
Chapter 8

Inheritance and

Substitution

The �rst step in learning object-oriented programming is understanding the basic
philosophy of organizing the performance of a task as the interaction of loosely
coupled software components. This organizational approach was the central
lesson in the case studies of Chapters 6 and 7.

The next step in learning object-oriented programming is organizing classes
into a hierarchical structure based on the concept of inheritance. By inheritance,
we mean the property that instances of a child class (or subclass) can access both
data and behavior (methods) associated with a parent class (or superclass).

8.1 An Intuitive Description of Inheritance

Let us return to Chris and Fred, the customer and orist from the �rst chapter.
There is a certain behavior we expect orists to exhibit, not because they are
orists but simply because they are shopkeepers. For example, we expect Fred to
request money for a transaction and in turn give back a receipt. These activities
are not unique to orists, but are common to bakers, grocers, stationers, car
dealers, and other merchants. It is as though we have associated certain behavior
with the general category Shopkeeper, and as Florists are a specialized form of
shopkeepers, the behavior is automatically identi�ed with the subclass.

In programming languages, inheritance means that the behavior and data
associated with child classes are always an extension (that is, a larger set) of the
properties associated with parent classes. A subclass will have all the properties
of the parent class, and other properties as well. On the other hand, since a child
class is a more specialized (or restricted) form of the parent class, it is also, in a
certain sense, a contraction of the parent type. This tension between inheritance
as expansion and inheritance as contraction is a source for much of the power
inherent in the technique, but at the same time it causes much confusion as to

161



162 CHAPTER 8. INHERITANCE AND SUBSTITUTION

its proper employment. We will see this when we examine a few of the uses of
inheritance in a subsequent section.

Inheritance is always transitive, so that a class can inherit features from
superclasses many levels away. That is, if class Dog is a subclass of classMammal,
and class Mammal is a subclass of class Animal, then Dog will inherit attributes
both from Mammal and from Animal.

8.1.1 The Is-a Test

As we noted in Chapter 2, there is a rule-of-thumb that is commonly used to
test whether two concepts should be linked by an inheritance relationship. This
heuristic is termed the is-a test. The is-a test says that to tell if concept A

should be linked by inheritance to concept B, try forming the English sentence
\A(n) A is a(n) B." If the sentence \sounds right" to your ear, then inheritance
is most likely appropriate in this situation. For example, the following all seem
like reasonable assertions:

A Bird is an Animal
A Cat is a Mammal
An Apple Pie is a Pie

A TextWindow is a Window
A Ball is a GraphicalObject
An IntegerArray is an Array

On the other hand, the following assertions seem strange for one reason or
another, and hence inheritance is likely not appropriate:

A Bird is a Mammal
An Apple Pie is an Apple

An Engine is a Car
A Ball is a Wall

An IntegerArray is an Integer

There are times when inheritance can reasonably be used even when the is-a
test fails. Nevertheless, for the vast majority of situations, it gives a reliable
indicator for the appropriate use of the technique.

8.1.2 Reasons to Use Inheritance

Although there are many uses for the mechanism of inheritance, two motivations
far outweigh all other concerns:

� Inheritance as a means of code reuse. Because a child class can inherit
behavior from a parent class, the code does not need to be rewritten for
the child. This can greatly reduce the amount of code needed to develop
a new idea.



8.2. INHERITANCE IN VARIOUS LANGUAGES 163

� Inheritance as a means of concept reuse. This occurs when a child class
overrides behavior de�ned in the parent. Although no code is shared be-
tween parent and child, the child and parent share the de�nition of the
method.

An example of the latter was described in the previous chapter. The variable
that was declared as holding a GraphicalObject could, in fact, be holding a Ball.
When the message draw was given to the object, the code from class Ball, and
not from GraphicalObject, was the method selected. Both code and concept reuse
often appear in the same class hierarchies.

8.2 Inheritance in Various Languages

Object-oriented languages can be divided into those languages that require every
class to inherit from an existing parent class, and those languages that do not.
Java, Smalltalk, Objective-C, and Delphi Pascal are examples of the former,
while C++ and Apple Pascal are examples of the latter. For the former group
we have already seen the syntax used to indicate inheritance, for example in
Figure 4.3 of Chapter 4. In Figure 8.1 we reiterate some of these, and also show
the syntax used for some of the languages in the second group.

One advantage given to those languages that insist that all classes inherit
from an existing class is that there is then a single root that is ancestor to all
objects. This root class is termed Object in Smalltalk and Objective-C, and
termed TObject in Delphi Pascal. Any behavior provided by this root class in
inherited by all objects. Thus, every object is guaranteed to possess a common
minimal level of functionality.

The disadvantage of a single large inheritance tree is that it combines all
classes into a tightly coupled unit. By having several independent inheritance
hierarchies, programs in C++ and other languages that do not make this restric-
tion are not forced to carry a large library of classes, only a few of which may be
used in any one program. Of course, that means there is no programmer-de�ned
functionality that all objects are guaranteed to possess.

