
Chapter 2

Abstraction

If you open an atlas you will often �rst see a map of the world. This map will
show only the most signi�cant features. For example, it may show the various
mountain ranges, the ocean currents, and other extremely large structures. But
small features will almost certainly be omitted.

A subsequent map will cover a smaller geographical region, and will typically
possess more detail. For example, a map of a single continent (such as South
America) may now include political boundaries, and perhaps the major cities.
A map over an even smaller region, such as a country, might include towns as
well as cities, and smaller geographical features, such as the names of individual
mountains. A map of an individual large city might include the most important
roads leading into and out of the city. Maps of smaller regions might even
represent individual buildings.

Notice how, at each level, certain information has been included, and certain
information has been purposely omitted. There is simply no way to represent all
the details when an artifact is viewed at a higher level of abstraction. And even
if all the detail could be described (using tiny writing, for example) there is no
way that people could assimilate or process such a large amount of information.
Hence details are simply left out.

Fundamentally, people use only a few simple tools to create, understand,
or manage complex systems. One of the most important techniques is termed
abstraction.

Abstraction

Abstraction is the purposeful suppression, or hiding, of some
details of a process or artifact, in order to bring out more clearly
other aspects, details, or structure.

Consider the average persons understanding of an automobile. A laymans
view of an automobile engine, for example, is a device that takes fuel as input
and produces a rotation of the drive shaft as output. This rotation is too fast to

25

26 CHAPTER 2. ABSTRACTION

connect to the wheels of the car directly, so a transmission is a mechanism used
to reduce a rotation of several thousand revolutions per minute to a rotation of
several revolutions per minute. This slower rotation can then be used to propel
the car. This is not exactly correct, but it is su�ciently close for everyday
purposes. We sometimes say that by means of abstraction we have constructed
a model of the actual system.

���� ����transmission
engine

fuel

���
�

XXXXXXXX

In forming an abstraction, or model, we purposely avoid the need to un-
derstand many details, concentrating instead of a few key features. We often
describe this process with another term, information hiding.

Information Hiding

Information hiding is the purposeful omission of details in the
development of an abstract representation.

2.1 Layers of Abstraction

In a typical program written in the object-oriented style there are many impor-
tant levels of abstraction. The higher level abstractions are part of what makes
an object-oriented program object-oriented.

At the highest level a program is viewed as a \community" of objects that
must interact with each other in order to achieve their common goal:

��@@
A
A
A
A
A
A
A
A
AA

XXXXXXX

��@@

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
��
��

��
��

��
��

��
��
��

����@@

��@@�������
��@@ HHHHH

��������
��@@

�
�
�
�
�
�
�

��@@
@

@@

��@@

2.1. LAYERS OF ABSTRACTION 27

This notion of community �nds expression in object-oriented development
in two distinct forms. First there is the community of programmers, who must
interact with each other in the real world in order to produce their application.
And second there is the community of objects that they create, which must
interact with each other in a virtual universe in order to further their common
goals. Key ideas such as information hiding and abstraction are applicable to
both levels.

Each object in this community provides a service that is used by other mem-
bers of the organization. At this highest level of abstraction the important
features to emphasize are the lines of communication and cooperation, and the
way in which the members must interact with each other.

The next level of abstraction is not found in all object-oriented programs,
nor is it supported in all object-oriented languages. However, many languages
permit a group of objects working together to be combined into a unit. Examples
of this idea include packages in Java, name spaces in C++, or units in Delphi.
The unit allows certain names to be exposed to the world outside the unit, while
other features remain hidden inside the unit.

��@@ HHHHH

��@@
�
�
�
�
�
�
�

��@@
@
@@

��@@

'

&

$

%

Package

"DataStructures"

For readers familiar with concepts found in earlier languages, this notion of
a unit is the heir to the idea of a module in languages such as C or Modula.
Later in this chapter we will present a short history of programming language
abstractions, and note the debt that ideas of object-oriented programming owe
to the earlier work on modules.

The next two levels of abstraction deal with the interactions between two
individual objects. Often we speak of objects as proving a service to other
objects. We build on this intuition by describing communication as an interaction
between a client and a server.

28 CHAPTER 2. ABSTRACTION

Client

�
��@

@@

~

Server

�
��@

@@

~
� -

We are not using the term server in the technical sense of, say, a web server.
Rather, here the term server simply means an object that is providing a service.
The two layers of abstraction refer to the two views of this relationship; the view
from the client side and the view from the server side.

