
Chapter 7

A Case Study: A Billiards

Game

In our second case study, we will develop a simple simulation of a billiard table.1

The program is written in Delphi Pascal.2 As with the eight-queens program,
the design of this program will stress the creation of autonomous interacting
agents working together to produce the desired outcome.

7.1 The Elements of Billiards

The billiard table as the user sees it consists of a window containing a rectangle
with holes (pockets) in the corners, 15 colored balls, and 1 white cue ball. By
clicking the mouse the user simulates striking the cue ball, imparting a certain
amount of energy to it. The direction of motion for the cue ball will be opposite
to that of the mouse position in relation to the cue. Once a ball has energy it will
start to move, re
ecting o� of walls, falling into holes, and potentially striking
other balls. When a ball strikes another ball some of the energy of the �rst is
given to the second, while the direction of movement of the two balls is changed
by the collision.

1The game implemented by the program described in this chapter does not correspond to

any actual game. It is not pool, it is not billiards, it is simply balls moving around a table

consisting of walls and holes.
2Discussion of Delphi Pascal is complicated by the fact that graphical user interface elements

of Delphi programs are constructed visually, using the integrated development environment.

This style of design will be familiar to users of Visual Basic. However, the user interface

aspects are not relevant to our purposes, which is the investigation of Delphi as an object-

oriented programming language. The references at the end of the chapter provide pointers to

further information regarding these other aspects of Delphi.

147



148 CHAPTER 7. A CASE STUDY: A BILLIARDS GAME

y

y

y

y

i
y
y

y

y

y

y

y

y

y

y

y

y

y

y

y

7.2 Graphical Objects

The heart of the simulation are three linked lists of graphical objects, which
comprise the walls, holes, and balls. Each graphical object will include a link
�eld and a �eld indicating the region of the screen occupied by the object.3

A simplifying assumption we have made is that all graphical objects occupy
rectangular regions. This is, of course, quite untrue for a round object such as
a ball. A more realistic alternative would have been to write a procedure that
determined whether two balls have intersected based on the geometry of the ball
rather than on the intersection of their regions. Once again, the complexity of
the procedure would only have detracted from the issues we wish to address in
our case study.

The primary objective in this case study is the way in which responsibility
for behavior has been vested in the objects themselves. Every graphical object
knows not only how to draw itself but how to move and how to interact with the
other objects in the simulation.

3There are clear con
icts in ordering in the presentation of this case study. On the one hand,

it is important for the reader to see examples of object-oriented principles as soon as possible;

thus, placing this particular case study early in the book is desirable. On the other hand,

this program, like almost all object-oriented programs, would bene�t from more advanced

techniques, which we will not discuss until later. In particular, the graphical objects might be

better described by an inheritance hierarchy, such as we will describe in Chapter 8. Similarly,

it is generally considered poor programming practice for the objects being maintained on a

linked list to hold the link �elds as part of their data area; a better design would separate

the container from the elements in the list. Solving this problem is non-trivial and introduces

complications not particularly relevant to the points addressed here. We will discuss container

classes in Chapter 19.



7.2. GRAPHICAL OBJECTS 149

7.2.1 The Wall Graphical Object

The �rst of our three graphical objects is a wall. It is de�ned by the following
class description:

TWall = class(TObject)

public

constructor create

(ix, iy, iw, ih : Integer; cf : Real; ilink : TWall);

procedure draw (canvas : TCanvas);

function hasIntersected(aBall : Tball) : Boolean;

procedure hitBy (aBall : TBall);

private

x, y : Integer;

height, width : Integer;

convertFactor : Real;

link : TWall;

end;

The x and y �elds represent the upper left corner of the wall, while the
height and width �elds maintain the size. The link �eld maintains a linked list
of wall objects. The constructor simply de�nes the region of the wall and sets
the convert factor:

constructor TWall.create

(ix, iy, iw, ih : Integer; cf : Real; ilink : Twall);

begin

x := ix;

y := iy;

height := ih;

width := iw;

convertFactor := cf;

link := ilink;

end;

A wall can be drawn simply by printing a solid rectangle. A graphics library
routine performs this task:

procedure TWall.draw(canvas: TCanvas);

begin

with canvas do begin

Brush.Style := bsSolid;

Brush.Color := clBlack;

fillRect(Rect(x, y, x + width, y + height));

end;



150 CHAPTER 7. A CASE STUDY: A BILLIARDS GAME

end;

The most interesting behavior of a wall occurs when it has been struck by a
ball. The direction of the ball is modi�ed by use of the convert factor for the
wall. (Convert factors are either zero or pi, depending upon whether the wall is
horizontal or vertical). The ball subsequently moves o� in a new direction.

procedure TWall.hitBy (aBall : TBall);

begin

f bounce the ball o� the wall g
aBall.direction := convertFactor - aBall.direction;

end;