In part, the di�ering views of objects are one more distinction between lan-
guages that use dynamic typing and those that use static typing. In dynamic
languages, objects are characterized chiey by the messages they understand. If
two objects understand the same set of messages and react in similar ways, they
are, for all practical purposes, indistinguishable regardless of the relationships
of their respective classes. Under these circumstances, it is useful to have all
objects inherit a large portion of their behavior from a common base class.

8.3 Subclass, Subtype, and Substitution

Consider the relationship of a data type associated with a parent class to a data
type associated with a derived, or child, class in a statically typed object-oriented



164 CHAPTER 8. INHERITANCE AND SUBSTITUTION

Public, Private and Protected

In earlier chapters we have seen the use of the terms public and
private. A public feature is accessible to code outside the class de�-
nition, while a private feature is accessible only within the class def-
inition. Inheritance introduces a third alternative. In C++ (also in
C#, Delphi, Ruby and several other languages) a protected feature is
accessible only within a class de�nition or within the de�nition of any
child classes. Thus a protected feature is more accessible than a private
one, and less accessible than a public feature. This is illustrated by
the following example:

class Parent f
private:

int three;

protected:

int two;

public:

int one;

Parent () f one = two = three = 42; g
void inParent ()

f cout << one << two << three; /� all legal �/ g
g;

class Child : public Parent f
public:

void inChild () f
cout << one; // legal
cout << two; // legal
cout << three; // error - not legal

g
g;

void main () f
Child c;

cout << c.one; // legal
cout << c.two; // error - not legal
cout << c.three; // error - not legal

g
The lines marked as error will generate compiler errors. The private

feature can be used only within the parent class. The protected feature
only within the parent and child class. Only public features can be
used outside the class de�nitions.

Java uses the same keyword, but there protected features are legal
within the same package in which they are declared.



8.3. SUBCLASS, SUBTYPE, AND SUBSTITUTION 165

C++

class Wall : public GraphicalObject {

...

}

C#

class Wall : GraphicalObject {

...

}

CLOS (defclass Wall (GraphicalObject) () )

Java

class Wall extends GraphicalObject {

...

}

Object Pascal

type

Wall = object (GraphicalObject)

...

end;

Python

class Wall(GraphicalObject):

def __init__(self):

...

Ruby

class Wall < GraphicalObject

...

end

Figure 8.1: Syntax Used to Indicate Inheritance in Several Languages



166 CHAPTER 8. INHERITANCE AND SUBSTITUTION

language. The following observations can be made:

� Instances of the child class must possess all data members associated with
the parent class.

� Instances of the child class must implement, through inheritance at least
(if not explicitly overridden) all functionality de�ned for the parent class.
(They can also de�ne new functionality, but that is unimportant for the
present argument).

� Thus, an instance of a child class can mimic the behavior of the parent
class and should be indistinguishable from an instance of the parent class
if substituted in a similar situation.

We will see later in this chapter, when we examine the various ways in which
inheritance can be used, that this is not always a valid argument. Nevertheless,
it is a good description of our idealized view of inheritance. We will therefore
formalize this ideal in what is called the principle of substitution.

The principle of substitution says that if we have two classes, A and B, such
that class B is a subclass of class A (perhaps several times removed), it should be
possible to substitute instances of class B for instances of class A in any situation

with no observable e�ect.
The term subtype is used to refer to a subclass relationship in which the

principle of substitution is maintained, to distinguish such forms from the general
subclass relationship, which may or may not satisfy this principle. We saw a use
of the principle of substitution in Chapter 7. Section 7.4 described the following
procedure:

procedure drawBoard;

var

gptr : GraphicalObject;

begin

(� draw each graphical object �)
gptr := listOfObjects;

while gptr <> nil do begin

gptr.draw;

gptr := gptr.link;

end;

end;

The global variable listOfObjects maintains a list of graphical objects, which
can be any of three types. The variable gptr is declared to be simply a graphical
object, yet during the course of executing the loop it takes on values that are, in
fact, derived from each of the subclasses. Sometimes gptr holds a ball, sometimes
a hole, and sometimes a wall. In each case, when the draw function is invoked, the
correct method for the current value of gptr will be executed{not the method



8.4. OVERRIDING AND VIRTUAL METHODS 167

in the declared class GraphicalObject. For this code to operate correctly it is
imperative that the functionality of each of these subclasses match the expected
functionality speci�ed by the parent class; that is, the subclasses must also be
subtypes.

All object oriented languages will support the principle of substitution, al-
though some will require additional syntax when a method is overridden. Most
support the concept in a very straight-forward fashion; the parent class simply
holds a value from the child class. The one major exception to this is the lan-
guage C++. In C++ only pointers and references truly support substitution;
variables that are simply declared as value (and not as pointers) do not sup-
port substitution. We will see why this property is necessary in C++ in a later
chapter.

8.3.1 Substitution and Strong Typing*

Statically typed languages (such as C++ and Object Pascal) place much more
emphasis on the principle of substitution than do dynamically typed languages
(such as Smalltalk and Objective-C). The reason for this is that statically typed
languages tend to characterize objects by their class, whereas dynamically typed
languages tend to characterize objects by their behavior. For example, a poly-
morphic function (a function that can take objects of various classes) in a stati-
cally typed language can ensure a certain level of functionality only by insisting
that all arguments be subclasses of a given class. Since in a dynamically typed
language arguments are not typed at all, the same requirement would be simply
that an argument must be able to respond to a certain set of messages.