In a good object-oriented design we can describe and discuss the services
that the server provides without reference to any actions that the client may
perform in using those services. One can think of this as being like a billboard
advertisement:

Services O�ered:

void push (Object val); $1
Object top (); $1
void pop (); $0.75

Joe's Data Structure Warehouse

\For All your Data Structure Needs!"

The billboard describes, for example, the services provided by a data struc-
ture, such as a Stack. Often this level of abstraction is represented by an inter-
face, a class-like mechanism that de�nes behavior without describing an imple-
mentation:

interface Stack f
public void push (Object val);

public Object top () throws EmptyStackException;

public void pop () throws EmptyStackException;

g

2.1. LAYERS OF ABSTRACTION 29

Finding the Right Level of Abstraction

In early stages of software development a critical problem is �nding the right
level of abstraction. A common error is to dwell on the lowest levels, worrying
about the implementation details of various key components, rather than striving
to ensure that the high level organizational structure promotes a clean separation
of concerns.

The programmer (or, in larger projects, the design team) must walk a �ne line
in trying to identify the right level of abstraction at any one point of time. One
does not want to ignore or throw away too much detail about a problem, but also
one must not keep so much detail that important issues become obscured.

The next level of abstraction looks at the same boundary but from the server
side. This level considers a concrete implementation of the abstract behavior.
For example, there are any number of data structures that can be used to satisfy
the requirements of a Stack. Concerns at this level deal with the way in which
the services are being realized.

public class LinkedList implements Stack ... f

public void pop () throws EmptyStackException f ... g

...

g

Finally, the last level of abstraction considers a single task in isolation; that
is, a single method. Concerns at this level of abstraction deal with the precise
sequence of operations used to perform just this one activity. For example, we
might investigate the technique used to perform the removal of the most recent
element placed into a stack.

public class LinkedList implements Stack ... f

...

public void pop () throws EmptyStackException f

if (isEmpty())

throw new EmptyStackException();

removeFirst(); // delete �rst element of list

g

...

g

Each level of abstraction is important at some point during software develop-
ment. In fact, programmers are often called upon to quickly move back and forth
between di�erent levels of abstraction. We will see analysis of object-oriented

30 CHAPTER 2. ABSTRACTION

abstraction�
�
�
�
�
�
�
�
�
�

A
A
A
A
A
A
A
A
A
A multiple views

division
into parts

specialization class hierarchies

�
�
�
�
�
�
�
�

A
A
A
A
A
A
A
A catalogs

repetition

service view

���
�

XXXX

��
��

HHHH

���
�

XXXX

��
��

HHHH

dictionaries

cross references

composition

recursive data structures

recursive algorithms

mathematical induction

object oriented programs

patterns

ADT

Figure 2.1: Some Techniques for Handling Complexity, with Examples

programs performed at each of these levels of abstraction as we proceed through
the book.

2.2 Other Forms of Abstraction

Abstraction is used to help understand a complex system. In a certain sense,
abstraction is the imposition of structure on a system. The structure we impose
may reect some real aspects of the system (a car really does have both an engine
and a transmission) or it may simply be a mental abstraction we employ to aid
in our understanding.

This idea of abstraction can be further subdivided into a variety of di�erent
forms (Figure 2.1). A common technique is to divide a layer into constituent
parts. This is the approach we used when we described an automobile as being
composed of the engine, the transmission, the body and the wheels. The next
level of understanding is then achieved by examining each of these parts in turn.
This is nothing more than the application of the old maxim divide and conquer.

Other times we use di�erent types of abstraction. Another form is the idea
of layers of specialization (Figure 2.2). An understanding of an automobile is
based, in part, on knowledge that it is a wheeled vehicle, which is in turn a means

of transportation. There is other information we know about wheeled vehicles,
and that knowledge is applicable to both an automobile and a bicycle. There is
other knowledge we have about various di�erent means of transportation, and
that information is also applicable to pack horses as well as bicycles. Object

2.2. OTHER FORMS OF ABSTRACTION 31

bicycle
�� @@

wheeled vehicle

automobile

��
�

means of transportation
HHH

pack horse

Figure 2.2: Layers of Specialization

Is-a and Has-a Abstraction

The ideas of division into parts and division into specializations represent the two
most important forms of abstraction used in object-oriented programming. These
are commonly known as is-a and has-a abstraction.

The idea of division into parts is has-a abstraction. The meaning of this term is
easy to understand; a car \has-a" engine, and it \has-a" transmission, and so on.

The concept of specialization is referred to as \is-a" abstraction. Again, the term
comes from the English sentences that can be used to illustrate the relationships.
A bicycle \is-a" wheeled vehicle, which in turn \is-a" means of transportation.