7.2.2 The Hole Graphical Object

A hole is de�ned by the following class description:

THole = class(TObject)

public

constructor create (ix, iy : Integer; ilink : THole);

procedure draw (canvas : TCanvas);

function hasIntersected(aBall : TBall) : Boolean;

procedure hitBy (aBall : TBall);

private

x, y : Integer;

link : THole;

end;

As with walls, the initialization and drawing of holes is largely a matter of
invoking the correct library routines:

constructor THole.create(ix, iy : Integer; ilink : THole);

begin

x := ix;

y := iy;

link := ilink;

end;

procedure THole.draw(canvas : TCanvas);

begin

with canvas do begin

Brush.Style := bsSolid;

Brush.Color := clBlack;

Ellipse(x-5, y-5, x+5, y+5);

end;



7.2. GRAPHICAL OBJECTS 151

end;

Of more interest is what happens when a hole is struck by a ball. There are
two cases. If the ball happens to be the cue ball (which is identi�ed with a global
variable, CueBall), it is placed back into play at a �xed location. Otherwise, all
the energy is drained from the ball and it is moved o� the table to a special
display area.

procedure THole.hitBy (aBall : TBall);

begin

f drain enery from ball g
aBall.energy := 0.0;

f move ball g
if aBall = CueBall then

aBall.setCenter(50, 100)

else begin

saveRack := saveRack + 1;

aBall.setCenter (10 + saveRack � 15, 250);

end;

end;

7.2.3 The Ball Graphical Object

Our �nal graphical object is the ball, de�ned by the following class description:

TBall = class(TObject)

public

constructor create (ix, iy : Integer; iLink : TBall);

procedure draw (canvas : TCanvas);

function hasIntersected(aBall : Tball) : Boolean;

procedure hitBy (aBall : TBall);

procedure update;

procedure setCenter (nx, ny : Integer);

procedure setDirection (nd : Real);

private

x, y : Integer;

direction : Real;

energy : Real;

link : TBall;

end;

In addition to the link and rectangle regions common to the other objects,
a ball maintains two new data �elds; a direction, measured in radians, and an
energy, which is an arbitrary real value. Like a hole, a ball is initialized by



152 CHAPTER 7. A CASE STUDY: A BILLIARDS GAME

arguments that specify the center of the ball. Initially a ball has no energy and
a direction of zero.

constructor TBall.create(ix, iy : Integer; iLink : TBall);

begin

setCenter(ix, iy);

setDirection(0.0);

energy := 0.0;

link := iLink;

end;

procedure TBall.setCenter(nx, ny : Integer);

begin

x := nx;

y := ny;

end;

procedure TBall.setDirection(nd : Real);

begin

direction := nd;

end;

A ball is drawn either as a frame or as a solid circle, depending upon whether
or not it represents the cue ball.

procedure TBall.draw(canvas : TCanvas);

begin

with canvas do begin

Brush.Style := bsSolid;

if (self = cueBall) then

Brush.Color := clWhite

else

Brush.Color := clBlack;

Ellipse(x-5, y-5, x+5, y+5);

end;

end;

The method update is used to update the position of the ball. If the ball
has a nontrivial amount of energy, it moves slightly, then checks to see if it has
hit another object. A global variable named ballMoved is set true if any ball on
the table has moved. If the ball has hit another object, it noti�es the second
object that it has been struck. This noti�cation process is divided into three
steps, corresponding to hitting holes, walls, and other balls. Inheritance, which
we will study in Chapter 8, will provide a means by which these three tests can
be combined into a single loop.



7.2. GRAPHICAL OBJECTS 153

procedure TBall.update;

var

hptr : THole;

wptr : TWall;

bptr : TBall;

dx, dy : integer;

begin

if energy > 0.5 then begin

ballMoved := true;

f decrease energy g
energy := energy - 0.05;

f move ball g
dx := trunc(5.0 � cos(direction));

dy := trunc(5.0 � sin(direction));

x := x + dx;

y := y + dy;

f see if we hit a hole g
hptr := listOfHoles;

while (hptr <> nil) do

if hptr.hasIntersected(self) then begin

hptr.hitBy(self);

hptr := nil;

end

else

hptr := hptr.link;

f see if we hit a wall g
wptr := listOfWalls;

while (wptr <> nil) do

if wptr.hasIntersected(self) then begin

wptr.hitBy(self);

wptr := nil;

end

else

wptr := wptr.link;

f see if we hit a ball g
bptr := listOfBalls;

while (bptr <> nil) do

if (bptr <> self) and bptr.hasIntersected(self) then begin

bptr.hitBy(self);

bptr := nil;

end



154 CHAPTER 7. A CASE STUDY: A BILLIARDS GAME

else

bptr := bptr.link;

end;

end;