An example of this di�erence would be a function that requires an argument
be an instance of a subclass of Measureable, as opposed to a function that re-
quires an argument understand the messages lessThan and equal. The former is
characterizing an object by its class, the latter is characterizing an object by its
behavior. Both forms of type checking are found in object-oriented languages.

8.4 Overriding and Virtual Methods

In Chapter 1 we noted that child classes may sometimes �nd it necessary to
override the behavior they would otherwise inherit from their parent classes.
In syntactic terms, what this means is that a child class will de�ne a method
using the same name and type signature as one found in the parent class. When
overriding is combined with substitution, we have the situation where a variable
is declared as one class, but holds a value from a child class, and a method
matching a given message is found in both classes. In almost all cases what we
want to have happen in this situation is to execute the method found in the child
class, ignoring the method from the parent class.

0Section headings followed by an asterisk indicate optional material.



168 CHAPTER 8. INHERITANCE AND SUBSTITUTION

C++

class GraphicalObject {

public:

virtual void draw();

};

class Ball : public Graphicalobject {

public:

virtual void draw(); // virtual optional here

};

C#

class GraphicalObject {

public viritual void draw () { ... }

}

class Ball : Graphical Object {

public override void draw () { ... }

}

Delphi

type

GraphicalObject = class (TObject)

...

procedure draw; virtual;

end;

Ball = class (GraphicalObject)

...

procedure draw; override;

end;

Object Pascal

type

GraphicalObject = object

...

procedure draw;

end;

Ball = object (GraphicalObject)

...

procedure draw; override;

end;

Figure 8.2: Overriding in Various Languages



8.5. INTERFACES AND ABSTRACT CLASSES 169

In many object oriented languages (Smalltalk, Java) this desired behavior will
occur naturally, as soon as a child class overrides a method in the parent class
using the same type signature. Some languages, on the other hand, require the
programmer to indicate that such a substitution is permitted. Many languages
use the keyword virtual to indicate this. It may be necessary, as in C++, to place
the keyword in the parent class1 (indicating that overriding may take place; it
does not indicate that it necessarily will take place) or, as in Object Pascal,
in the child class (indicating that overridng has taken place). Or it may be
required in both places, as in C# and Delphi. Figure 8.2 shows the syntax used
for overriding in various langauges.

8.5 Interfaces and Abstract Classes

In Chapter 4 we briey introduced the concept of an interface in Java and other
languages. As with classes, interfaces are allowed to inherit from other interfaces
and are even permitted to inherit from multiple parent interfaces. Although the
speci�cation that a new class inherits from a parent class and the speci�cation
that it implements an interface are not exactly the same, they are su�ciently
similar that we will henceforth use the term inheritance to indicate both actions.

Several object-oriented languages support an idea, termed an abstract method

that is mid-way between classes and interfaces. In Java and C#, for example,
a class can de�ne one or more methods using the keyword abstract. No body
is then provided for the method. A child class must implement any abstract
methods before an instance of the class can be created. Thus, abstract methods
specify behavior in the parent class but the behavior itself must be provided by
the child class:

abstract class Window f
...

abstract public void paint (); // draw contents of window

...

g

An entire class can be named as abstract, whether or not it includes any
abstract methods. It is not legal to create an instance of an abstract class, it is
only legal to use it as a parent class for purposes of inheritance.

In C++ the idea of an abstract method is termed a pure virtual method, and
is indicated using the assignment operator:

class Window f
public:

...

1Virtual overriding in C++ is actually more complex, for reasons we will develop in the
next several chapters.



170 CHAPTER 8. INHERITANCE AND SUBSTITUTION

virtual void paint () = 0; // assignment makes it pure virtual

g;

A class can have both abstract (or pure virtual) methods and non-abstract
methods. A class in which all methods were declared as abstract (or pure virtual)
would correspond to the Java idea of an interface.

Abstract methods can be simulated even when the language does not pro-
vide explicit support for the concept. In Smalltalk, for example, programmers
frequently de�ne a method so as to generate an error if it is invoked, with the
expectation that it will be overwritten in child classes:

writeTo: stream

" self error: subclass must override writeTo

This is not exactly the same as a true abstract method, since it does not
preclude the creation of instances of the class. Nevertheless, if an instance is
created and this method invoked the program will quickly fail, and hence such
errors are easily detected.

8.6 Forms of Inheritance

Inheritance is used in a surprising variety of ways. In this section we will describe
a few of its more common uses. Note that the following list represents general
abstract categories and is not intended to be exhaustive. Furthermore, it some-
times happens that two or more descriptions are applicable to a single situation,
because some methods in a single class use inheritance in one way while others
use it in another.

8.6.1 Subclassing for Specialization (Subtyping)

Probably the most common use of inheritance and subclassing is for specializa-
tion. In subclassing for specialization, the new class is a specialized form of the
parent class but satis�es the speci�cations of the parent in all relevant respects.
Thus, in this form the principle of substitution is explicitly upheld. Along with
the following category (subclassing for speci�cation) this is the most ideal form
of inheritance, and something that a good design should strive for.

