
Chapter 5

Messages, Instances, and

Initialization

In Chapter 4 we briey outlined some of the compile-time features of object-
oriented programming languages. That is, we described how to create new types,
new classes, and new methods. In this chapter, we continue our exploration of the
mechanics of object-oriented programming by examining the dynamic features.
These include how values are instantiated (or created), how they are initialized,
and how they communicate with each other by means of message passing.

In the �rst section, we will explore the mechanics of message passing. Then
we will investigate creation and initialization. By creation we mean the allocation
of memory space for a new object and the binding of that space to a name. By
initialization we mean not only the setting of initial values in the data area for the
object, similar to the initialization of �elds in a record, but also the more general
process of establishing the initial conditions necessary for the manipulation of
an object. The degree to which this latter task can be hidden from clients
who use an object in most object-oriented languages is an important aspect of
encapsulation, which we identi�ed as one of the principle advantages of object-
oriented techniques over other programming styles.

5.1 Message-Passing Syntax

We are using the term message passing (sometimes also called method lookup)
to mean the dynamic process of asking an object to perform a speci�c action.
In Chapter 1 we informally described message passing and noted how a message
di�ers from an ordinary procedure call. In particular:

� A message is always given to some object, called the receiver.

� The action performed in response to the message is not �xed, but may
di�er depending upon the class of the receiver. That is, di�erent objects

101

102 CHAPTER 5. MESSAGES, INSTANCES, AND INITIALIZATION

C++, C#, Java,
Python, Ruby

aCard.flip ();

aCard.setFaceUp(true);

aGame.displayCard(aCard, 45, 56);

Pascal, Delphi,
Ei�el, Oberon

aCard.flip;

aCard.setFaceUp(true);

aGame.displayCard(aCard, 45, 56);

Smalltalk

aCard flip.

aCard setFaceUp: true.

aGame display: aCard atLocation: 45 and: 56.

Objective-C

[aCard flip].

[aCard setFaceUp: true].

[aGame display: aCard atLocation: 45 and: 56]

CLOS

(flip aCard)

(setFaceUp aCard true)

(displayCard aGame 45 56)

Figure 5.1: Message Passing Syntax in various Languages

may accept the same message, and yet perform di�erent actions.

There are three identi�able parts to any message-passing expression. These
are the receiver (the object to which the message is being sent), the message

selector (the text that indicates the particular message being sent), and the
arguments used in responding to the message.

aGame
| {z }

receiver

: displayCard
| {z }

selector

(aCard; 42; 27)
| {z }

arguments

As Figure 5.1 indicates, the most common syntax for message passing uses
a period to separate the receiver from the message selector. Minor variations
include features such as whether an empty pair of parenthesis are required when
a method has no arguments (they can be omitted in Pascal and some other
languages).

Smalltalk and Objective-C use a slightly di�erent syntax. In these languages
a space is used as a separator. Unary messages (messages that take no argument)
are simply written following the receiver. Messages that take arguments are
written using keyword notation. The message selector is split into parts, one
part before each argument. A colon follows each part of the key.

aGame display: aCard atLocation: 45 and: 56.

5.2. STATICALLY AND DYNAMICALLY TYPED LANGUAGES 103

In Smalltalk even binary operations, such as addition, are interpreted as a
message sent to the left value with the right value as argument:

z <- x + y. " message to x to add y to itself and return sum "

It is possible to de�ne binary operators in C++ to have similar meanings.
In Objective-C a Smalltalk-like message is enclosed in a pair of square braces,
termed a message passing expression. The brackets only surround the message
itself. They do not, for example, surround an assignment the places the result
of a message into a variable:

int cardrank = [aCard getRank];

The syntax used in CLOS follows the traditional Lisp syntax. All expres-
sions in Lisp are written as parenthesis-bounded lists. The operation is the �rst
element of the list, followed by the arguments. The receiver is simply the �rst
argument.

5.2 Statically and Dynamically Typed Languages

Languages can be divided into two groups depending upon whether they are
statically or dynamically typed. Fundamentally, a statically typed language as-
sociates types with variables (usually the binding is established by means of
declaration statements), while a dynamically typed language treats variables
simply as names, and associates types with values. Java, C++, C#, and Pascal
are statically typed languages, while Smalltalk, CLOS and Python are dynami-
cally typed.