Both is-a and has-a abstractions will reappear in later chapters and be tied to
speci�c programming language features.

oriented languages make extensive use of this form of abstraction.

Yet another form of abstraction is to provide multiple views of the same
artifact. Each of the views can emphasize certain detail and suppress others,
and thus bring out di�erent features of the same object. A laymans view of a
car, for example, is very di�erent from the view required by a mechanic.

2.2.1 Division into Parts

The most common technique people use to help understand complex systems is
to combine abstraction with a division into component parts. Our description
of an automobile is an example of this. The next level of understanding is then
achieved by taking each of the parts, and performing the same sort of analysis
at a �ner level of detail. A slightly more precise description of an engine, for
example, views it as a collection of cylinders, each of which converts an explosion
of fuel into a vertical motion, and a crankshaft, which converts the up and down
motion of the cylinder into a rotation.

32 CHAPTER 2. ABSTRACTION

������
B
B
B
B
B
B

6

?

Another example might be organizing information about motion in a human
body. At one level we are simply concerned with mechanics, and we consider the
body as composed of bone (for rigidity), muscles (for movement), eyes and ears
(for sensing), the nervous system (for transferring information) and skin (to bind
it all together). At the next level of detail we might ask how the muscles work,
and consider issues such as cell structure and chemical actions. But chemical
actions are governed by their molecular structure. And to understand molecules
we break them into their individual atoms.

Any explanation must be phrased at the right level of abstraction; trying to
explain how a person can walk, for example, by understanding the atomic level
details is almost certainly di�cult, if not impossible.

2.2.2 Encapsulation and Interchangeability

A key step in the creation of large systems is the division into components.
Suppose instead of writing software, we are part of a team working to create
a new automobile. By separating the automobile into the parts engine and
transmission, it is possible to assign people to work on the two aspects more or
less independently of each other. We use the term encapsulation to mean that
there is a strict division between the inner and the outer view; those members of
the team working on the engine need only an abstract (outside, as it were) view
of the transmission, while those actually working on the transmission need the
more detailed inside view.

An important bene�t of encapsulation is that it permits us to consider the
possibility of interchangeability. When we divide a system into parts, a desirable
goal is that the interaction between the parts is kept to a minimum. For example,
by encapsulating the behavior of the engine from that of a transmission we permit
the ability to exchange one type of engine with another without incurring an
undue impact on the other portions of the system.

For these ideas to be applicable to software systems, we need a way to discuss
the task that a software component performs, and separate this from the way in
which the component ful�lls this responsibility.

2.2. OTHER FORMS OF ABSTRACTION 33

Catalogs

When the number of components in a system becomes large it is often useful to
organize the items by means of a catalog. We use many di�erent forms of catalog in
everyday life. Examples include a telephone directory, a dictionary, or an internet
search engine. Similarly, there are a variety of di�erent catalogs used in software.
One example is a simple list of classes. Another catalog might be the list of methods
de�ned by a class. A reference book that describes the classes found in the Java
standard library is a very useful form of catalog. In each of these cases the idea is
to provide the user a mechanism to quickly locate a single part (be it class, object,
or method) from a larger collection of items.

2.2.3 Interface and Implementation

In software we use the terms interface and implementation to describe the dis-
tinction between the what aspects of a task, and the how features; between the
outside view, and the inside view. An interface describes what a system is de-
signed to do. This is the view that users of the abstraction must understand.
The interface says nothing about how the assigned task is being performed. So to
work, an interface is matched with an implementation that completes the abstrac-
tion. The designers of an engine will deal with the interface to the transmission,
while the designers of the transmission must complete an implementation of this
interface.

Similarly, a key step along the path to developing complex computer systems
will be the division of a task into component parts. These parts can then be
developed by di�erent members of a team. Each component will have two faces,
the interface that it shows to the outside world, and an implementation that it
uses to ful�ll the requirements of the interface.

The division between interface and implementation not only makes it easier
to understand a design at a high level (since the description of an interface
is much simpler than the description of any speci�c implementation), but also
make possible the interchangeability of software components (as I can use any
implementation that satis�es the speci�cations given by the interface).

2.2.4 The Service View

The idea that an interface describes the service provided by a software compo-
nent without describing the techniques used to implement the service is at the
heart of a much more general approach to managing the understanding of com-
plex software systems. It was this sort of abstraction that we emphasized when
we described the ower story in Chapter 1. Ultimately in that story a whole
community of people became involved in the process of sending owers:

34 CHAPTER 2. ABSTRACTION

Chris Fred

@
@

Robin's Florist

 Wholesaler

Flower Arranger

�
�

E
E
E
E
E
E

Delivery PersonRobin

Grower

�
�

Gardeners

C
C

Each member of the community is providing a service that is used by other
members of the group. No member could solve the problem on their own, and
it is only by working together that the desired outcome is achieved.