Here is an example of subclassing for specialization. A class Window pro-
vides general windowing operations (moving, resizing, iconi�cation, and so on).
A specialized subclass TextEditWindow inherits the window operations and in

addition, provides facilities that allow the window to display textual material
and the user to edit the text values. Because the text edit window satis�es all
the properties we expect of a window in general (thus, a TextEditWindow win-
dow is a subtype of Window in addition to being a subclass), we recognize this
situation as an example of subclassing for specialization.



8.6. FORMS OF INHERITANCE 171

8.6.2 Subclassing for Speci�cation

Another frequent use for inheritance is to guarantee that classes maintain a cer-
tain common interface{that is, they implement the same methods. The parent
class can be a combination of implemented operations and operations that are
deferred to the child classes. Often, there is no interface change of any sort be-
tween the parent class and the child class{the child merely implements behavior
described, but not implemented, in the parent.

This is in essence a special case of subclassing for specialization, except that
the subclasses are not re�nements of an existing type but rather realizations of
an incomplete abstract speci�cation. In such cases the parent class is sometimes
known as an abstract speci�cation class.

A class that implements an interface is always ful�lling this form of inher-
itance. However, subclassing for speci�cation can also arise in other ways. In
the billiards simulation example presented in Chapter 7, for example, the class
GraphicalObject was an abstract class since it described, but did not implement,
the methods for drawing the object and responding to a hit by a ball. The sub-
sequent classes Ball, Wall, and Hole then used subclassing for speci�cation when
they provided meanings for these methods.

In general, subclassing for speci�cation can be recognized when the parent
class does not implement actual behavior but merely de�nes the behavior that
will be implemented in child classes.

8.6.3 Subclassing for Construction

A class can often inherit almost all of its desired functionality from a parent class
perhaps changing only the names of the methods used to interface to the class,
or modifying the arguments in a certain fashion. This may be true even if the
new class and the parent class fail to share the is-a relationship.

For example, the Smalltalk class hierarchy implements a generalization of an
array called Dictionary. A dictionary is a collection of key-value pairs, like an
array, but the keys can be arbitrary values. A symbol table, such as might be
used in a compiler, can be considered a dictionary indexed by symbol names in
which the values have a �xed format (the symbol-table entry record). A class
SymbolTable can therefore be made a subclass of the class Dictionary, with new
methods de�ned that are speci�c to the use as a symbol table. Another example
might be forming a set data abstraction on top of a base class which provides
list methods. In both these cases, the child class is not a more specialized form
of the parent class, because we would never think of substituting an instance of
the child class in a situation where an instance of the parent class is being used.

A common use of subclassing for construction occurs when classes are created
to write values to a binary �le, for example, in a persistent storage system. A
parent class may implement only the ability to write raw binary data. A subclass
is constructed for every structure that is saved. The subclass implements a save
procedure for the data type, which uses the behavior of the parent type to do



172 CHAPTER 8. INHERITANCE AND SUBSTITUTION

the actual storage.2

class Storable f

void writeByte(unsigned char);

g;

class StoreMyStruct : public Storable f

void writeStruct (MyStruct & aStruct);

g;

Subclassing for construction tends to be frowned upon in statically typed
languages, since it often directly breaks the principle of substitution (forming
subclasses that are not subtypes). On the other hand, because it is often a fast
and easy route to developing new data abstractions, it is widely employed in
dynamically typed languages. Many instances of subclassing for construction
can be found in the Smalltalk standard library.

We will investigate an example of subclassing for construction in Chapter 9.
We will also see that C++ provides an interesting mechanism, private inheritance,
which permits subclassing for construction without breaking the principle of
substitution.

8.6.4 Subclassing for Generalization

Using inheritance to subclass for generalization is, in a certain sense, the oppo-
site of subclassing for specialization. Here, a subclass extends the behavior of
the parent class to create a more general kind of object. Subclassing for gener-
alization is often applicable when we build on a base of existing classes that we
do not wish to modify, or cannot modify.

Consider a graphics display system in which a class Window has been de�ned
for displaying on a simple black-and-white background. You could create a
subtype ColoredWindow that lets the background color be something other than
white by adding an additional �eld to store the color and overriding the inherited
window display code that speci�es the background be drawn in that color.

Subclassing for generalization frequently occurs when the overall design is
based primarily on data values and only secondarily on behavior. This is shown
in the colored window example, since a colored window contains data �elds that
are not necessary in the simple window case.

As a rule, subclassing for generalization should be avoided in favor of inverting
the type hierarchy and using subclassing for specialization. However, this is not
always possible.

2This example illustrates the blurred lines between categories. If the child class implements
the storage using a di�erent method name, we say it is subclassing for construction. If, on the
other hand, the child class uses the same name as the parent class, we might say the result is
subclassing for speci�cation.



8.6. FORMS OF INHERITANCE 173

8.6.5 Subclassing for Extension

While subclassing for generalization modi�es or expands on the existing func-
tionality of an object, subclassing for extension adds totally new abilities. Sub-
classing for extension can be distinguished from subclassing for generalization
in that the latter must override at least one method from the parent and the
functionality is tied to that of the parent. Extension simply adds new methods
to those of the parent, and the functionality is less strongly tied to the existing
methods of the parent.