Objective-C holds a curious middle ground between the two camps. In
Objective-C a variable can be declared with a �xed type, and if so the vari-
able is statically typed. On the other hand, a variable can also be declared using
the object type id. A variable declared in this fashion can hold any object value,
and hence is dynamically typed.

PlayingCard aCard; /� a statically typed variable �/

id anotherCard; /� a dynamically typed variable �/

The di�erence between statically typed languages and dynamically typed
languages is important in regards to message passing because a statically typed
language will use the type of the receiver to check, at compile time, that a
receiver will understand the message it is being presented. A dynamically typed
language, on the other hand, has no way to verify this information at compile
time. Thus in a dynamically typed language a message can generate a run-time

104 CHAPTER 5. MESSAGES, INSTANCES, AND INITIALIZATION

error if the receiver does not understand the message selector. Such a run-time
error can never occur in a statically typed language.

5.3 Accessing the Receiver fromWithin a Method

As we indicated at the beginning of this chapter, a message is always passed
to a receiver. In most object-oriented languages, however, the receiver does
not appear in the argument list for the method. Instead, the receiver is only
implicitly involved in the method de�nition. In those rare situations when it
is necessary to access the receiver value from within a method body a pseudo-

variable is used. A pseudo-variable is like an ordinary variable, only it need not
be declared and cannot be modi�ed. (The term pseudo constant might therefore
seem more appropriate, but this term does not seem to be used in any language
de�nitions).

The pseudo-variable that designates the receiver is named this in Java and
C++, Current in Ei�el, and self in Smalltalk, Objective-C, Object Pascal and
many other languages. The pseudo-variable can be used as if it refers to an
instance of the class. For example, the method color could be written in Pascal
as follows:

function PlayingCard.color : colors;

begin

if (self.suit = Heart) or (self.suit = Diamond) then

color := Red

else

color := Black;

end

In most languages the majority of uses of the receiver pseudo-variable can be
omitted. If a data �eld is accessed or a method is invoked without reference to a
receiver it is implicitly assumed that the receiver pseudo-variable is the intended
basis for the message. We saw this earlier in the method ip, which acted by
invoking the method setFaceUp:

class PlayingCard f
...

public void flip () f setFaceUp(! faceUp); g
...

g

The method could be rewritten to make the receivers explicit as follows:

class PlayingCard f
...

5.3. ACCESSING THE RECEIVER FROM WITHIN A METHOD 105

public void flip () f this.setFaceUp(! this.faceUp); g
...

g

One place where the use of the variable often cannot be avoided is when
a method wishes to pass itself as an argument to another function, as in the
following bit of Java:

class QuitButton extends Button implements ActionListener f
public QuitButton () f

...

// install ourselves as a listener for button events
addActionListener(this);

g
...

g;

Some style guidelines for Java suggest the use of this when arguments in a
constructor are used to initialize a data member. The same name can then be
used for the argument and the data member, with the explicit this being used to
distinguish the two names:

class PlayingCard f
public PlayingCard (int suit, int rank) f

this.rank = rank; // this.rank is the data member
this.suit = suit; // rank is the argument value

this.faceUp = true;

g
...

private int suit;

private int rank;

private boolean faceUp;

g

A few object-oriented languages, such as Python, CLOS, or Oberon, buck the
trend and require that the receiver be declared explicitly in a method body. In
Python, for example, a message might appear to have two arguments, as follows:

aCard.moveTo(27, 3)

but the corresponding method would declare three parameter values:

class PlayingCard:

def moveTo (self, x, y):

...

106 CHAPTER 5. MESSAGES, INSTANCES, AND INITIALIZATION

While the �rst argument could in principle be named anything, it is common
to name it self or this, so as to indicate the association with the receiver pseudo-
variables in other languages. Examples in the previous chapter illustrated the
syntax used by CLOS and Oberon, which also must name the receiver as an
argument.

5.4 Object Creation

In most conventional programming languages, variables are created by means of
a declaration statement, as in the following Pascal example:

var

sum : integer;

begin

sum := 0.0;

...

end;

Some programming languages allow the user to combine declaration with
initialization, as in the following Java example:

int sum = 0.0; // declare and initialize variable with zero

...

