even more enthusiasm than we
saw heralding earlier revolutionary ideas, such as \structured pro-
gramming" or \expert systems."

My intent in these �rst two chapters is to investigate and explain the ba-
sic principles of object-oriented programming, and in doing so to illustrate the
following two propositions:

� OOP is a revolutionary idea, totally unlike anything that has come before
in programming.

� OOP is an evolutionary step, following naturally on the heels of earlier
programming abstractions.

1

2 CHAPTER 1. THINKING OBJECT-ORIENTED

1.1 Why Is OOP Popular?

There are a number of important reasons why in the past two decades object-
oriented programming has become the dominant programming paradigm. Object-
oriented programming scales very well, from the most trivial of problems to the
most complex tasks. It provides a form of abstraction that resonates with tech-
niques people use to solve problems in their everyday life. And for most of the
dominant object-oriented languages there are an increasingly large number of
libraries that assist in the development of applications for many domains.

Object-oriented programming is just the latest in a long series of solutions
that have been proposed to help solve the \software crisis." At heart, the software
crisis simply means that our imaginations, and the tasks we would like to solve
with the help of computers, almost always outstrip our abilities.

But while object-oriented techniques do facilitate the creation of complex
software systems, it is important to remember that OOP is not a panacea. Pro-
gramming a computer is still one of the most di�cult tasks ever undertaken by
humans; becoming pro�cient in programming requires talent, creativity, intelli-
gence, logic, the ability to build and use abstractions, and experience{even when
the best of tools are available.

I suspect another reason for the particular popularity of languages such as
C++ and Delphi (as opposed to languages such as Smalltalk and Beta) is that
managers and programmers alike hope that a C or Pascal programmer can be
changed into a C++ or Delphi programmer with no more e�ort than the addi-
tion of a few characters to their job title. Unfortunately, this hope is a long
way from being realized. Object-oriented programming is a new way of think-
ing about what it means to compute, about how we can structure information
and communicate our intentions both to each other and to the machine. To
become pro�cient in object-oriented techniques requires a complete reevaluation
of traditional software development.

1.2 Language and Thought

\Human beings do not live in the objective world alone, nor alone
in the world of social activity as ordinarily understood, but are very
much at the mercy of the particular language which has become the
medium of expression for their society. It is quite an illusion to
imagine that one adjusts to reality essentially without the use of
language and that language is merely an incidental means of solving
speci�c problems of communication or re
ection. The fact of the
matter is that the `real world' is to a large extent unconsciously
built up on the language habits of the group.... We see and hear
and otherwise experience very largely as we do because the language
habits of our community predispose certain choices of interpretation."

Edward Sapir (quoted in [Whorf 1956])

1.2. LANGUAGE AND THOUGHT 3

This quote emphasizes the fact that the languages we speak directly in
uence
the way in which we view the world. This is true not only for natural languages,
such as the kind studied by the early twentieth century American linguists Ed-
ward Sapir and Benjamin Lee Whorf, but also for arti�cial languages such as
those we use in programming computers.

1.2.1 Eskimos and Snow

An almost universally cited example of the phenomenon of language in
uencing
thought, although also perhaps an erroneous one (see the references cited at the
end of the chapter) is the \fact" that Eskimo (or Inuit) languages have many
words to describe various types of snow{wet,
u�y, heavy, icy, and so on. This
is not surprising. Any community with common interests will naturally develop
a specialized vocabulary for concepts they wish to discuss. (Meteorologists,
despite working in English, face similar problems of communication and have
also developed their own extensive vocabulary).

What is important is to not overgeneralize the conclusion we can draw from
this simple observation. It is not that the Eskimo eye is in any signi�cant respect
di�erent from my own, or that Eskimos can see things I cannot perceive. With
time and training I could do just as well at di�erentiating types of snow. But
the language I speak (namely, English) does not force me into doing so, and so
it is not natural to me. Thus, a di�erent language (such as Inuktitut) can lead

one (but does not require one) to view the world in a di�erent fashion.

To make e�ective use of object-oriented principles requires one to view the
world in a new way. But simply using an object-oriented language (such as Java
or C++) does not, by itself, force one to become an object-oriented programmer.
While the use of an object-oriented language will simplify the development of
object-oriented solutions, it is true, as it has been quipped, that \FORTRAN
programs can be written in any language."

1.2.2 An Example from Computer Languages

The relationship we noted between language and thought for natural languages
is even more pronounced in arti�cial computer languages. That is, the language
in which a programmer thinks a problem will be solved will color and alter,
fundamentally, the way in which an algorithm is developed.

An example will illustrate this relationship between computer language and
problem solution. Several years ago a student working in genetic research was
faced with a task in the analysis of DNA sequences. The problem could be
reduced to relatively simple form. The DNA is represented as a vector of N
integer values, where N is very large (on the order of tens of thousands). The
problem was to discover whether any pattern of length M , where M was a �xed
and small constant (say �ve or ten) is ever repeated in the array of values.

4 CHAPTER 1. THINKING OBJECT-ORIENTED

1 n

m m

t c g a g
z }| {

t c g a g
z }| {

The programmer dutifully sat down and wrote a simple and straightforward
FORTRAN program something like the following:

DO 10 I = 1, N-M

DO 10 J = 1, N-M

FOUND = .TRUE.