2.2.5 Composition

Composition is another powerful technique used to create complex structures
out of simple parts. The idea is to begin with a few primitive forms, and add
rules for combining forms to create new forms. The key insight in composition
is to permit the combination mechanism to be used both on the new forms as
well as the original primitive forms.

A good illustration of this technique is the concept of regular expressions.
Regular expressions are a simple technique for describing sets of values, and have
been extensively studied by theoretical computer scientists. The description of a
regular expression begins by identifying a basic alphabet, for example the letters
a, b, c and d. Any single example of the alphabet is a regular expression. We
next add a rule that says the composition of two regular expressions is a regular
expression. By applying this rule repeatedly we see that any �nite string of
letters is a regular expression:

abaccaba

The next combining rule says that the alternation (represented by the vertical
bar j) of two regular expressions is a regular expression. Normally we give this
rule a lower precedence that composition, so that the following pattern represents
the set of three letter values that begin with ab, and and end with either an a,
c or d:

aba j abc j abd

Parenthesis can be used for grouping, so that the previous set can also be de-
scribed as follows:

ab(ajcjd)

Finally the � symbol (technically known as the kleene-star) is used to represent
the concept \zero or more repetitions". By combining these rules we can describe
quite complex sets. For example, the following describes the set of values that
begin with a run of a's and b's followed by a single c, or a two character sequence
dd, followed by the letter a.

2.2. OTHER FORMS OF ABSTRACTION 35

(((ajb)*c)jdd)a

This idea of composition is also basic to type systems. We begin with the
primitive types, such as int and boolean. The idea of a class then permits the
user to create new types. These new types can include data �elds constructed
out of previous types, either primitive or user-de�ned. Since classes can build
on previously de�ned classes, very complex structure can be constructed piece
by piece.

class Box f // a box is a new data type

...

private int value; // built out of the existing type int

g

Yet another application of the principle of composition is the way that many
user interface libraries facilitate the layout of windows. A window is composed
from a few simple data types, such as buttons, sliders, and drawing panels.
Various di�erent types of layout managers create simple structures. For example,
a grid layout de�nes a rectangular grid of equal sized components, a border layout
manger permits the speci�cation of up to �ve components in the north, south,
east, west, and center of a screen. As with regular expressions, the key is that
windows can be structured as part of other windows. Imagine, for example, that
we want to de�ne a window that has three sliders on the left, a drawing panel in
the middle, a bank of sixteen buttons organized four by four on the right, and a
text output box running along the top. (We will develop just such an application
in Chapter 22. A screen shot is shown in Figure 22.4.) We can do this by laying
simple windows inside of more complex windows (Figure 2.3).

Many computer programs can themselves be considered a product of compo-
sition, where the method or procedure call is the mechanism of composition. We
begin with the primitive statements in the language (assignments and the like).
With these we can develop a library of useful functions. Using these functions as
new primitives, we can then develop more complex functions. We continue, each
layer being built on top of earlier layers, until eventually we have the desired
application.

2.2.6 Layers of Specialization

Yet another approach to dealing with complexity is to structure abstraction using
layers of specialization. This is sometimes referred to as a taxonomy. For exam-
ple, in biology we divide living things into animals and plants. Living things are
then divided into vertebrates and invertebrates. Vertebrates eventually includes
mammals, which can be divided into (among other categories) cats and dogs,
and so on.

The key di�erence between this and the earlier abstraction is that the more
specialized layers of abstraction (for example, a cat) is indeed a representative

36 CHAPTER 2. ABSTRACTION

�����
PPPPP

������
XXXXXX

���
HHH

:::

Color =

(((((((((
hhhhhhhhh

���
HHH

Color = [40,60,50]

Figure 2.3: Composition in the Creation of User Interfaces

Nonstandard Behavior

Phyl and his friends remind us that there are almost never generalizations with-
out their being exceptions. A platypus (such as phyl) is a mammal that lays eggs.
Thus, while we might associate the tidbit of knowledge \gives birth to live young"
with the category Mammal, we then need to amend this with the caveat \lays eggs"
when we descend to the category Platypus.

Object-oriented languages will also need a mechanism to override information
inherited from a more general category. We will explore this in more detail once we
have developed the idea of class hierarchies.