A variable declared within the bounds of a function or procedure generally
exists only as long as the procedure is executing. The same is true for some
object-oriented languages. The following declaration statement, for example,
can be used to create a variable in C++:

PlayingCard aCard(Diamond, 4); // create 4 of diamonds

Most object oriented languages, however, separate the process of variable
naming from the process of object creation. The declaration of a variable only
creates the name by which the variable will be known. To create an object value
the programmer must perform a separate operation. Often this operation is
denoted by the operator new, as in this Smalltalk example:

j aCard j " name a new variable named aCard "

aCard <- PlayingCard new. " allocate memory space to variable "

5.4. OBJECT CREATION 107

C++ PlayingCard * aCard = new PlayingCard(Diamond, 3);

Java, C# PlayingCard aCard = new PlayingCard(Diamond, 3);

Object Pascal

var

aCard : ^ PlayingCard;

begin

new (aCard);

...

end

Objective-C aCard = [PlayingCard new];

Python aCard = PlayingCard(2, 3)

Ruby aCard = PlayingCard.new

Smalltalk aCard <- PlayingCard new.

Figure 5.2: Syntax Used for Object Creation

The syntax used in object creation for various di�erent languages is shown in
Figure 5.2. Python does not use the new operator explicitly, instead, in Python
creation occurs when a class name is used in the fashion of a function.

5.4.1 Creation of Arrays of Objects

The creation of an array of objects presents two levels of complication. There
is the allocation and creation of the array itself, and then the allocation and
creation of the objects that the array will hold.

In C++ these features are combined, and an array will consist of objects
that are each initialized using the default (that is, no-argument) constructor
(see Section 5.6):

// create an array of 52 cards, all the same

PlayingCard cardArray [52];

In Java, on the other hand, a super�cially similar statement has a very dif-
ferent e�ect. The new operator used to create an array creates only the array.
The values held by the array must be created separately, typically in a loop:

PlayingCard cardArray[] = new PlayingCard[13];

for (int i = 0; i < 13; i++)

108 CHAPTER 5. MESSAGES, INSTANCES, AND INITIALIZATION

cardArray[i] = new PlayingCard(Spade, i+1);

A frequent source of error for C or C++ programmers moving to Java is to
forget that in Java the allocation of an array occurs separately from the allocation
of the elements the array will contain.

5.5 Pointers and Memory Allocation

All object-oriented languages use pointers in their underlying representation.
Not all languages expose this representation to the programmer. It is sometimes
said that \Java has no pointers" as a point of contrast to C++. A more accurate
statement would be that Java has no pointers that the programmer can see, since
all object references are in fact pointers in the internal representation.

The issue is important for three reasons. Pointers normally reference memory
that is heap allocated, and thus does not obey the normal rules associated with
variables in conventional imperative languages. In an imperative language a
value created inside a procedure will exist as long as the procedure is active, and
will disappear when the procedure returns. A heap allocated value, on the other
hand, will continue to exist as long as there are references to it, which often will
be much longer than the lifetime of the procedure in which it is created.

The second reason is that heap based memory must be recovered in one
fashion or another, a topic we will address in the next section.

A third reason is that some languages, notably C++, distinguish between
conventional values and pointer values. In C++ a variable that is declared in
the normal fashion, a so-called automatic variable, has a lifetime tied to the
function in which it is created. When the procedure exits, the memory for the
variable is recovered:

void exampleProcedure

f

PlayingCard ace(Diamond, 1);

...

// memory is recovered for ace

// at end of execution of the procedure

g

Values that are assigned to pointers (or as references, which are another form
of pointers) are not tied to procedure entry. Such values di�er from automatic
variables in a number of important respects. As we will note in the next section,
memory for such values must be explicitly recovered by the programmer. When
we introduce inheritance in Chapter 8 we will see that such values also di�er in
the way they use that feature.

5.5. POINTERS AND MEMORY ALLOCATION 109

5.5.1 Memory Recovery

Memory created using the new operator is known as heap-based memory, or
simply heap memory. Unlike ordinary variables, heap-based memory is not tied
to procedure entry and exit. Nevertheless, memory is always a �nite commodity,
and hence some mechanism must be provided to recover memory values. Memory
that has been allocated to object values is then recycled and used to satisfy
subsequent memory requests.