DO 20 K = 1, M

20 IF X[I+K-1] .NE. X[J+K-1] THEN FOUND = .FALSE.

IF FOUND THEN ...

10 CONTINUE

He was somewhat disappointed when trial runs indicated his program would
need many hours to complete. He discussed his problem with a second student,
who happened to be pro�cient in the programming language APL, who said
that she would like to try writing a program for this problem. The �rst student
was dubious; after all, FORTRAN was known to be one of the most \e�cient"
programming languages{it was compiled, and APL was only interpreted. So
it was with a certain amount of incredulity that he discovered that the APL
programmer was able to write an algorithm that worked in a matter of minutes,
not hours.

What the APL programmer had done was to rearrange the problem. Rather
than working with a vector of N elements, she reorganized the data into a matrix
with roughly N rows and M columns:

x1 x2 ... xm

x2 x3 ... xm+1

... ...
xn�m xn�1

x
n�(m�1) ... xn�1 xn

She then ordered this matrix by rows (that is, treated each row as a unit,
moving entire rows during the process of sorting). If any pattern was repeated,
then two adjacent rows in the ordered matrix would have identical values.

. . .
T G G A C C
T G G A C C

. . .

It was a trivial matter to check for this condition. The reason the APL
program was faster had nothing to do with the speed of APL versus FORTRAN;
it was simply that the FORTRAN program employed an algorithm that was

1.2. LANGUAGE AND THOUGHT 5

O(M�N2), whereas the sorting solution used by the APL programmer required
approximately O(M �N logN) operations.

The point of this story is not that APL is in any way a \better" programming
language than FORTRAN, but that the APL programmer was naturally led to
discover an entirely di�erent form of solution. The reason, in this case, is that
loops are very di�cult to write in APL whereas sorting is trivial{it is a built-in
operator de�ned as part of the language. Thus, because the sorting operation is
so easy to perform, good APL programmers tend to look for novel applications
for it. It is in this manner that the programming language in which the solution
is to be written directs the programmer's mind to view the problem in a certain
way.

1.2.3 Church's Conjecture and the Whorf Hypothesis *

The assertion that the language in which an idea is expressed can in
uence or
direct a line of thought is relatively easy to believe. However, a stronger conjec-
ture, known in linguistics as the Sapir-Whorf hypothesis, goes much further and
remains controversial.

The Sapir-Whorf hypothesis asserts that it may be possible for an individual
working in one language to imagine thoughts or to utter ideas that cannot in
any way be translated, cannot even be understood, by individuals operating in
a di�erent linguistic framework. According to advocates of the hypothesis, this
can occur when the language of the second individual has no equivalent words
and lacks even concepts or categories for the ideas involved in the thought. It is
interesting to compare this possibility with an almost directly opposite concept
from computer science{namely, Church's conjecture.

Starting in the 1930s and continuing through the 1940s and 1950s there was
a great deal of interest within the mathematical and nascent computing commu-
nity in a variety of formalisms that could be used for the calculation of functions.
Examples are the notations proposed by Church [Church 1936], Post [Post 1936],
Markov [Markov 1951], Turing [Turing 1936], Kleene [Kleene 1936] and others.
Over time a number of arguments were put forth to demonstrate that many of
these systems could be used in the simulation of other systems. Often, such
arguments for a pair of systems could be made in both directions, e�ectively
showing that the systems were identical in computation power. The sheer num-
ber of such arguments led the logician Alonzo Church to pronounce a conjecture
that is now associated with his name:

Church's Conjecture: Any computation for which there exists an
e�ective procedure can be realized by a Turing machine.

By nature this conjecture must remain unproven and unprovable, since we
have no rigorous de�nition of the term \e�ective procedure." Nevertheless, no

0Section headings followed by an asterisk indicate optional material.

6 CHAPTER 1. THINKING OBJECT-ORIENTED

counterexample has yet been found, and the weight of evidence seems to favor
a�rmation of this claim.

Acceptance of Church's conjecture has an important and profound implica-
tion for the study of programming languages. Turing machines are wonderfully
simple mechanisms, and it does not require many features in a language to simu-
late such a device. In the 1960s, for example, it was demonstrated that a Turing
machine could be emulated in any language that possessed at least a conditional
statement and a looping construct [B�ohm 1966]. (This greatly misunderstood
result was the major ammunition used to \prove" that the infamous goto state-
ment was unnecessary.)

If we accept Church's conjecture, any language in which it is possible to
simulate a Turing machine is su�ciently powerful to perform any realizable al-
gorithm. (To solve a problem, �nd the Turing machine that produces the desired
result, which by Church's conjecture must exist; then simulate the execution of
the Turing machine in your favorite language.) Thus, arguments about the rel-
ative \power" of programming languages{if by power we mean \ability to solve
problems"{are generally vacuous. The late Alan Perlis had a term for such ar-
guments, calling them a \Turing Tarpit" because they are often so di�cult to
extricate oneself from, and so fundamentally pointless.

Note that Church's conjecture is, in a certain sense, almost the exact opposite
of the Sapir-Whorf hypothesis. Church's conjecture states that in a fundamental
way all programming languages are identical. Any idea that can be expressed
in one language can, in theory, be expressed in any language. The Sapir-Whorf
hypothesis claims that it is possible to have ideas that can be expressed in one
language that can not be expressed in another.