When one ball strikes another ball, the energy of the �rst one is split and half
is given to the second one. The angles of both are also changed. (The physics is
not exactly correct, but the results look reasonably realistic.)

procedure TBall.hitBy (aBall : TBall);

var

da : real;

begin

f cut the energy of the hitting ball in half g
aBall.energy := aBall.energy / 2.0;

f and add it to our own g
energy := energy + aBall.energy;

f set our new direction g
direction := hitAngle(self.x - aBall.x, self.y - aBall.y);

f and set the hitting balls direction g
da := aBall.direction - direction;

aBall.direction := aBall.direction + da;

f continue our update g
update;

end;

function hitAngle (dx, dy : real) : real;

const

PI = 3.14159;

var

na : real;

begin

if (abs(dx) < 0.05) then

na := PI / 2

else

na := arctan (abs(dy / dx));

if (dx < 0) then

na := PI - na;

if (dy < 0) then

na := - na;

hitAngle := na;



7.3. THE MAIN PROGRAM 155

end;

7.3 The Main Program

The previous section described the static characteristics of the program. The
dynamic characteristics are set in motion when a mouse press occurs, at which
time the following function is invoked:

procedure TfrmGraphics.DoClick (Sender: TObject;

Button: TMouseButton; Shift: TShiftState; X, Y: Integer);

var

bptr : TBall;

begin

cueBall.energy := 20.0;

cueBall.setDirection(hitAngle(cueBall.x - x, cueBall.y - y));

f then loop as long as called for g
ballMoved := true;

while ballMoved do begin

ballMoved := false;

bptr := listOfBalls;

while bptr <> nil do begin

bptr.update;

bptr := bptr.link;

end;

end;

end;

The remainder of the program is relatively straight forward and will not be
presented here. The complete source is given in Appendix B. The majority of
the code is concerned with the initialization of the new objects and with the
event loop that waits for the user to perform an action. The programmer uses
the Delphi development environment to match events, such as mouse presses,
with procesures, such as DoClick.

To stress the point we made at the beginning of this chapter, the most im-
portant feature of this case study is the fashion in which control has been de-
centralized and the objects themselves have been given the power to control and
direct the 
ow of execution. When a mouse press occurs, all that happens is
that the cue ball is provided with a certain amount of energy. Thereafter, the
interaction of the balls drives the simulation.

7.4 Using Inheritance

In Chapter 1 we informally introduced inheritance, and in Chapter 8 we will
discuss how inheritance works in each of the languages we are considering. In



156 CHAPTER 7. A CASE STUDY: A BILLIARDS GAME

this section we will describe how inheritance can be used to simplify the billiards
simulation, foreshadowing the discussion we will present in the next chapter. The
reader may wish to return to this section after reading the general treatment of
inheritance in the next chapter.

We have, in fact, been using inheritance throughout our development of the
classes for our application. All of our classes inherit from the system class TOb-
ject. But as we did not use any behavior from this class, the issue was not very
important. Now we will create parent classes that do embody useful behavior.

The �rst step in using inheritance in our billiards simulation is to de�ne a
general class for \graphical objects." This class includes all three items: balls,
walls, and holes. The parent class is de�ned as follows:

type

TBall = class; (� forward declaration �)

TGraphicalObject = class(TObject)

public

constructor Create(ix, iy : Integer; il : TGraphicalObject);

procedure draw (canvas : TCanvas); virtual; abstract;

function hasIntersected (aBall : TBall): Boolean; virtual; abstract;

procedure hitBy (aBall : TBall); virtual; abstract;

procedure update; virtual;

private

x, y : Integer;

link : TGraphicalObject;

end;

Note the forward declaration for the class TBall. This allows the class TGraph-
icalObject to declare arguments of type TBall, even though the class de�nition
has not yet been seen.

Every graphical object has a location and a link. The constructor sets these
values. The methods draw, hasIntersected, and hitBy are declared as virtual and
abstract. This means they are not de�ned in the parent class, but must be
rede�ned in the child classes. The method update is declared as virtual, but not
abstract. In the parent class it is de�ned to do nothing. This behavior will be
overridden by class TBall, but not by the other two.

The classes Ball, Wall, and Hole are then declared as subclasses of the general
class GraphicalObject and need not repeat the declarations for data areas or
functions, unless they are being overridden.

THole = class(TGraphicalObject)

public

constructor create

(ix, iy : Integer; ilink : TGraphicalObject); overload;

procedure draw (canvas : TCanvas); override;



7.4. USING INHERITANCE 157

function hasIntersected(aBall : TBall) : Boolean; override;

procedure hitBy (aBall : TBall); override;

end;

Compare this declaration to the one given earlier, and note how we have now
eliminated the declaration for the data �elds, since they have been moved to the
parent class.