2.2. OTHER FORMS OF ABSTRACTION 37

Object

Button Checkbox Choice

Component

Label List Scrollbar CanvasContainer
�

�
�

Q
Q
Q

XXXXXXXX
TextComponent

�
�
�

Q
Q
Q

Panel Window ScrollPanel
�
�
�

Q
Q
Q

TextArea TextField Dialog Frame

Figure 2.4: The AWT class hierarchy

of the more general layer of abstraction (for example, an animal). This was not
true when, in an earlier example, we descended from the characterization of a
muscle to the description of di�erent chemical interactions. These two di�erent
types of relations are sometimes described using the heuristic keywords \is-a"
and \has-a". The �rst relationship, that of parts to a whole, is a has-a relation,
as in the sentence \a car has an engine". In contrast, the specialization relation
is described using is-a, as in \a cat is a mammal".

But in practice our reason for using either type of abstraction is the same.
The principle of abstraction permits us to suppress some details so that we can
more easily characterize a fewer number of features. We can say that mammals
are animals that have hair and nurse their young, for example. By associating
this fact at a high level of abstraction, we can then apply the information to all
more specialized categories, such as cats and dogs.

The same technique is used in object-oriented languages. New interfaces can
be formed from existing interfaces. A class can be formed using inheritance from
an existing class. In doing so, all the properties (data �elds and behavior) we
associate with the original class become available to the new class.

In a case study later in this book we will examine the Java AWT (Abstract
Windowing Toolkit) library. When a programmer creates a new application
using the AWT they declare their main class as a subclass of Frame, which in
turn is linked to many other classes in the AWT library (Figure 2.4). A Frame
is an special type of application window, but it is also a more specialized type
of the general class Window. A Window can hold other graphical objects, and is
hence a type of Container. Each level of the hierarchy provides methods used by
those below. Even the simplest application will likely use the following:

38 CHAPTER 2. ABSTRACTION

setTitle(String) inherited from class Frame
setSize(int, int) inherited from class Component
show() inherited from class Window
repaint() inherited from class Component
paint() inherited from Component, then

overridden in the programmers new application class

2.2.7 Patterns

When faced with a new problem, most people will �rst look to previous problems
they have solved that seem to have characteristics in common with the new
task. These previous problems can be used as a model, and the new problem
attacked in a similar fashion, making changes as necessary to �t the di�erent
circumstances.

This insight lies behind the idea of a software pattern. A pattern is nothing
more than an attempt to document a proven solution to a problem so that future
problems can be more easily handled in a similar fashion. In the object-oriented
world this idea has been used largely to describe patterns of interaction between
the various members of an object community.

A simple example will illustrate this idea of a pattern. Imagine one is devel-
oping an application that will operate over a network. That means that part of
the application will run on one computer, and part will run on another computer
linked by a network connection. Creating the actual connection between the two
computers, and transmitting information along this connection, are details that
are perhaps not relevant to large portions of the application. One way to struc-
ture these relationships is to use a type of pattern termed a proxy. The proxy
is an intermediary that hides the network connection. Objects can interact with
the proxy, and not be aware that any type of network connection is involved at
all. When the proxy receives a request for data or action, it bundles the request
as a package, transmits the package over the network, recieves the response, un-
packages the response and hands it back to the client. In this fashion the client
is completely unaware of the details of the network protocol.

Client Proxy Server���Q
QQ���

Notice how the description of the pattern has captured certain salient points
of the interaction (the need to hide the communication protocol from the client)
while omitting many other aspects of the interaction (for example, the particular
information being communicated between client and server). We will have more
to say about patterns later in Chapter 24.

2.3. A SHORT HISTORY OF ABSTRACTION MECHANISMS* 39

2.3 A Short History of Abstraction Mechanisms*

Each of the abstraction mechanisms we have described in this chapter was the
end product of a long process of searching for ways to deal with complexity.
Another way to appreciate the role of object-oriented programming is to quickly
review the history of mechanisms that computer languages have used to manage
complexity. When seen in this perspective, object-oriented techniques are not
at all revolutionary, but are rather a natural outcome of a progression from
procedures, to modules, to abstract data types, and �nally to objects.

2.3.1 Assembly Language

The techniques used to control the �rst computers were hardly what we would
today term a language. Memory locations were described by address (i.e., lo-
cation 372), not by name or purpose. Operations were similarly described by a
numeric operation code. For example, an integer addition might be written as
opcode 33, an integer subtraction as opcode 35. The following program might
add the contents of location 372 to that of 376, then subtract from the result
the value stored in location 377:

33 372 376
35 377 376
...

One of the earliest abstraction mechanisms was the creation of an assembler;
a tool that could take a program written in a more human-friendly form, and
translate it into a representation suitable for execution by the machine. The
assembler permitted the use of symbolic names. The previous instructions might
now be written as follows:

ADDI a,x
SUBI b,x
... ...