Many linguists reject the Sapir-Whorf hypothesis and instead adopt a sort
of \Turing-equivalence" for natural languages. By this we mean that, with a
su�cient amount of work, any idea can be expressed in any language. For
example, while the language spoken by a native of a warm climate may not
make it instinctive to examine a �eld of snow and categorize it by type or use,
with time and training it certainly can be learned. Similarly, object-oriented
techniques do not provide any new computational power that permits problems
to be solved that cannot, in theory, be solved by other means. But object-
oriented techniques do make it easier and more natural to address problems in
a fashion that tends to favor the management of large software projects.

Thus, for both computer and natural languages the language will direct

thoughts but cannot proscribe thoughts.

1.3 A New Paradigm

Object-oriented programming is frequently referred to as a new programming
paradigm. Other programming paradigms include the imperative-programming
paradigm (languages such as Pascal or C), the logic programming paradigm
(Prolog), and the functional-programming paradigm (ML or Haskell).

1.3. A NEW PARADIGM 7

species

genus

family

order

class

phylum

kingdom Animalia

Mollusca Chordata

Gastropoda Reptilla Mammalia

Mesogastropoda Predentata Primates

Cypraeidae Ceratopsidae Hominidae

Cypraea Triceratops Homo

tigris horridus sapiens

�
�
��+

Q
Q
QQs

�
��	

�
��	

@
@@R

�
���

�
��� ?

? ? ?

? ? ?

? ? ?

Figure 1.1: The Linn�n Inheritance Hierarchy

It is interesting to examine the de�nition of the word \paradigm." The
following is from the American Heritage Dictionary of the English Language:

par a digm n. 1. A list of all the in
ectional forms of a word taken
as an illustrative example of the conjugation or declension to which
it belongs. 2. Any example or model. [Late Latin parad��gma, from
Greek paradeigma, model, from paradeiknunai, to compare, exhibit.]

At �rst blush, the conjugation or declension of Latin words would seem to
have little to do with computer programming languages. To understand the
connection, we must note that the word was brought into the modern vocab-
ulary through an in
uential book, The Structure of Scienti�c Revolutions, by
the historian of science Thomas Kuhn [Kuhn 1970]. Kuhn used the term in the
second form, to describe a set of theories, standards, and methods that together
represent a way of organizing knowledge{that is, a way of viewing the world.
Kuhn's thesis was that revolutions in science occur when an older paradigm is
reexamined, rejected, and replaced by another.

It is in this sense, as a model or example and as an organizational ap-
proach, that Robert Floyd used the term in his 1979 ACM Turing Award lec-
ture [Floyd 1979], \The Paradigms of Programming." A programming paradigm
is a way of conceptualizing what it means to perform computation and how tasks
to be carried out on a computer should be structured and organized.

Although new to computation, the organizing technique that lies at the heart

8 CHAPTER 1. THINKING OBJECT-ORIENTED

of object-oriented programming can be traced back at least as far as Carolus Lin-
n�us (1707{1778) (Figure 1.1). It was Linn�us, you will recall, who categorized
biological organizisms using the idea of phylum, genus, species, and so on.

Paradoxically, the style of problem solving embodied in the object-oriented
technique is frequently the method used to address problems in everyday life.
Thus, computer novices are often able to grasp the basic ideas of object-oriented
programming easily, whereas people who are more computer literate are often
blocked by their own preconceptions. Alan Kay, for example, found that it
was often easier to teach Smalltalk to children than to computer profession-
als [Kay 1977].

In trying to understand exactly what is meant by the term object-oriented

programming, it is useful to examine the idea from several perspectives. The next
few sections outline two aspects of object-oriented programming; each illustrates
a particular reason that this technique should be considered an important new
tool.

1.4 A Way of Viewing the World

To illustrate some of the major ideas in object-oriented programming, let us
consider �rst how we might go about handling a real-world situation and then ask
how we could make the computer more closely model the techniques employed.

Suppose an individual named Chris wishes to send
owers to a friend named
Robin, who lives in another city. Because of the distance, Chris cannot simply
pick the
owers and take them to Robin in person. Nevertheless, it is a task
that is easily solved. Chris simply walks to a nearby
ower shop, run by a
orist
named Fred. Chris will tell Fred the kinds of
owers to send to Robin, and the
address to which they should be delivered. Chris can then be assured that the

owers will be delivered expediently and automatically.

1.4.1 Agents and Communities

At the risk of belaboring a point, let us emphasize that the mechanism that
was used to solve this problem was to �nd an appropriate agent (namely, Fred)
and to pass to this agent a message containing a request. It is the responsibility
of Fred to satisfy the request. There is some method{some algorithm or set of
operations{used by Fred to do this. Chris does not need to know the particular
method that Fred will use to satisfy the request; indeed, often the person making
a request does not want to know the details. This information is usually hidden

from inspection.

An investigation, however, might uncover the fact that Fred delivers a slightly
di�erent message to another
orist in the city where Robin lives. That
orist, in
turn, perhaps has a subordinate who makes the
ower arrangement. The
orist
then passes the
owers, along with yet another message, to a delivery person,
and so on. Earlier, the
orist in Robin's city had obtained her
owers from a

1.4. A WAY OF VIEWING THE WORLD 9

Chris Fred

@
@

Robin's Florist

 Wholesaler

Flower Arranger

�
�

E
E
E
E
E
E

Delivery PersonRobin

Grower

�
�

Gardeners

C
C

Figure 1.2: The community of agents helping delivery
owers

ower wholesaler who, in turn, had interactions with the
ower growers, each of
whom had to manage a team of gardeners.