There are two general approaches to the task of memory recovery. Some
languages (such as C++ and Delphi Pascal) insist the programmer indicate
when an object value is no longer being used by a program, and hence can
be recovered and recycled. The keywords used for this purpose vary from one
language to another. In Object Pascal the keyword is free, as in the following
example:

free aCard;

Objective-C uses the same keyword, but written as a message, with the re-
ceiver �rst:

[aCard free];

In C++ the keyword is delete:

delete aCard;

When an array is deleted a pair of square braces must be placed after the
keyword:

delete [] cardArray;

The alternative to having the programmer explicitly manage memory is an
idea termed garbage collection. A language that uses garbage collection (such as
Java, C#, Smalltalk or CLOS) monitors the manipulation of object values, and
will automatically recover memory from objects that are no longer being used.
Generally garbage collection systems wait until memory is nearly exhausted,
then will suspend execution of the running program while they recover the un-
used space, before �nally resuming execution. Garbage collection uses a certain
amount of execution time, which may make it more costly than the alternative
of insisting that programmers free their own memory. But garbage collection
prevents a number of common programming errors:

� It is not possible for a program to run out of memory because the pro-
grammer forgot to free up unused memory. (Programs can still run out of
memory if the total memory required at any one time exceeds the available
memory, of course).

110 CHAPTER 5. MESSAGES, INSTANCES, AND INITIALIZATION

� It is not possible for a programmer to try to use memory after it has
been freed. Freed memory can be reused, and hence the contents of the
memory values may be overwritten. Using a value after it has been freed
can therefore cause unpredictable results.

PlayingCard � aCard = new PlayingCard(Spade, 1);

...

delete aCard;

...

cout << aCard.rank(); // attempt to use after deletion

� It is not possible for a programmer to try and free the same memory value
more than once. Doing this can also cause unpredictable results.

Playingcard � aCard = new PlayingCard(Space, 1);

...

delete aCard;

...

delete aCard; // deleting already deleted value

When a garbage collection system is not available, to avoid these problems it
is often necessary to ensure that every dynamically allocated memory object has
a designated owner. The owner of the memory is responsible for ensuring that
the memory location is used properly and is freed when it is no longer required.
In large programs, as in real life, disputes over the ownership of shared resources
can be a source of di�culty.

When a single object cannot be designated as the owner of a shared resource,
another common technique is to use reference counts. A reference count is a
count of the number of pointers that reference the shared object. Care is needed
to ensure that the count is accurate; whenever a new pointer is added the count
is incremented, and whenever a pointer is removed the count is decremented.
When the count reaches zero it indicates that no pointers refer to the object,
and its memory can be recovered.

As with the arguments for and against dynamic typing, the arguments for and
against garbage collection tend to pit e�ciency against exibility. Automatic
garbage collection can be expensive, as it necessitates a run-time system to
manage memory. On the other hand, the cost of memory errors can be equally
expensive.

5.6 Constructors

As we indicated in Chapter 4, a constructor is a method that is used to initialize a
newly created object. Linking creation and initialization together has many ben-
e�cial consequences. Most importantly, it guarantees that an object can never

5.6. CONSTRUCTORS 111

be used before it has been properly initialized. When creation and initialization
are separated (as they must be in languages that do not have constructors), a
programmer can easily forget to call an initialization routine after creating a new
value, often with unfortunate consequences. A less common problem, although
often just as unfortunate, is to invoke an initialization procedure twice on the
same value. This problem, too, is avoided by the use of constructors.

In Java and C++ a constructor can be identi�ed by the fact that it has the
same name as the class in which it appears. Another small di�erence is that
constructors do not declare a return type:

class PlayingCard f // a Java constructor

public PlayingCard (int s, int r) f
suit = s;

rank = r;

faceUp = true;

g
...

g

When memory is allocated using the new operator, any arguments required
by the constructor appear following the class name:

aCard = new PlayingCard(PlayingCard.Diamond, 3);

Data �elds in Java (as well as in C#) that are initialized with a simple value,
independent of any constructor argument, can be assigned a value at the point
they are declared, even if they are subsequently reassigned:

class Complex f // complex numbers

public Complex (double rv) f realPart = rv; g

public double realPart = 0.0; // initialize data areas

public double imagPart = 0.0; // to zero

g

A similar syntax can be used in C++ if the data members are are declared
to be static and/or const.