This simple process was the �rst step in the long process of abstraction.
Abstraction allowed the programmer to concentrait more e�ort on de�ning the
task to be performed, and less on the steps necessary to complete the task.

2.3.2 Procedures

Procedures and functions represent the next improvement in abstraction in pro-
gramming langauges. Procedures allowed tasks that were executed repeatedly,
or executed with only slight variations, to be collected in one place and reused
rather than being duplicated several times. In addition, the procedure gave the
�rst possibility for information hiding. One programmer could write a proce-
dure, or a set of procedures, that was used by many others. Other programmers

0Section headings followed by an asterisk indicate optional material.

40 CHAPTER 2. ABSTRACTION

int datastack[100];

int datatop = 0;

void init()

f
datatop = 0;

g

void push(int val)

f
if (datatop < 100)

datastack [datatop++] = val;

g

int top()

f
if (datatop > 0)

return datastack [datatop - 1];

return 0;

g

int pop()

f
if (datatop > 0)

return datastack [--datatop];

return 0;

g

Figure 2.5: { Failure of procedures in information hiding.

did not need to know the exact details of the implementation{they needed only
the necessary interface. But procedures were not an answer to all problems.
In particular, they were not an e�ective mechanism for information hiding, and
they only partially solved the problem of multiple programmers making use of
the same names.

Example{A Stack

To illustrate these problems, we can consider a programmer who must write a
set of routines to implement a simple stack. Following good software engineering
principles, our programmer �rst establishes the visible interface to her work{say,
a set of four routines: init, push, pop, and top. She then selects some suitable
implementation technique. There are many choices here, such as an array with

2.3. A SHORT HISTORY OF ABSTRACTION MECHANISMS* 41

a top-of-stack pointer, a linked list, and so on. Our intrepid programmer se-
lects from among these choices, then proceeds to code the utilities, as shown in
Figure 2.5.

It is easy to see that the data contained in the stack itself cannot be made
local to any of the four routines, since they must be shared by all. But if the only
choices are local variables or global variables (as they are in early programming
languages, such as FORTRAN, or in C prior to the introduction of the static
modi�er), then the stack data must be maintained in global variables. However,
if the variables are global, there is no way to limit the accessibility or visibility
of these names. For example, if the stack is represented in an array named
datastack, this fact must be made known to all the other programmers since they
may want to create variables using the same name and should be discouraged
from doing so. This is true even though these data values are important only to
the stack routines and should not have any use outside of these four procedures.
Similarly, the names init, push, pop, and top are now reserved and cannot be
used in other portions of the program for other purposes, even if those sections
of code have nothing to do with the stack routines.

2.3.3 Modules

The solution to the problem of global name space congestion was the introduction
of the idea of a module. In one sense, modules can be viewed simply as an
improved technique for creating and managing collections of names and their
associated values. Our stack example is typical, in that there is some information
(the interface routines) that we want to be widely and publicly available, whereas
there are other data values (the stack data themselves) that we want restricted.
Stripped to its barest form, a module provides the ability to divide a name space
into two parts. The public part is accessible outside the module; the private part
is accessible only within the module. Types, data (variables), and procedures can
all be de�ned in either portion. A module encapsulation of the Stack abstraction
is shown in Figure 2.6.

David Parnas, who popularized the notion of modules, described the following
two principles for their proper use:

1. One must provide the intended user with all the information needed to use
the module correctly, and nothing more.

2. One must provide the implementor with all the information needed to
complete the module, and nothing more.

The philosophy is much like the military doctrine of \need to know"; if you
do not need to know some information, you should not have access to it. This
explicit and intentional concealment of information is what we have been calling
information hiding.

Modules solve some, but not all, of the problems of software development. For
example, they will permit our programmer to hide the implementation details of
her stack, but what if the other users want to have two (or more) stacks?

42 CHAPTER 2. ABSTRACTION

module StackModule;

export push, pop, top; (� the public interface �)

var

(� since data values are not exported, they are hidden �)
datastack : array [1 .. 100] of integer;

datatop : integer;

procedure push(val : integer)...

procedure top : integer ...

procedure pop : integer ...

begin (� can perform initialization here �)
datatop = 0;

end;

end StackModule.

Figure 2.6: A Module for the Stack Abstraction

As a more extreme example, suppose a programmer announces that he has
developed a new type of numeric abstraction, called Complex. He has de�ned
the arithmetic operations for complex numbers{addition, subtraction, multipli-
cation, and so on, and has de�ned routines to convert numbers from conventional
to complex. There is just one small problem: only one complex number can be
manipulated.