So, our �rst observation of object-oriented problem solving is that the solu-
tion to this problem required the help of many other individuals (Figure 1.2).
Without their help, the problem could not be easily solved. We phrase this in a
general fashion as the following:

An object oriented program is structured as a community of inter-
acting agents, called objects. Each object has a role to play. Each
object provides a service, or performs an action, that is used by other
members of the community.

1.4.2 Messages and Methods

The chain reaction that ultimately resulted in the solution to Chris's problem
began with a request given to the
orist Fred. This request lead to other requests,
which lead to still more requests, until the
owers ultimately reached Chris's
friend Robin. We see, therefore, that members of this community interact with
each other by making requests. So, our next principle of object-oriented problem
solving is the vehicle used to indicate an action to be performed:

Action is initiated in object-oriented programming by the transmis-
sion of a message to an agent (an object) responsible for the action.
The message encodes the request for an action and is accompanied
by any additional information (arguments) needed to carry out the
request. The receiver is the object to whom the message is sent. If
the receiver accepts the message, it accepts the responsibility to carry
out the indicated action. In response to a message, the receiver will
perform some method to satisfy the request.

We have noted the important principle of information hiding in regard to
message passing{that is, the client sending the request need not know the actual

10 CHAPTER 1. THINKING OBJECT-ORIENTED

means by which the request will be honored. There is another principle, all
too human, that we see is implicit in message passing. If there is a task to
perform, the �rst thought of the client is to �nd somebody else he or she can
ask to do the work. This second reaction often becomes atrophied in many
programmers with extensive experience in conventional techniques. Frequently,
a di�cult hurdle to overcome is the idea in the programmer's mind that he or
she must write everything and not use the services of others. An important part
of object-oriented programming is the development of reusable components, and
an important �rst step in the use of reusable components is a willingness to trust
software written by others.

Messages versus Procedure Calls

Information hiding is also an important aspect of programming in conventional
languages. In what sense is a message di�erent from, say, a procedure call? In
both cases, there is a set of well-de�ned steps that will be initiated following the
request. But, there are two important distinctions.

The �rst is that in a message there is a designated receiver for that message;
the receiver is some object to which the message is sent. In a procedure call,
there is no designated receiver.

The second is that the interpretation of the message (that is, the method
used to respond to the message) is determined by the receiver and can vary with
di�erent receivers. Chris could give a message to a friend named Elizabeth, for
example, and she will understand it and a satisfactory outcome will be produced
(that is,
owers will be delivered to their mutual friend Robin). However, the
method Elizabeth uses to satisfy the request (in all likelihood, simply passing
the request on to Fred) will be di�erent from that used by Fred in response to
the same request.

If Chris were to ask Kenneth, a dentist, to send
owers to Robin, Kenneth
may not have a method for solving that problem. If he understands the request
at all, he will probably issue an appropriate error diagnostic.

Let us move our discussion back to the level of computers and programs.
There, the distinction between message passing and procedure calling is that,
in message passing, there is a designated receiver, and the interpretation{the
selection of a method to execute in response to the message{may vary with
di�erent receivers. Usually, the speci�c receiver for any given message will not
be known until run time, so the determination of which method to invoke cannot
be made until then. Thus, we say there is late binding between the message
(function or procedure name) and the code fragment (method) used to respond
to the message. This situation is in contrast to the very early (compile-time or
link-time) binding of name to code fragment in conventional procedure calls.

1.4. A WAY OF VIEWING THE WORLD 11

1.4.3 Responsibilities

A fundamental concept in object-oriented programming is to describe behavior in
terms of responsibilities. Chris's request for action indicates only the desired out-
come (
owers sent to Robin). Fred is free to pursue any technique that achieves
the desired objective, and in doing so will not be hampered by interference from
Chris.

By discussing a problem in terms of responsibilities we increase the level of
abstraction. This permits greater independence between objects, a critical factor
in solving complex problems. The entire collection of responsibilities associated
with an object is often described by the term protocol.

A traditional program often operates by acting on data structures, for exam-
ple changing �elds in an array or record. In contrast, an object oriented program
requests data structures (that is, objects) to perform a service. This di�erence
between viewing software in traditional, structured terms and viewing it from
an object-oriented perspective can be summarized by a twist on a well-known
quote:

Ask not what you can do to your data structures,
but rather ask what your data structures can do for you.

1.4.4 Classes and Instances

Although Chris has only dealt with Fred a few times, Chris has a rough idea
of the transaction that will occur inside Fred's
ower shop. Chris is able to
make certain assumptions based on previous experience with other
orists, and
hence Chris can expect that Fred, being an instance of this category, will �t
the general pattern. We can use the term Florist to represent the category (or
class) of all
orists. Let us incorporate these notions into our next principle of
object-oriented programming:

All objects are instances of a class. The method invoked by an object
in response to a message is determined by the class of the receiver.
All objects of a given class use the same method in response to similar
messages.

1.4.5 Class Hierarchies{Inheritance

Chris has more information about Fred{not necessarily because Fred is a
orist
but because he is a shopkeeper. Chris knows, for example, that a transfer of
money will be part of the transaction, and that in return for payment Fred
will o�er a receipt. These actions are true of grocers, stationers, and other
shopkeepers. Since the category Florist is a more specialized form of the category
Shopkeeper, any knowledge Chris has of Shopkeepers is also true of Florists and
hence of Fred.