In C++ and Java there can be more than one function de�nition that uses the
same name, as long as the number, type and order of arguments are su�cient
to distinguish which function is intended in any invocation. This facility is
frequently used with constructors, allowing the creation of one constructor to be
used when no arguments are provided, and another to be used with arguments:

class PlayingCard f
public:

112 CHAPTER 5. MESSAGES, INSTANCES, AND INITIALIZATION

PlayingCard () // default constructor,
// used when no arguments are given

f suit = Diamond; rank = 1; faceUp = true; g

PlayingCard (Suit is) // constructor with one argument
f suit = is; rank = 1; faceUp = true; g

PlayingCard (Suit is, int ir) // constructor with two arguments

f suit = is; rank = ir; faceUp = true; g
g;

The combination of number, type and order of arguments is termed a function
type signature. We say that the meaning of an overloaded constructor (or any
other overloaded function, for that matter) is resolved by examining the type
signature of the invocation.

PlayingCard cardOne; // invokes default
PlayingCard � cardTwo = new PlayingCard;

PlayingCard cardThree(PlayingCard.Heart);

PlayingCard � cardFour = new PlayingCard(PlayingCard.Spade, 6);

In C++ one must be careful to omit the parenthesis from an invocation of
the default constructor. Using a parenthesis in this situation is legal, but has an
entirely di�erent meaning:

PlayingCard cardFive; // creates a new card

PlayingCard cardSix(); // forward de�nition for function
// named cardSix that returns a PlayingCard

On the other hand, when using the new operator and no arguments, paren-
thesis are omitted in C++ but not in Java or C#:

PlayingCard cardSeven = new PlayingCard(); // Java

PlayingCard � cardEight = new PlayingCard; // C++

Constructors in C++ can also use a slightly di�erent syntax to specify the
initial value for data members. A colon, followed by a named value in parenthesis,
is termed an initializer. Our constructor written using initializer syntax would
look as follows:

Class PlayingCard f
public:

PlayingCard (Suits is, int ir)

: suit(is), rank(ir), faceUp(true) f g
...

5.6. CONSTRUCTORS 113

g;

For simple values such as integers there is no di�erence between the use
of an initializer and the use of an assignment statement within the body of the
constructor. We will subsequently encounter di�erent forms of initialization that
can only be performed in C++ by means of an initializer.

Constructors in Objective-C need not have the same name as the class, and
are signi�ed by the use of a plus sign, rather than a minus sign, in the �rst
column of their de�nition. Such a function is termed a factory method. The
factory method uses the new operator to perform the actual memory allocation,
then performs whatever actions are necessary to initialize the object.

@ implementation PlayingCard

+ suit: (int) s rank: (int) r f
self = [Card new];

suit = s;

rank = r;

return self;

g

@end

Factory methods are invoked using the class as the receiver, rather than an
instance object:

PlayingCard aCard = [PlayingCard suit: Diamond rank: 3];

Constructors in Python all have the unusual name __init__. When an object
is created, the init function is implicitly invoked, passing as argument the newly
created object, and any other arguments used in the creation expression:

aCard = PlayingCard(2, 3)

invokes PlayingCard. init (aCard, 2 3)

In Apple Object Pascal there are no constructors. New objects are created
using the operator new, and often programmers de�ne their own initialization
routines that should be invoked using the newly created object as receiver. The
Delphi version of Object Pascal is much closer to C++. In Delphi programmers
can de�ne a constructor, although unlike C++ this function need not have the
same name as the class. It is typical (although not required) to use the name
Create as a constructor name:

interface

type

114 CHAPTER 5. MESSAGES, INSTANCES, AND INITIALIZATION

TPlayingCard = class (TObject)

constructor Create (is : Suits, ir : integer);

...

end;

implementation

constructor TPlayingCard.Create (is : Suits, ir : integer);

begin

suit = is;

rank = ir;

faceUp = true;

end;

New objects are then created using the constructor method with the class as
receiver:

aCard := TPlayingCard.Create (Spade, 4);

5.6.1 The Orthodox Canonical Class Form*

Several authors of style guides for C++ have suggested that almost all classes
should de�ne four important functions. This has come to be termed the orthodox
canonical class form. The four important functions are:

� A default constructor. This is used internally to initialize objects and data
members when no other value is available.

� A copy constructor. This is used, among other places, in the implementa-
tion of call-by-value parameters.