An example of subclassing for extension is a StringSet class that inherits from
a generic Set class but is specialized for holding string values. Such a class might
provide additional methods for string-related operations{for example, \search by
pre�x," which returns a subset of all the elements of the set that begin with a
certain string value. These operations are meaningful for the subclass, but are
not particularly relevant to the parent class.

As the functionality of the parent remains available and untouched, subclass-
ing for extension does not contravene the principle of substitution and so such
subclasses are always subtypes.

8.6.6 Subclassing for Limitation

Subclassing for limitation occurs when the behavior of the subclass is smaller or
more restrictive than the behavior of the parent class. Like subclassing for gener-
alization, subclassing for limitation occurs most frequently when a programmer
is building on a base of existing classes that should not, or cannot, be modi�ed.

For example, an existing class library provides a double-ended-queue, or
deque, data structure. Elements can be added or removed from either end of
the deque, but the programmer wishes to write a stack class, enforcing the prop-
erty that elements can be added or removed from only one end of the stack.

In a manner similar to subclassing for construction, the programmer can
make the Stack class a subclass of the existing Deque class, and can modify
or override the undesired methods so that they produce an error message if
used. These methods override existing methods and eliminate their functionality,
which characterizes subclassing for limitation. (Overriding, by which a subclass
changes the meaning of a method de�ned in a parent class, will be discussed in
a subsequent chapter).

Because subclassing for limitation is an explicit contravention of the principle
of substitution, and because it builds subclasses that are not subtypes, it should
be avoided whenever possible.

8.6.7 Subclassing for Variance

Subclassing for variance is employed when two or more classes have similar im-
plementations but do not seem to possess any hierarchical relationships between
the abstract concepts represented by the classes. The code necessary to control
a mouse, for example, may be nearly identical to the code required to control



174 CHAPTER 8. INHERITANCE AND SUBSTITUTION

a graphics tablet. Conceptually, however, there is no reason why class Mouse

should be made a subclass of class Tablet, or the other way. One of the two
classes is then arbitrarily selected to be the parent, with the common code being
inherited by the other and device-speci�c code being overridden.

Usually, however, a better alternative is to factor out the common code into
an abstract class, say PointingDevice, and to have both classes inherit from this
common ancestor. As with subclassing for generalization, this choice may not
be available if you are building on a base of existing classes.

8.6.8 Subclassing for Combination

A common situation is a subclass that represents a combination of features from
two or more parent classes. A teaching assistant, for example, may have charac-
teristics of both a teacher and a student, and can therefore logically behave as
both. The ability of a class to inherit from two or more parent classes is known
as multiple inheritance; it is su�ciently subtle and complex that we will devote
an entire chapter to the concept.

8.6.9 Summary of the Forms of Inheritance

We can summarize the various forms of inheritance by the following table:

� Specialization. The child class is a special case of the parent class; in other
words, the child class is a subtype of the parent class.

� Speci�cation. The parent class de�nes behavior that is implemented in the
child class but not in the parent class.

� Construction. The child class makes use of the behavior provided by the
parent class, but is not a subtype of the parent class.

� Generalization. The child class modi�es or overrides some of the methods
of the parent class.

� Extension. The child class adds new functionality to the parent class, but
does not change any inherited behavior.

� Limitation. The child class restricts the use of some of the behavior inher-
ited from the parent class.

� Variance. The child class and parent class are variants of each other, and
the class-subclass relationship is arbitrary.

� Combination. The child class inherits features from more than one parent
class. This is multiple inheritance and will be the subject of a later chapter.



8.7. VARIATIONS ON INHERITANCE* 175

8.7 Variations on Inheritance*

In this section we will examine a number of mostly single-language speci�c vari-
ations on the themes of inheritance and overriding.

8.7.1 Anonymous Classes in Java

Occasionally a situation arises where a programmer needs to create a simple
class, and knows there will never be more than one instance of the class. Such
an object is often termed a singleton. The Java programming language provides
a mechanism for creating such an object without even having to give a name to
the class being used to de�ne the object. Hence the name for this technique,
anonymous classes.

In order to be able to create an anonymous class, several requirements must
be met:

1. Only one instance of the anonymous class can be created.

2. The class must inherit from a parent class or interface, and not require a
constructor for initialization.

These two conditions frequently arise in the context of user interfaces. For
example, in Chapter 22 we will encounter a class named ButtonAdapter that is
used to create graphical buttons. To give behavior to a button, the program-
mer must form a new class that inherits from ButtonAdapter, and overrides the
method pressed. Since there is only one such object, this can be done with an
anonymous class (also sometimes termed a class de�nition expression).

Graphical elements are added to a window using the method add. To place
a new button in a window, all that is necessary is the following:

Window p = ...;

p.add (new ButtonAdapter("Quit")f
public void pressed () f System.exit(0); g
g

);

Study carefully the argument being passed to the add operator. It includes
the creation of a new value, indicated by the new operator. But rather than
ending the expression with the closing parenthesis on the argument list for new,
a curly brace appears as if in a class de�nition. In fact, this is a new class
de�nition. A subclass of ButtonAdapter is being formed, and a single instance
of this class will be created. Any methods required by this new class are given
immediately in-line. In this case, the new class overrides the method named
pressed. The closing curly brace terminates the anonymous class expression.