Constructors for the child classes must explicitly invoke the constructors for
their parent classes, as in the following constructor for class TBall:

constructor TBall.Create (ix, iy : Integer; iLink : TGraphicalObject);

begin

inherited Create(ix, iy, iLink);

setDirection(0.0);

energy := 0.0;

end;

By making CueBall a subclass of Ball, we can eliminate the conditional state-
ment in the routine that draws the ball's image.

TCueBall = class(TBall)

public

procedure draw (canvas : TCanvas); override;

end;

procedure TBall.draw(canvas : TCanvas);

begin

with canvas do begin

Brush.Style := bsSolid;

Brush.Color := clBlack;

Ellipse(x-5, y-5, x+5, y+5);

end;

end;

procedure TCueBall.draw (canvas : TCanvas);

begin

with canvas do begin

Brush.Style := bsSolid;

Brush.Color := clWhite;

Ellipse(x-5, y-5, x+5, y+5);

end;

end;



158 CHAPTER 7. A CASE STUDY: A BILLIARDS GAME

The greatest simpli�cation comes from the fact that it is now possible to keep
all graphical objects on a single linked list. Thus, the routine that draws the
entire screen, for example, can be written as follows:

procedure TfrmGraphics.DrawExample(Sender: TObject);

var

gptr : TGraphicalObject;

begin

with imgGraph.Canvas do begin

Brush.Color := clWhite;

Brush.Style := bsSolid;

FillRect(Rect(0, 0, 700, 700));

end;

gptr := listOfObjects;

while (gptr <> nil) do begin

gptr.draw(imgGraph.Canvas);

gptr := gptr.link;

end;

end;

The most important point in this code concerns the invocation of the function
draw within the loop. Despite the fact that there is only one function call written
here, sometimes the function invoked will be from class TBall; at other times it
will be from class TWall, or class THole. The fact that one function call might
result in many di�erent function bodies being invoked is a form of polymorphism.
We will discuss this important topic in more detail in Chapter 14.

The routine that tests to see if a moving ball has hit anything in the function
Ball.update is similarly simpli�ed. This can be seen in the complete source listing
provided in Appendix B.

Chapter Summary

In our second case study we have examined a graphical program that simulates
the behavior of a pool table. Once more our motivation for presenting the case
study was not so much the problem being addressed, as it was the manner in
which the problem was being solved. The balls, holes, and walls in the game
are described as independently reacting agents. When the user interacts with
the game by means of a mouse press, the e�ect is to impart some energy to
the cue ball, thereby forcing it to move. Thereafter the objects interact among
themselves, until all the balls run out of energy.



EXERCISES 159

Further Information

In the �rst two editions of the book this case study was presented in Apple
Object Pascal, instead of Delphi. Those versions can still be found in the web
site, ftp://ftp.cs.orst.edu/pub/budd/oopintro.

As we noted at the beginning of this chapter, our concern here is with the
programming language aspects of Delphi, which are only a small part of the entire
Delphi system. Further information on Delphi can be found in [Lischner 2000,
Kerman 2002]. Borland also provides a wealth of on-line material with the Delphi
integrated program development system.

Self Study Questions

1. Give some examples of how the design makes holes, walls, and balls re-
sponsible for their own behavior.

2. By making each graphical object into a separate class, and making each
responsible for a di�erent aspect of behavior, the object-oriented design is
able to support a great deal of information hiding. This, in turn, leads to
programs which are considerably easier to modify than when conventional
techniques are used. To illustrate this, explain what sections of code would
need to be modi�ed to produce each of the following changes:

� Colored balls, rather than black and white.

� Walls which absorb a bit of energy when they re
ect a ball.

� Holes which make a sound when they absorb a ball.

� Balls which make a sound when they strike.

Exercises

1. Suppose you want to perform a certain action every time the billiards
program executes the event loop task. Where is the best place to insert
this code?

2. Suppose you want to make the balls colored. What portions of the program
do you need to change?

3. Suppose you want to add pockets on the side walls, as on a conventional
pool table. What portions of the program do you need to change?

4. The billiards program uses a \breadth-�rst" technique, cycling repeatedly
over the list of balls, moving each a little as long as any ball has energy. An
alternative, and in some ways more object-oriented, approach is to have
each ball continue to update itself as long as it possesses any energy, and
update any ball that it hits. With this technique, it is only necessary to



160 CHAPTER 7. A CASE STUDY: A BILLIARDS GAME

start the cue ball moving in order to put the simulation in motion. Revise
the program to use this approach. Which do you think provides a more
realistic simulation? Why?

5. A hole has the same graphical representation as a ball, namely a round
black spot. Similarly the algorithms used to determine if a ball has inter-
sected are the same for balls and holes. Given this, would it make sense to
declare TBall as a child class of THole? What would be the advantages of
doing so? What might be some problems introduced by this modi�cation?