� An assignment operator. This is used to assign one value to another.

� A destructor. This is invoked when an object is deleted. (We will shortly
give an example to illustrate the use of destructors).

A default constructor we have seen already. This is simply a constructor that
takes no arguments. A copy constructor takes a reference to an instance of the
class as argument, and initializes itself as a copy of the argument:

class PlayingCard f
public:

...

PlayingCard (PlayingCard & aCard)

f
// initialize ourself as copy of argument

0Section headings followed by an asterisk indicate optional material.

5.6. CONSTRUCTORS 115

rank = aCard.getRank();

suit = aCard.getSuit();

faceUp = aCard.isFaceUp();

g
...

g;

The system will implicitly create default versions of each of these if the user
does not provide an alternative. However, in many situations (particuarly those
involving the management of dynanically allocated memory) the default versions
are not what the programmer might wish. Even if empty bodies are supplied
for these functions, writing the class body will at least suggest that the program
designer has thought about the issues involved in each of these. Furthermore, ap-
propriate use of visibility modi�ers give the programmer great power is allowing
or disallowing di�erent operations used with the class.

5.6.2 Constant Values

In Chapter 4 we pointed out that some languages, such as C++ and Java,
permit the creation of data �elds that can be assigned once and thereafter are
not allowed to change. Having introduced constructors, we can now complete
that discussion by showing how such values can be initialized.

In Java an immutable data �eld is simply declared as �nal and can be initial-
ized directly:

class ListofImportantPeople f
public:

final int max = 100; // maximum number of people

...

g

Alternatively, a �nal value can be assigned in the constructor. If there is
more than one constructor, each constructor must initialize the data �eld:

class PlayingCard f
public PlayingCard ()

f suit = Diamond; rank = 1; faceUp = true; g
public PlayingCard (int is, int ir)

f suit = is; rank = ir; faceUp = true; g
...

public final int suit; // suit and rank are

public final int rank; // immutable

private boolean faceUp; // faceUp is not

g

116 CHAPTER 5. MESSAGES, INSTANCES, AND INITIALIZATION

Immutable values in C++ are designated using the keyword const. They can
only be given a value using an initializer clause in a constructor:

class PlayingCard f

public:

PlayingCard () : suit(Diamond), rank(1) f faceUp = true; g

PlayingCard (Suits is, int ir) : suit(is), rank(ir)

f faceUp = true; g

...

const Suits suit;

const int rank;

private:

boolean faceUp;

g;

There is one subtle but nevertheless important di�erence between const and
�nal values. The const modi�er in C++ says that the associated value is truly
constant, and is not allowed to change. The �nal modi�er in Java only asserts
that the associated variable will not be assigned a new value. Nothing prevents
the value itself from changing its own internal state, for example in response
to messages. To illustrate this, consider the following de�nition for a data type
named Box.

class Box f

public void setValue (int v);

public int getValue () f return v; g

private int v = 0;

g

Declaring a variable using the �nal modi�er simply means it will not be
reassigned, it does not mean it will not change:

final aBox = new Box(); // can be assigned only once

aBox.setValue(8); // but can change

aBox.setValue(12); // as often as you like

A variable declared using the const modi�er in C++, on the other hand, is
not allowed to change in any way, not even in its internal state. (Individual �elds
can be named as mutable, in which case they are allowed to change even within
a const object. However, use of this facility is rare.)

5.7. DESTRUCTORS AND FINALIZERS 117

5.7 Destructors and Finalizers

A constructor allows the programmer to perform certain actions when an object
value is created, when it is being born (so to speak). Occasionally it is useful to
also be able to specify actions that should be performed at the other end of a
values lifetime, when the variable is about to die and have its memory recovered.

This can be performed in C++ using a method termed a destructor. The
destructor is invoked automatically whenever memory space for an object is
released. For automatic variables, space is released when the function containing
the declaration for the variable is existed. For dynamically allocated variable
space is released with the operator delete. The destructor function is written as
the name of the class preceded by a tilde (~). It does not take any arguments
and is never directly invoked by the user.