0Section headings followed by an asterisk indicate optional material.



176 CHAPTER 8. INHERITANCE AND SUBSTITUTION

8.7.2 Inheritance and Constructors

A constructor, you will recall, is a procedure that is invoked implicitly during
the creation of a new object value, and which guarantees that the newly created
object is properly initialized. Inheritance complicates this process, since both
the parent and the new child class may have initialization code to perform. Thus
code from both classes must be executed.

In Java, C++ and other languages the constructor for both parent and child
will automatically be executed as long as the parent constructor does not require
additional parameters. When the parent does require parameters, the child must
explicitly provide them. In Java this is done using the keyword super:

class Child extends Parent f

public Child (int x) f

super (x + 2); // invoke parent constructor

...

g

g

In C++ the same task is accomplished by writing the parent class name in
the form of an initializer:

class Child : public Parent f

public:

Child (int x) : Parent(x+2) f ... g

g;

In Delphi a constructor for a child class must always invoke the constructor
for the parent class, even if the parent class constructor takes no arguments.
The syntax is the same for executing the parent class behavior in any overridden
method:

constructor TChildClass.Create;

begin

inherited Create; // execute constructor in parent

end

Arguments to the parent constructor are added as part of the call:

constructor TChildClass.Create (x : Integer);

begin

inherited Create(x + 2);

end



8.7. VARIATIONS ON INHERITANCE* 177

Similarly, an initialization method in Python does not automatically invoke
the function in the parent, hence the programmer must not forget to do this
task:

class Child(Parent):

def init (self):

# first initialize parent

Parent. init (self)

# then do our initialization

...

8.7.3 Virtual Destructors

Recall from Chapter 5 that in C++ a destructor is a function that will be
invoked just before the memory for a variable is recovered. Destructors are used
to perform whatever tasks are necessary to ensure a value is properly deleted.
For example, a destructor will frequently free any dynamically allocated memory
the variable may hold.

If substitution and overriding are anticipated, then it is important that the
destructor be declared as virtual. Failure to do so may result in destructors for
child classes not being invoked. This following example shows this error:

class Parent f

public:

// warning, destructor not declared virtual

�Parent () f cout << "in parent\n"; g
g;

class Child : public Parent f
public:

�Child () f cout << "in child\n"; g
g;

If an instance of the child class is held by a pointer to the parent class
and subsequently released (say, by a delete statement), then only the parent
destructor will be invoked.

Parent � p = new Child();

delete p;

in parent

If the parent destructor is declared as virtual, then both the parent and child
destructors will be executed. In C++ it is a good idea to include a virtual



178 CHAPTER 8. INHERITANCE AND SUBSTITUTION

destructor, even if it performs no action, if there is any possibility that a class
may later be subclassed.

8.8 The Bene�ts of Inheritance

In this section we will describe some of the many important bene�ts of the proper
use of inheritance.

8.8.1 Software Reusability

When behavior is inherited from another class, the code that provides that be-
havior does not have to be rewritten. This may seem obvious, but the impli-
cations are important. Many programmers spend much of their time rewriting
code they have written many times before{for example, to search for a pattern in
a string or to insert a new element into a table. With object-oriented techniques,
these functions can be written once and reused.

Other bene�ts of reusable code include increased reliability (the more situa-
tions in which code is used, the greater the opportunities for discovering errors)
and the decreased maintenance cost because of sharing by all users of the code.

8.8.2 Code Sharing

Code sharing can occur on several levels with object-oriented techniques. On one
level, many users or projects can use the same classes. (Brad Cox [Cox 1986]
calls these software-ICs, in analogy to the integrated circuits used in hardware
design). Another form of sharing occurs when two or more classes developed by
a single programmer as part of a project inherit from a single parent class. For
example, a Set and an Array may both be considered a form of Collection. When
this happens, two or more types of objects will share the code that they inherit.
This code needs to be written only once and will contribute only once to the size
of the resulting program.

8.8.3 Consistency of Interface

When two or more classes inherit from the same superclass, we are assured that
the behavior they inherit will be the same in all cases. Thus, it is easier to
guarantee that interfaces to similar objects are in fact similar, and that the user
is not presented with a confusing collection of objects that are almost the same
but behave, and are interacted with, very di�erently.

8.8.4 Software Components

In Chapter 1, we noted that inheritance provides programmers with the ability to
construct reusable software components. The goal is to permit the development
of new and novel applications that nevertheless require little or no actual coding.



8.8. THE BENEFITS OF INHERITANCE 179

Already, several such libraries are commercially available, and we can expect
many more specialized systems to appear in time.

8.8.5 Rapid Prototyping

When a software system is constructed largely out of reusable components, devel-
opment time can be concentrated on understanding the new and unusual portion
of the system. Thus, software systems can be generated more quickly and easily,
leading to a style of programming known as rapid prototyping or exploratory pro-

gramming. A prototype system is developed, users experiment with it, a second
system is produced that is based on experience with the �rst, further experi-
mentation takes place, and so on for several iterations. Such programming is
particularly useful in situations where the goals and requirements of the system
are only vaguely understood when the project begins.