12 CHAPTER 1. THINKING OBJECT-ORIENTED

'

&

$

%

Material Object'

&

$

%

Animal'

&

$

%

Mammal'

&

$

%

Human'

&

$

%

Shopkeeper'
&
$
%

Florist

Fred

Figure 1.3: { The categories surrounding Fred.

One way to think about how Chris has organized knowledge of Fred is in
terms of a hierarchy of categories (see Figure 1.3). Fred is a Florist, but Florist is
a specialized form of Shopkeeper. Furthermore, a Shopkeeper is also a Human; so
Chris knows, for example, that Fred is probably bipedal. A Human is a Mammal
(therefore they nurse their young and have hair), and a Mammal is an Animal
(therefore it breathes oxygen), and an Animal is a Material Object (therefore it
has mass and weight). Thus, quite a lot of knowledge that Chris has that is
applicable to Fred is not directly associated with him, or even with the category
Florist.

The principle that knowledge of a more general category is also applicable to
a more speci�c category is called inheritance. We say that the class Florist will
inherit attributes of the class (or category) Shopkeeper.

There is an alternative graphical technique often used to illustrate this rela-
tionship, particularly when there are many individuals with di�ering lineage's.
This technique shows classes listed in a hierarchical tree-like structure, with
more abstract classes (such as Material Object or Animal) listed near the top of

1.4. A WAY OF VIEWING THE WORLD 13

Material Objects
������������

Animal Plant

Mammal Flower

Dog Human Platypus

HHHHHHHHHHHH

Shopkeeper Artist Dentist

�
�

��

@
@
@@

XXXXXXXXXXXXXX

Carnation

�
�
��

B
B
BB

HHHHHHH

Florist Potter

Fido Fred Elizabeth Kenneth Phyl Robin's
owers

Figure 1.4: { A class hierarchy for various material objects.

the tree, and more speci�c classes, and �nally individuals, are listed near the
bottom. Figure 1.4 shows this class hierarchy for Fred. This same hierarchy
also includes Elizabeth, Chris's dog Fido, Phyl the platypus who lives at the
zoo, and the
owers the Chris is sending to Robin. Notice that the structure
and interpretation of this type of diagram is similar to the biological hierarchy
presented earlier in Figure 1.1.

Information that Chris possess about Fred because Fred is an instance of class
Human is also applicable to Elizabeth, for example. Information that Chris knows
about Fred because he is a Mammal is applicable to Fido as well. Information
about all members of Material Object is equally applicable to Fred and to his

owers. We capture this in the idea of inheritance:

Classes can be organized into a hierarchical inheritance structure.
A child class (or subclass) will inherit attributes from a parent class

higher in the tree. An abstract parent class is a class (such as Mam-

14 CHAPTER 1. THINKING OBJECT-ORIENTED

mal) for which there are no direct instances; it is used only to create
subclasses.

1.4.6 Method Binding and Overriding

Phyl the platypus presents a problem for our simple organizing structure. Chris
knows that mammals give birth to live children, and Phyl is certainly a Mammal,
yet Phyl (or rather his mate Phyllis) lays eggs. To accommodate this, we need
to �nd a technique to encode exceptions to a general rule.

We do this by decreeing that information contained in a subclass can override

information inherited from a parent class. Most often, implementations of this
approach takes the form of a method in a subclass having the same name as a
method in the parent class, combined with a rule for how the search for a method
to match a speci�c message is conducted:

The search for a method to invoke in response to a given message be-
gins with the class of the receiver. If no appropriate method is found,
the search is conducted in the parent class of this class. The search
continues up the parent class chain until either a method is found or
the parent class chain is exhausted. In the former case the method
is executed; in the latter case, an error message is issued. If methods
with the same name can be found higher in the class hierarchy, the
method executed is said to override the inherited behavior.

Even if a compiler cannot determine which method will be invoked at run
time, in many object-oriented languages, such as Java, it can determine whether
there will be an appropriate method and issue an error message as a compile-time
error diagnostic rather than as a run-time message.

The fact that both Elizabeth and Fred will react to Chris's messages, but use
di�erent methods to respond, is one form of polymorphism. As explained, that
Chris does not, and need not, know exactly what method Fred will use to honor
the request is an example of information hiding.

1.4.7 Summary of Object-Oriented Concepts

Alan Kay, considered by some to be the father of object-oriented programming,
identi�ed the following characteristics as fundamental to OOP [Kay 1993]:

1. Everything is an object.

2. Computation is performed by objects communicating with each other, re-
questing that other objects perform actions. Objects communicate by send-
ing and receiving messages. A message is a request for action bundled with
whatever arguments may be necessary to complete the task.

3. Each object has its own memory, which consists of other objects.

1.5. COMPUTATION AS SIMULATION * 15

4. Every object is an instance of a class. A class simply represents a grouping
of similar objects, such as integers or lists.

5. The class is the repository for behavior associated with an object. That
is, all objects that are instances of the same class can perform the same
actions.

6. Classes are organized into a singly rooted tree structure, called the inheri-
tance hierarchy. Memory and behavior associated with instances of a class
are automatically available to any class associated with a descendant in
this tree structure.