The complex number system would not be useful with this restriction, but
this is just the situation in which we �nd ourselves with simple modules. Modules
by themselves provide an e�ective method of information hiding, but they do not
allow us to perform instantiation, which is the ability to make multiple copies
of the data areas. To handle the problem of instantiation, computer scientists
needed to develop a new concept.

2.3.4 Abstract Data Types

The development of the notion of an abstract data type was driven, in part,
by two important goals. The �rst we have identi�ed already. Programmers
should be able to de�ne their own new data abstractions that work much like
the primitive system provided data types. This includes giving clients the ability
to create multiple instances of the data type. But equally important, clients
should be able to use these instances knowing only the operations that have
been provided, without concern for how those operations were supported.

An abstract data type is de�ned by an abstract speci�cation. The speci�cation
for our stack data type might list, for example, the trio of operations push, pop

2.3. A SHORT HISTORY OF ABSTRACTION MECHANISMS* 43

and top. Matched with the ADT will be one or more di�erent implementations.
There might be several di�erent implementation techniques for our stack; for
example one using an array and another using a linked list. As long as the
programmer restricts themselves to only the abstract speci�cation, any valid
implementation should work equally well.

The important advance in the idea of the ADT is to �nally separate the
notions of interface and implementation. Modules are frequently used as an
implementation technique for abstract data types, although we emphasize that
modules are an implementation technique and that the abstract data type is a
more theoretical concept. The two are related but are not identical. To build an
abstract data type, we must be able to:

1. Export a type de�nition.

2. Make available a set of operations that can be used to manipulate instances
of the type.

3. Protect the data associated with the type so that they can be operated on
only by the provided routines.

4. Make multiple instances of the type.

As we have de�ned them, modules serve only as an information-hiding mech-
anism and thus directly address only list items 2 and 3, although the others can
be accommodated via appropriate programming techniques. Packages, found in
languages such as CLU and Ada, are an attempt to address more directly the
issues involved in de�ning abstract data types.

In a certain sense, an object is simply an abstract data type. People have
said, for example, that Smalltalk programmers write the most \structured" of
all programs because they cannot write anything but de�nitions of abstract data
types. It is true that an object de�nition is an abstract data type, but the notions
of object-oriented programming build on the ideas of abstract data types and
add to them important innovations in code sharing and reusability.

2.3.5 A Service-Centered View

Assembly language and procedures as abstraction mechanisms concentrated the
programmers view at the functional level{how a task should be accomplished.
The movement towards modules and ADT are indicative of a shift from a
function-centered conception of computation to a more data-centered view. Here
it is the data values that are important, their structure, representation and ma-
nipulation.

Object-oriented programming starts from this data-centered view of the world
and takes it one step further. It is not that data abstractions, per se, are impor-
tant to computation. Rather, an ADT is a useful abstraction because it can be
de�ned in terms of the service it o�ers to the rest of a program. Other types of
abstractions can be similarly de�ned, not in terms of their particular actions or
their data values, but in terms of the services they provide.

44 CHAPTER 2. ABSTRACTION

Assembly Language Function

Functions and Procedures Centered View
Modules Data

Abstract Data Types Centered View
Object-Oriented Service

Programming Centered View

Thus, object-oriented programming represents a third step in this sequence.
From function centered, to data centered, and �nally to service centered view of
how to structure a computer program.

2.3.6 Messages, Inheritance, and Polymorphism

In addition to this service-centered view of computing, object-oriented program-
ming adds several important new ideas to the concept of the abstract data type.
Foremost among these is message passing. Activity is initiated by a request to a
speci�c object, not by the invoking of a function.

Implicit in message passing is the idea that the interpretation of a message
can vary with di�erent objects. That is, the behavior and response that the
message elicit will depend upon the object receiving it. Thus, push can mean
one thing to a stack, and a very di�erent thing to a mechanical-arm controller.
Since names for operations need not be unique, simple and direct forms can be
used, leading to more readable and understandable code.

Finally, object-oriented programming adds the mechanisms of inheritance

and polymorphism. Inheritance allows di�erent data types to share the same
code, leading to a reduction in code size and an increase in functionality. Poly-
morphism allows this shared code to be tailored to �t the speci�c circumstances
of individual data types. The emphasis on the independence of individual compo-
nents permits an incremental development process in which individual software
units are designed, programmed, and tested before being combined into a large
system.

We will describe all of these ideas in more detail in subsequent chapters.

Chapter Summary

People deal with complex artifacts and situations every day. Thus, while many
readers may not yet have created complex computer programs, they neverthe-
less will have experience in using the tools that computer scientists employ in
managing complexity.