8.8.6 Polymorphism and Frameworks

Software produced conventionally is generally written from the bottom up, al-
though it may be designed from the top down. That is, the lower-level routines
are written, and on top of these slightly higher abstractions are produced, and
on top of these even more abstract elements are generated. This process is like
building a wall, where every brick must be laid on top of an already laid brick.

Normally, code portability decreases as one moves up the levels of abstraction.
That is, the lowest-level routines may be used in several di�erent projects, and
perhaps even the next level of abstraction may be reused, but the higher-level
routines are intimately tied to a particular application. The lower-level pieces
can be carried to a new system and generally make sense standing on their own;
the higher-level components generally make sense (because of declarations or
data dependencies) only when they are built on top of speci�c lower-level units.

Polymorphism in programming languages permits the programmer to gener-
ate high-level reusable components that can be tailored to �t di�erent applica-
tions by changes in their low-level parts. We will have much more to say about
this topic in subsequent chapters.

8.8.7 Information Hiding

A programmer who reuses a software component needs only to understand the
nature of the component and its interface. It is not necessary for the programmer
to have detailed information concerning matters such as the techniques used to
implement the component. Thus, the interconnectedness between software sys-
tems is reduced. We earlier identi�ed the interconnected nature of conventional
software as being one of the principle causes of software complexity.



180 CHAPTER 8. INHERITANCE AND SUBSTITUTION

8.9 The Costs of Inheritance

Although the bene�ts of inheritance in object-oriented programming are great,
almost nothing is without cost of one sort or another. For this reason, we must
consider the cost of object-oriented programming techniques, and in particular
the cost of inheritance.

8.9.1 Execution Speed

It is seldom possible for general-purpose software tools to be as fast as carefully
hand-crafted systems. Thus, inherited methods, which must deal with arbitrary
subclasses, are often slower than specialized code.

Yet, concern about e�ciency is often misplaced.3 First, the di�erence is often
small. Second, the reduction in execution speed may be balanced by an increase
in the speed of software development. Finally, most programmers actually have
little idea of how execution time is being used in their programs. It is far better
to develop a working system, monitor it to discover where execution time is being
used, and improve those sections, than to spend an inordinate amount of time
worrying about e�ciency early in a project.

8.9.2 Program Size

The use of any software library frequently imposes a size penalty not imposed
by systems constructed for a speci�c project. Although this expense may be
substantial, as memory costs decrease the size of programs becomes less impor-
tant. Containing development costs and producing high-quality and error-free
code rapidly are now more important than limiting the size of programs.

8.9.3 Message-Passing Overhead

Much has been made of the fact that message passing is by nature a more costly
operation than simple procedure invocation. As with overall execution speed,
however, overconcern about the cost of message passing is frequently penny-wise
and pound-foolish. For one thing, the increased cost is often marginal{perhaps
two or three additional assembly-language instructions and a total time penalty
of 10 percent. (Timing �gures vary from language to language. The overhead
of message passing will be much higher in dynamically bound languages, such
as Smalltalk, and much lower in statically bound languages, such as C++.) This
increased cost, like others, must be weighed against the many bene�ts of the
object-oriented technique.

A few languages, notably C++, make a number of options available to the
programmer that can reduce the message-passing overhead. These include elim-

3The following quote from an article by Bill Wulf o�ers some apt remarks on the importance
of e�ciency: \More computing sins are committed in the name of e�ciency (without necessarily
achieving it) than for any other single reason{including blind stupidity" [Wulf 1972].



8.9. THE COSTS OF INHERITANCE 181

inating the polymorphism from message passing (qualifying invocations of mem-
ber functions by a class name, in C++ terms) and expanding inline procedures.
Similarly, the Delphi Pascal programmer can choose dynamic methods, which
use a run-time lookup mechanism, or virtual methods, which use a slightly faster
technique. Dynamic methods are inherently slower, but require less space.

8.9.4 Program Complexity

Although object-oriented programming is often touted as a solution to software
complexity, in fact, overuse of inheritance can often simply replace one form
of complexity with another. Understanding the control ow of a program that
uses inheritance may require several multiple scans up and down the inheritance
graph. This is what is known as the yo-yo problem, which we will discuss in
more detail in a later chapter.

Chapter Summary

In this chapter we begin a detailed examination of inheritance and substitution,
a topic that will be continued through the next several chapters. When a child
class declares that it inherits from a parent class, code in the parent class does
not have to be rewritten. Thus inheritance is a powerful mechanism of code
reuse. But this is not the only reason to use inheritance. In the abstract, a child
class is a representative of the category formed by the parent class, and hence it
makes sense that an instance of the child class could be used in those situations
where we expect an instance of the parent class. This is known as the principle
of substitution. But this is only an idealization. Not all types of inheritance
support this idea behavior.

We have described various forms of inheritance, noting when they seem to
support substitution and when they may not.

The chapter concludes with descriptions of both the bene�ts of inheritance
and the costs incurred through the use of the technique.