1.5 Computation as Simulation *

The view of programming represented by the example of sending
owers to a
friend is very di�erent from the conventional conception of a computer. The
traditional model describing the behavior of a computer executing a program
is a process-state or pigeon-hole model. In this view, the computer is a data
manager, following some pattern of instructions, wandering through memory,
pulling values out of various slots (memory addresses), transforming them in
some manner, and pushing the results back into other slots (see Figure 1.5). By
examining the values in the slots, one can determine the state of the machine or
the results produced by a computation. Although this model may be a more or
less accurate picture of what takes place inside a computer, it does little to help
us understand how to solve problems using the computer, and it is certainly not
the way most people (pigeon handlers and postal workers excepted) go about
solving problems.

In contrast, in the object-oriented framework we never mention memory ad-
dresses, variables, assignments, or any of the conventional programming terms.
Instead, we speak of objects, messages, and responsibility for some action. In
Dan Ingalls's memorable phrase:

Instead of a bit-grinding processor...plundering data structures, we
have a universe of well-behaved objects that courteously ask each
other to carry out their various desires [Ingalls 1981].

Another author has described object-oriented programming as \animistic":
a process of creating a host of helpers that form a community and assist the
programmer in the solution of a problem [Actor 1987].

This view of programming as creating a \universe" is in many ways similar
to a style of computer simulation called \discrete event-driven simulation." In
brief, in a discrete event-driven simulation the user creates computer models of
the various elements of the simulation, describes how they will interact with one

0Section headings followed by an asterisk indicate optional material.

16 CHAPTER 1. THINKING OBJECT-ORIENTED

"!

�
�� "!

�
��

a[1]: a[2]: a[3]: a[4]:
4 6 2 4

x:

47

i: j:
2 3

Figure 1.5: { Visualization of imperative programming.

another, and sets them moving. This is almost identical to the average object-
oriented program, in which the user describes what the various entities in the
universe for the program are, and how they will interact with one another, and
�nally sets them in motion. Thus, in object-oriented programming, we have the
view that computation is simulation [Kay 1977].

1.5.1 The Power of Metaphor

An easily overlooked bene�t to the use of object-oriented techniques is the power
of metaphor. When programmers think about problems in terms of behaviors
and responsibilities of objects, they bring with them a wealth of intuition, ideas,
and understanding from their everyday experience. When envisioned as pigeon
holes, mailboxes, or slots containing values, there is little in the programmer's
background to provide insight into how problems should be structured.

Although anthropomorphic descriptions such as the quote by Ingalls may
strike some people as odd, in fact they are a re
ection of the great expositive
power of metaphor. Journalists make use of metaphor every day, as in the
following description of object-oriented programming from Newsweek:

Unlike the usual programming method{writing software one line at a
time{NeXT's \object-oriented" system o�ers larger building blocks
that developers can quickly assemble the way a kid builds faces on
Mr. Potato Head.

Possibly this feature, more than any other, is responsible for the frequent ob-
servation that it is sometimes easier to teach object-oriented programming con-
cepts to computer novices than to computer professionals. Novice users quickly

1.5. COMPUTATION AS SIMULATION * 17

Figure 1.6: Mr. Potato Head, an Object-Oriented Toy

18 CHAPTER 1. THINKING OBJECT-ORIENTED

adapt the metaphors with which they are already comfortable from their every-
day life, whereas seasoned computer professionals can be blinded by an adherence
to more traditional ways of viewing computation.

1.5.2 Avoiding In�nite Regression

Of course, objects cannot always respond to a message by politely asking another
object to perform some action. The result would be an in�nite circle of requests,
like two gentlemen each politely waiting for the other to go �rst before entering
a doorway, or like a bureaucracy of paper pushers, each passing on all papers to
some other member of the organization. At some point, at least a few objects
need to perform some work besides passing on requests to other agents. This
work is accomplished di�erently in various object-oriented languages.

In blended object-oriented/imperative languages, such as C++, Object Pascal,
and Objective-C, it is accomplished by methods written in the base (non-object-
oriented) language. In more purely object-oriented languages, such as Smalltalk
or Java, it is accomplished by \primitive" or \native" operations that are pro-
vided by the underlying system.

1.6 A Brief History *

It is commonly thought that object-oriented programming is a relatively recent
phenomenon in computer science. To the contrary, in fact, almost all the ma-
jor concepts we now associate with object-oriented programs, such as objects,
classes, and inheritance hierarchies, were developed in the 1960's as part of a lan-
guage called Simula, designed by researchers at the Norwegian Computing Cen-
ter. Simula, as the name suggests, was a language inspired by problems involving
the simulation of real life systems. However the importance of these constructs,
even to the developers of Simula, was only slowly recognized [Nygaard 81].

In the 1970's Alan Kay organized a research group at Xerox PARC (the Palo
Alto Research Center). With great prescience, Kay predicated the coming revo-
lution in personal computing that was to develop nearly a decade later (see, for
example, his 1977 article in Scienti�c American [Kay 1977]). Kay was concerned
with discovering a programming language that would be understandable to non
computer professionals, to ordinary people with no prior training in computer
use.1 He found in the notion of classes and computing as simulation a metaphor
that could easily be understood by novice users, as he then demonstrated by a
series of experiments conducted at PARC using children as programmers. The

0Section headings followed by an asterisk indicate optional material.
1I have always found it ironic that Kay missed an important point. He thought that to use

a computer one would be required to program a computer. Although he correctly predicated

in 1977 the coming trend in hardware, few could have predicated at that time the rapid

development of general purpose computer applications that was to accompany, perhaps even

drive, the introduction of personal computers. Nowadays the vast majority of people who use

personal computers have no idea how to program.