A simple but clever function will illustrate the use of constructors and de-
structors. The class Trace de�nes a simple class that can be used to trace the
ow of execution. The constructor class takes as argument a descriptive string
and prints a message when space for the associated variable is allocated (which
is when the procedure containing the declaration is entered). A second message
is printed by the destructor when space for the variable is released, which occurs
when the procedure is exited.

class Trace f
public:

// constructor and destructor

Trace (string);

�Trace ();

private:

string text;

g;

Trace::Trace (string t) : text(t)

f cout << "entering " << text << endl; g

Trace::�Trace ()

f cout << "exiting " << text << endl; g

To trace the ow of execution, the programmer simply creates a declaration
for a dummy variable of type Trace in each procedure to be traced. Consider the
following pair of routines:

void procedureA ()

f
Trace dummy ("procedure A");

procedureB (7);

g

118 CHAPTER 5. MESSAGES, INSTANCES, AND INITIALIZATION

void procedureB (int x)

f
Trace dummy ("procedure B");

if (x < 5) f
Trace aaa("true case in Procedure B");

...

g
else f

Trace bbb("false case in Procedure B");

...

g
g

By their output, the values of type Trace will trace out the ow of execution.
A typical output might be:

entering procedure A

entering procedure B

entering false case in Procedure B

...

exiting false case in Procedure B

exiting procedure B

exiting procedure A

Delphi Pascal also supports a form of destructor. A destructor function (usu-
ally called Destroy) is declared by the keyword destructor. When a dynamically
allocated object is freed, the memory management system will call the destructor
function.

type

TPlayingCard = class (TObject)

...

destructor Destroy;

end;

destructor PlayingCard.Destroy;

begin

(� whatever housekeeping is necessary �)
...

end;

Java and Ei�el have similar facilities, although since both languages use
garbage collection their utilization is di�erent. A method named �nalize in Java
will be invoked just before the point where a variable is recovered by the garbage

5.8. METACLASSES IN SMALLTALK* 119

collection system. Since this can occur at any time, or may never occur, the use
of this facility is much less common than the use of destructors in C++.

class FinalizeExample f

public void finalize () f

System.out.println("finally doing finalization");

System.exit(0);

g

g

...

// �rst create an instance

Object x = new FinalizeExample();

// rede�ning x releases memory

x = new Integer(3);

// now do lots of memory allocations

// at some indeterminent point garbage collection

// will occur and �nal method will be called

for (int i = 0; i < 1000; i++) f

System.out.println("i is " + i);

for (int j = 0; j < 1000; j++)

x = new Integer(j);

g

In Ei�el the same e�ect is achieved by inheriting from the class Memory and
overriding the method dispose. (We will discuss inheritance and overriding later
in Chapter 8.)

5.8 Metaclasses in Smalltalk*

The discussion of object creation provides an excuse to introduce a curious con-
cept found in Smalltalk and a few similar languages, termed metaclasses. To
understand metaclasses, note �rst that methods are associated not with objects,
but with classes. That is, if we create a playing card, the methods associated
with the card are found not in the object itself, but in the class PlayingCard.

0Section headings followed by an asterisk indicate optional material.

120 CHAPTER 5. MESSAGES, INSTANCES, AND INITIALIZATION

�
�

�
�aCard -instance

PlayingCard

isFaceUp

ip

rank

suit

color

But in Smalltalk classes are objects. We explored this briey in the previous
chapter. Thus classes themselves respond to certain messages, such as the object
creation message new.

�
�

�
�aCard -instance

PlayingCard

isFaceUp

ip

rank

suit

color

-instance

Class

new

name

instanceSize
...

Given this situation, let us now imagine that we want to create a method
that can be used in the fashion of a constructor. That is, we want a method, let
us call it rank:suit:, that can be given to a speci�c class object, say PlayingCard,
and when executed it will both create a new instance and ensure it is properly
initialized. Where in the picture just given can this method be placed? It cannot
be part of the methods held by PlayingCard, as those are methods that are to
be executed by instances of the class, and at the time of creation we do not yet
have an instance. Nor can it be part of the methods held by Class, since those
represent behavior common to all classes, and our initialization is something we
want to do only for this one class.

The solution is to create a new \hidden" class, termed a metaclass. The
object named PlayingCard is not actually an instance of Class, but is in reality
an instance of MetaPlayingCard, which is formed from inheritance from Class.1

Initialization speci�c behavior can then be placed in this new class.

1We are being slightly premature in presenting the discussion here, since inheritance will

not be discussed in detail until Chapter 8. But the intuitive description of inheritance given

in Chapter 1 is su�cient to understand the concept of metaclasses.