Further Reading

Many of the ideas introduced in this chapter will be developed and explored in
more detail in subsequent chapters. Overriding is discussed in detail in Chap-
ter 16. We will discuss static and dynamic typing more in Chapter 10, and
polymorphism in more detail in Chapter 14.

In Section 8.1.2 we noted that inheritance is used both as a mechanism of code
reuse and concept reuse. The fact that the same feature is serving two di�erent
purposes is a frequent criticism levied against object-oriented languages. Many
writers have advocated separating these two tasks, for example using inheritance
of classes only for code reuse, and using inheritance of interfaces (as, for example,
in Java) for substitution (concept reuse). While this approach has a theoretical



182 CHAPTER 8. INHERITANCE AND SUBSTITUTION

appeal, from a practical standpoint it complicates the task of programming,
and has not been widely adopted. See Exercise 5 for one way this could be
accomplished.

The list describing the forms of inheritance is adopted from [Halbert 1987],
although I have added some new categories of my own. The editable-window
example is from [Meyer 1988a].

The principle of substitution is sometimes referred to as the Liskov Substi-

tution Principle, since an early discussion of the idea was presented by Barbara
Liskov and John Guttag [Liskov 1986].

Self Study Questions

1. In what ways is a child class an extension of its parent? In what ways is it
a contraction?

2. What is the is-a test for inheritance?

3. What are the two major reasons for the use of inheritance?

4. What is the principle of substitution? What is the argument used to justify
its application?

5. How is a class that contains abstract methods similar to an interface? If
not all methods are abstract, how is it di�erent?

6. What features characterize each of the following forms of inheritance?

(a) Subclassing for Specialization

(b) Subclassing for Speci�cation

(c) Subclassing for Construction

(d) Subclassing for Generalization

(e) Subclassing for Extension

(f) Subclassing for Limitation

(g) Subclassing for Variance

7. Why is subclassing for construction not normally considered to be a good
idea?

8. Why is subclassing for limitation not a good idea?

9. How does inheritance facilitate software reuse?

10. How does it encourage consistency of interface?

11. How does it support the idea of rapid prototyping?

12. How does it encourage the principle of information hiding?



EXERCISES 183

13. An anonymous class combines what two activities?

14. Why is the execution time cost incurred by the use of inheritance not
usually important? What are some situations where it would be important?

Exercises

1. Suppose you were required to program a project in a non-object oriented
language, such as Pascal or C. How would you simulate the notion of classes
and methods? How would you simulate inheritance? Could you support
multiple inheritance? Explain your answer.

2. We noted that the execution overhead associated with message passing is
typically greater than the overhead associated with a conventional proce-
dure call. How might you measure these overheads? For a language that
supports both classes and procedures (such as C++ or Object Pascal), de-
vise an experiment to determine the actual performance penalty of message
passing.

3. Consider the three geometric concepts of a line (in�nite in both directions),
a ray (�xed at a point, in�nite in one direction), and a segment (a portion
of a line with �xed end points). How might you structure classes represent-
ing these three concepts in an inheritance hierarchy? Would your answer
di�er if you concentrated more on the data representation or more on the
behavior? Characterize the type of inheritance you would use. Explain the
reasoning behind your design.

4. The following appeared as an illustration of inheritance in a popular jour-
nal:

\Perhaps the most powerful concept in object-oriented pro-
gramming systems is inheritance. Objects can be created by in-
heriting the properties of other objects, thus removing the need
to write any code whatsoever! Suppose, for example, a program
is to process complex numbers consisting of real and imaginary
parts. In a complex number, the real and imaginary parts behave
like real numbers, so all of the operations (+, -, /, *, sqrt, sin,
cos, etc.) can be inherited from the class of objects call REAL,
instead of having to be written in code. This has a major impact
on programmer productivity."

(a) The quote seems to indicate that class Complex could be a child class
of Real. Does the assertion that the child class Complex need not write
any code seem plausible?

(b) Does this organization make sense in terms of the data members each
class must maintain? Why or why not?



184 CHAPTER 8. INHERITANCE AND SUBSTITUTION

(c) Does this organization make sense in terms of the methods each class
must support? Why or why not?

(d) Can you describe a better approach for creating a class Complex using
an existing class Real? What bene�t does your new class derive from
the existing class?

5. In Section 8.1.2 we noted how inheritance is used for two di�erent purposes;
as a vehicle for code reuse, and a vehicle for substitution. Among the
major object-oriented langauges, Java comes closest to separating these
two purposes, since the language supports both classes and interfaces. But
it confuses the two topics by continuing to allow substitution for class
values. Suppose we took the next step, and changed the Java language
to eliminate substitution for class types. This could be accomplished by
making the following two modi�cations to the language:

� A variable declared as a class could hold values of the class, but not
of child classes.

� If a parent class indicates that it supports an interface, the child class
would not automatically support the interface, but would have to
explicitly indicate this fact in its class heading.

We maintain inheritance and substitution of interfaces; a variable declared
as an interface could hold a value from any class that implemented the
interface.

(a) Show that any class hierarchy, and any currently legal assignment,
could be rewritten in this new framework. (You will need to introduce
new interfaces).

(b) Although the resulting system is much cleaner from a theoretical
standpoint, what has been lost? Why did the designers of Java not
follow this approach?