1.6. A BRIEF HISTORY * 19

programming language developed by his group was named Smalltalk. This lan-
guage evolved through several revisions during the decade. A widely read 1981
issue of Byte magazine, in which the quote by Ingalls presented earlier appears,
did much to popularize the concepts developed by Kay and his team at Xerox.

Roughly contemporaneous with Kays work was another project being con-
ducted on the other side of the country. Bjarne Stroustrup, a researcher at Bell
Laboratories who had learned Simula while completing his doctorate at Cam-
bridge University in England, was developing an extension to the C language
that would facilitate the creation of objects and classes [Stroustrup 82]. This
was to eventually evolve into the language C++ [Stroustrup 1994].

With the dissemination of information on these and other similar projects,
an explosion of research in object-oriented programming techniques began. By
the time of the �rst major conference on object-oriented programming, in 1986,
there were literally dozens of new programming languages vying for acceptance.
These included Ei�el [Meyer 1988a], Objective-C [Cox 1986], Actor [Actor 1987],
Object Pascal, and various Lisp dialects.

In the two decades since the 1986 OOPSLA conference, object-oriented pro-
gramming has moved from being revolutionary to being mainstream, and in the
process has transformed a major portion of the �eld of computer science as a
whole.

Chapter Summary

� Object-oriented programming is not simply a few new features added to
programming languages. Rather, it is a new way of thinking about the
process of decomposing problems and developing programming solutions.

� Object-oriented programming views a program as a collection of loosely
connected agents, termed objects. Each object is responsible for speci�c
tasks. It is by the interaction of objects that computation proceeds. In
a certain sense, therefore, programming is nothing more or less than the
simulation of a model universe.

� An object is an encapsulation of state (data values) and behavior (op-
erations). Thus, an object is in many ways similar to special purpose
computer.

� The behavior of objects is dictated by the object class. Every object is
an instance of some class. All instances of the same class will behave in a
similar fashion (that is, invoke the same method) in response to a similar
request.

� An object will exhibit its behavior by invoking a method (similar to ex-
ecuting a procedure) in response to a message. The interpretation of the
message (that is, the speci�c method used) is decided by the object and
may di�er from one class of objects to another.

20 CHAPTER 1. THINKING OBJECT-ORIENTED

� Classes can be linked to each other by means of the notion of inheritance.
Using inheritance, classes are organized into a hierarchical inheritance tree.
Data and behavior associated with classes higher in the tree can also be
accessed and used by classes lower in the tree. Such classes are said to
inherit their behavior from the parent classes.

� Designing an object oriented program is like organizing a community of in-
dividuals. Each member of the community is given certain responsibilities.
The achievement of the goals for the community as a whole come about
through the work of each member, and the interactions of members with
each other.

� By reducing the interdependency among software components, object-
oriented programming permits the development of reusable software sys-
tems. Such components can be created and tested as independent units,
in isolation from other portions of a software application.

� Reusable software components permit the programmer to deal with prob-
lems on a higher level of abstraction. We can de�ne and manipulate objects
simply in terms of the messages they understand and a description of the
tasks they perform, ignoring implementation details.

Further Reading

I noted earlier that many consider Alan Kay to be the father of object-oriented
programming. Like most simple assertions, this one is only somewhat support-
able. Kay himself [Kay 1993] traces much of the in
uence on his development of
Smalltalk to the earlier computer programming language Simula, developed in
Scandinavia in the early 1960s [Dahl 1966, Kirkerud 1989]. A more accurate his-
tory would be that most of the principles of object-oriented programming were
fully worked out by the developers of Simula, but that these would have been
largely ignored by the profession had they not been rediscovered by Kay in the
creation of the Smalltalk programming language. A widely read 1981 issue of
Byte magazine did much to popularize the concepts developed by Kay and his
team at Xerox PARC.

The term \software crisis" seems to have been coined by Doug McIlroy at
a 1968 NATO conference on software engineering. It is curious that we have
been in a state of crisis now for more than half the life of computer science as a
discipline. Despite the end of the Cold War, the end of the software crisis seems to
be no closer now than it was in 1968. See, for example, Gibb's article \Software's
Chronic Crisis" in the September 1994 issue of Scienti�c American [Gibbs 1994].

To some extent, the software crisis may be largely illusory. For example, tasks
considered exceedingly di�cult �ve years ago seldom seem so daunting today.
It is only the tasks that we wish to solve today that seem, in comparison, to be
nearly impossible, which seems to indicate that the �eld of software development
has, indeed, advanced steadily year by year.

Further Reading 21

The quote from the American linguist Edward Sapir is taken from \The Re-
lation of Habitual Thought and Behavior to Language," reprinted in Language,

Thought and Reality [Whorf 1956]. This book contains several interesting pa-
pers on the relationships between language and our habitual thinking processes.
I urge any serious student of computer languages to read these essays; some of
them have surprising relevance to arti�cial languages. (An undergraduate once
exclaimed to me \I didn't know the Klingon was a linguist!").