5.8. METACLASSES IN SMALLTALK* 121

�
�

�
�aCard -instance

PlayingCard

isFaceUp

ip

rank

suit

color

-instance MetaPlayingCard

rank:suit:...

6
subclass

Class

new

name

instanceSize
...

The behavior placed in the class MetaPlayingCard is understood by the object
PlayingCard, and by no other object. This object is the only instance of the class.

Smalltalk browsers generally hide the existence of metaobjects from program-
mers, calling such methods by the term class methods, and acting as if they were
associated with the same class as other methods. But behind the browser, class
methods are simply ordinary methods associated with metaclasses.

Chapter Summary

In this chapter we have examined the syntax and techniques used on object
creation and initialization for each of the di�erent languages we are considering.

� We have examined the syntax used for message passing.

� We introduced the two major categories of programming languages, stat-
ically and dynamically typed languages. In a statically typed language
types are associated with variables, while in a dynamically typed language
a variable is simply a name, and types are associated with values.

� In many languages the receiver of a message can be accessed from within
the body of the method used to respond to the message. The receiver is
represented by a pseudo-variable. This variable can be named this, self, or
current (depending upon the language being used).

� Automatic memory allociates the lifetime of an object with the procedure
in which it is declared. Heap-based memory is explicitly allocated (in most
languages using an operator named new) and is either explicitly deallocated
or recovered by a garbage collection system.

� A constructor ties together the two tasks of memory allocation and ini-
tialization. This ensures that all objects which are allocated are properly
initialized.

� A destructor is executed with a value is deleted.

122 CHAPTER 5. MESSAGES, INSTANCES, AND INITIALIZATION

� Finally, we have examined how metaclasses in Smalltalk address the prob-
lem of creation and initialization in that language.

Further Reading

The works cited at the end of the previous chapter should be consulted for more
detailed information on any of the languages we are considering in this book.

Cohen [Cohen 1981] provides a good overview of garbage collection tech-
niques. An interesting comparison between garbage collection and automatic
memory allocation is given by Appel [Appel 1987]. Techniques for Reference
counting in C++ are described in [Budd 1999].

Metaclasses in Smalltalk will be examined in detail later in Chapter 25.

Self Study Questions

1. In what ways is a message passing operation di�erent from a procedure
call?

2. What are the three parts of a message passing expression?

3. How does Smalltalk style keyword notation di�er from Java or C++ style
notation?

4. What is the di�erence between a statically typed language and a dynami-
cally typed language?

5. Why are run-time errors of the form \receiver does not understand mes-
sage" not common in statically typed languages? Why are they more
common in dynamically typed languages?

6. What does the pseudo-variable this (or self in Smalltalk) refer to?

7. What is the di�erence between stack allocated and heap allocated memory?

8. What are the two general approaches to recovery of heap allocated mem-
ory?

9. What common programming errors does the use of a garbage collection
system eliminate?

10. What two tasks are brought together by a constructor?

11. When is a destructor method executed?

12. What is a metaclass? What problem is solved through the use of meta-
classes?

EXERCISES 123

Exercises

1. Write a method copy for the class Card of Chapter 4. This method should
return a new instance of the class Card with the suit and rank �elds ini-
tialized to be the same as the receiver.

2. In a language that does not provide direct support for immutable instance
variables, how might you design a software tool that would help to detect
violations of access? (Hint: The programmer can provide directives in the
form of comments that tell the tool which variables should be considered
immutable.)

3. We have seen two styles for invoking methods. The approach used in C++

is similar to a conventional function call. The Smalltalk and Objective-C
approaches separate arguments with keyword identi�ers. Which do you
think is more readable? Which is more descriptive? Which is more error-
prone? Present short arguments to support your opinions.

4. How might you design a tool to detect the di�erent types of memory allo-
cation and free problems described in Section 5.5.1?

5. Andrew Appel [Appel 1987] argues that under certain circumstances heap-
based memory allocation can be more e�cient than stack-based memory
allocation. Read this article and summarize the points of Appel's argu-
ment. Are the situations in which this is true likely to be encountered in
practice?

6. Write a short (two- or three-paragraph) essay arguing for or against auto-
matic memory-management (garbage-collection) systems.