� The most basic tool is abstraction, the purposeful suppression of detail in
order to emphasize a few basic features.

� Information hiding describes the part of abstraction in which we intention-
ally choose to ignore some features so that we can concentrate on others.

2.3. A SHORT HISTORY OF ABSTRACTION MECHANISMS* 45

� Abstraction is often combined with a division into components. For exam-
ple, we divided the automobile into the engine and the transmission. Com-
ponents are carefully chosen so that they encapsulate certain key features,
and interact with other components through a simple and �xed interface.

� The division into components means we can divide a large task into smaller
problems that can then be worked on more-or-less independently of each
other. It is the responsibility of a developer of a component to provide an
implementation that satis�es the requirements of the interface.

� A point of view that turns out to be very useful in developing complex
software system is the concept of a service provider. A software component
is providing a service to other components with which it interacts. In
real life we often characterize members of the communities in which we
operate by the services they provide. (A delivery person is charged with
transporting owers from a orist to a recipient). Thus this metaphor
allows one to think about a large software system in the same way that we
think about situations in our everyday lives.

� Another form of abstraction is a taxonomy, in object-oriented languages
more often termed an inheritance hierarchy. Here the layers are more
detailed representatives of a general category. An example of this type of
system is a biological division into categories such as Living Thing-Animal-
Mammal-Cat. Each level is a more specialized version of the previous. This
division simpli�es understanding, since knowledge of more general levels is
applicable to many more speci�c categories. When applied to software this
technique also simpli�es the creation of new components, since if a new
component can be related to an existing category all the functionality of
the older category can be used for free. (Thus, for example, by saying that
a new component represents a Frame in the Java library we immediately
get features such as a menu bar, as well as the ability to move and resize
the window).

� Finally, a particular tool that has become popular in recent years is the
pattern. A pattern is simply a generalized description of a solution to a
problem that has been observed to occur in many places and in many forms.
The pattern described how the problem can be addressed, and the reasons
both for adopting the solution and for considering other alternatives. We
will see several di�erent types of patterns throughout this book.

Further Information

In the sidebar on page 33 we mention software catalogs. For the Java pro-
grammer a very useful catalog is The Java Developers Almanac, by Patrick
Chan [Chan 2000].

46 CHAPTER 2. ABSTRACTION

The concept of patterns actually grew out of work in architecture, speci�cally
the work of Christopher Alexander [Alexander 77]. The application of patterns
to software is described by Gabriel [Gabriel 96]. The best-known catalog of
software Patterns is by Gamma et al [Gamma 1995]. A more recent almanac
that collects several hundred design patterns is [Rising 2000].

The criticism of procedures as an abstraction technique, because they fail
to provide an adequate mechanism for information hiding, was �rst stated by
William Wulf and Mary Shaw [Wulf 1973] in an analysis of many of the problems
surrounding the use of global variables. These arguments were later expanded
upon by David Hanson [Hanson 1981].

David Parnas originally described his principles in [Parnas 1972].
An interesting book that deals with the relationship between how people

think and the way they form abstractions of the real word is Lako� [Lako� 87].

Self Study Questions

1. What is abstraction?

2. Give an example of how abstraction is used in real life.

3. What is information hiding?

4. Give an example of how information hiding is used in real life.

5. What are the layers of abstraction found in an object-oriented program?

6. What do the terms client and server mean when applied to simple object-
oriented programs?

7. What is the distinction between an interface and an implementation?

8. How does an emphasis on encapsulation and the identi�cation of interfaces
facilitate interchangeability?

9. What are the basic features of composition as a technique for creating
complex systems out of simple parts?

10. How does a division based on layers of specialization di�er from a division
based on separation into parts?

11. What goal motivates the collection of software patterns?

12. What key idea was �rst realized by the development of procedures as a
programming abstraction?

13. What are the basic features of a module?

14. How is an abstract data type di�erent from a module?

15. In what ways is an object similar to an abstract data type? In what ways
are they di�erent?

2.3. A SHORT HISTORY OF ABSTRACTION MECHANISMS* 47

Exercises

1. Consider a relationship in real life, such as the interaction between a cus-
tomer and a waiter in a resturant. Describe the interaction govering this
relationship in terms of an interface for a customer object and a waiter
object.

2. Take a relatively complex structure from real life, such as a building. De-
scribe features of the building using the technique of division into parts,
followed by a further re�nement of each part into a more detailed descrip-
tion. Extend your description to at least three levels of detail.

3. Describe a collection of everyday objects using the technique of layers of
specialization.