Another interesting book along similar lines is The Alphabet E�ect by Robert
Logan [Logan 1986], which explains in terms of language why logic and science
developed in the West while for centuries China had superior technology. In a
more contemporary investigation of the e�ect of natural language on computer
science, J. Marshall Unger [Unger 1987] describes the in
uence of the Japanese
language on the much-heralded Fifth Generation project.

The commonly held observation that Eskimo languages have many words
for snow was debunked by Geo�rey Pullum in his book of essays on linguis-
tics [Pullum 1991]. In an article in the Atlantic Monthly (\In Praise of Snow"
January 1995), Cullen Murphy pointed out that the vocabulary used to discuss
snow among English speakers for whom a distinction between types of snow is
important{namely, those who perform research on the topic{is every bit as large
or larger than that of the Eskimo.

Those who would argue in favor of the Sapir-Whorf hypothesis have a dif-
�cult problem to overcome; namely, the simple question \Can you give me an
example?" Either they can, which (since it must be presented in the language
of the speaker), serves to undercut their argument. Or they cannot, which also
weakens their argument. In any case, the point is irrelevant to our discussion.
It is certainly true that groups of individuals with common interests tend to
develop their own specialized vocabulary, and once developed, the vocabulary
itself tends to direct their thoughts along paths that may not be natural to those
outside the group. Such is the case with OOP. While object-oriented ideas can,
with discipline, be used without an object-oriented language, the use of object-
oriented terms helps direct the programmer's thought along lines that may not
have been obvious without the OOP terminology.

My history is slightly imprecise with regard to Church's conjecture and Turing
machines. Church actually conjectured about partial functions [Church 1936];
which were later shown to be equivalent to computations performed with Turing
machines [Turing 1936]. Kleene described the conjecture in the form we have
here, also giving it the name by which it has become known. Rogers gives a
good summary of the arguments for the equivalence of various computational
models [Rogers 1967].

Information on the history of Smalltalk can be found in Kays article from the
History of Programming Languages conference [Kay 1993]. Bjarne Stroustrup
has provided a history of C++ [Stroustrup 1994]. A more general history of
OOP is presented in The Handbook of Programming Languages [Salus 1998].

Like most terms that have found their way into the popular jargon, object-
oriented is used more often than it is de�ned. Thus, the question What is object-

22 CHAPTER 1. THINKING OBJECT-ORIENTED

oriented programming? is surprisingly di�cult to answer. Bjarne Stroustrup has
quipped that many arguments appear to boil down to the following syllogism:

� X is good.

� Object-oriented is good.

� Ergo, X is object-oriented [Stroustrup 1988].

Roger King argued [Kim 1989], that his cat is object-oriented. After all, a cat
exhibits characteristic behavior, responds to messages, is heir to a long tradition
of inherited responses, and manages its own quite independent internal state.

Many authors have tried to provide a precise description of the proper-
ties a programming language must possess to be called object-oriented. See,
for example, the analysis by Josephine Micallef [Micallef 1988], or Peter Weg-
ner [Wegner 1986]. Wegner, for example, distinguishes object-based languages,
which support only abstraction (such as Ada), from object-oriented languages,
which must also support inheritance.

Other authors{notably Brad Cox [Cox 1990]{de�ne the term much more
broadly. To Cox, object-oriented programming represents the objective of pro-
gramming by assembling solutions from collections of o�-the-shelf subcompo-
nents, rather than any particular technology we may use to achieve this objec-
tive. Rather than drawing lines that are divisive, we should embrace any and
all means that show promise in leading to a new software Industrial Revolution.
Cox's book on OOP [Cox 1986], although written early in the development of
object-oriented programming and now somewhat dated in details, is nevertheless
one of the most readable manifestos of the object-oriented movement.

Self Study Questions

1. What is the original meaning of the word paradigm?

2. How do objects interact with each other?

3. How are messages di�erent from procedure calls?

4. What is the name applied to describe an algorithm an object uses to re-
spond to a request?

5. Why does the object-oriented approach naturally imply a high degree of
information hiding?

6. What is a class? How are classes linked to behavior?

7. What is a class inheritance hierarchy? How is it linked to classes and
behavior?

8. What does it mean for one method to override another method from a
parent class?

EXERCISES 23

9. What are the basic elements of the process-state model of computation?

10. How does the object-oriented model of computation di�er from the process-
state model?

11. In what way is a object oriented program like a simulation?

Exercises

1. In an object-oriented inheritance hierarchy, each level is a more specialized
form of the preceding level. Give an example of a hierarchy found in every-
day life that has this property. Some types of hierarchy found in everyday
life are not inheritance hierarchies. Give an example of a noninheritance
hierarchy.

2. Look up the de�nition of paradigm in at least three dictionaries. Relate
these de�nitions to computer programming languages.

3. Take a real-world problem, such as the task of sending
owers described
earlier, and describe its solution in terms of agents (objects) and responsi-
bilities.

4. If you are familiar with two or more distinct computer programming lan-
guages, give an example of a problem showing how one language would
direct the programmer to one type of solution, and a di�erent language
would encourage an alternative solution.

5. If you are familiar with two or more distinct natural languages, describe a
situation that illustrates how one language directs the speaker in a certain
direction, and the other language encourages a di�erent line of thought.

6. Argue either for or against the position that computing is basically simu-
lation. (You may want to read the Scienti�c American [Kay 1977] article
by Kay cited earlier.)

