Chapter 9

Case study — A Card Game

In this third case study we will examine a simple card game, a version of solitaire.
A slightly different rendition of this program was presented in C++ in the first
edition of the present book, and rewritten to use the MFC library in another
book [Budd 1999]. The program was translated into Java in the second edition,
and revised once again in Java in yet another book [Budd 98b]. The program
presented here is one more revision, this time translated into C#.

I have used this case study in so many different forms because the devel-
opment of this program is a good illustration of the power of inheritance and
overriding. We will get to those aspects, after first considering some of the basic
elements of the game. The complete source for the program can be viewed in
Appendix C.

9.1 The Class PlayingCard

Wherever possible, software development should strive for the creation of general
purpose reusable classes; classes that make minimal demands on their environ-
ment and hence can be carried from one application to another. This idea is
illustrated by the first class, which represents a playing card. The class defining
the playing card abstraction is shown in Figure 9.1. We have examined aspects
of this class in earlier chapters.

The methods isFaceUp, rank, suit and color have been writen as properties.
Since they include only a get clause, and no set feature, they are properties
that can be read and not modified. Two enumerated data types are used by
the playing card class. The enumerated type Color is provided by the standard
run-time system. The class Suits is specific to this project, and is defined as
follows:

public enum Suits { Spade, Diamond, Club, Heart };

185

186 CHAPTER 9. CASE STUDY - A CARD GAME

public class PlayingCard

{

public PlayingCard (Suits sv, int rv)
{ s =sv; r = rv; faceUp = false; }

public bool isFaceUp

{
}

public void flip ()

{
}

public int rank

{
}

public Suits suit

{
}

public Color color

{

get { return faceUp; }

faceUp = ! faceUp;

get { return r; }

get { return s; }

get

{

if (suit == Suits.Heart || suit == Suits.Diamond)
{ return Color.Red; }
return Color.Black;

}

private bool faceUp;
private int r;
private Suits s;

Figure 9.1: The Definition of the Class PlayingCard

9.2. DATA AND VIEW CLASSES 187

In C#, unlike C++, enuemrated constants must be prefixed by their type
name. You can see this in the method color through the use of names such as
Color.Black or Suits.Heart, instead of simply Black or Heart.

The class PlayingCard has no information about the application in which it is
developed, and can easily be moved from this program to another program that
uses the playing card abstraction.

9.2 Data and View Classes

Techniques used in the creation of visual interfaces have undergone frequent re-
visions, and this trend will likely continue for the foreseeable future. For this
reason it is useful to separate classes that contain data values, such as the Play-
ingCard abstraction, from classes that are used to provide a graphical display of
those values. By doing so the display classes can be modified or replaced, as
necessary, leaving the original data classes untouched.

The display of the card abstraction will be provided by the class CardView. To
isolate the library specific aspects of the card view, the actual display method is
declared as abstract (see Section 8.5). This will later be subclassed and replaced
with a function that will use the C# graphics facilities to generate the graphical
interface:

public abstract class CardView

{

public abstract void display (PlayingCard aCard, int x, int y);

public static int Width = 50;
public static int Height = 70;

By not only separating playing cards from card views, but also separating the
concept of a card view from a specific implementation, we isolate any code that
is specific to a single graphics library. The effect is that the majority of the code
in the application has no knowledge of the graphics library being used. This
facilitates any future modifications to the graphics aspects of the application,
which are the features most likely to change.

The CardView class encapsulates a pair of static constants that represent the
height and width of a card on the display. The PlayingCard class itself knows
nothing about how it is displayed. One abstract method is prototyped. This
method will display the face of a card at a given position on the display.

It can be argued that even including the height and width as values in this
class is introducing some platform dependencies, however these are less likely to
change than are the libraries used to perform the actual graphical display.

188 CHAPTER 9. CASE STUDY - A CARD GAME

9.3 The Game

The version of solitaire we will describe is known as klondike. The countless
variations on this game make it probably the most common version of solitaire;
so much so that when you say “solitaire,” most people think of klondike. The
version we will use is that described in [Morehead 1949]; variations on the basic
game are numerous.

The layout of the game is shown in Figure 9.2. A single standard pack of 52
cards is used. The tableau, or playing table, consists of 28 cards in 7 piles. the
first pile has 1 card, the second 2, and so on up to 7. The top card of each pile
is initially face up; all other cards are face down.

Suit Piles

Discard Deck

Table Piles

Figure 9.2: Layout for the solitaire game

The suit piles (sometimes called foundations) are built up from aces to kings
in suits. They are constructed above the tableau as the cards become available.
The object of the game is to build all 52 cards into the suit piles.

The cards that are not part of the tableau are initially all in the deck. Cards
in the deck are face down, and are drawn one by one from the deck and placed,
face up, on the discard pile. From there, they can be moved onto either a tableau
pile or a foundation. Cards are drawn from the deck until the pile is empty; at

9.4. CARD PILES-INHERITANCE IN ACTION 189

this point, the game is over if no further moves can be made.

Cards can be placed on a tableau pile only on a card of next-higher rank and
opposite color. They can be placed on a foundation only if they are the same
suit and next higher card or if the foundation is empty and the card is an ace.
Spaces in the tableau that arise during play can be filled only by kings.

The topmost card of each tableau pile and the topmost card of the discard
pile are always available for play. The only time more than one card is moved
is when an entire collection of face-up cards from a tableau (called a build) is
moved to another tableau pile. This can be done if the bottommost card of
the build can be legally played on the topmost card of the destination. Our
initial game will not support the transfer of a build, but we will discuss this as a
possible extension. The topmost card of a tableau is always face up. If a card is
moved from a tableau, leaving a face-down card on the top, the latter card can
be turned face up.

From this short description, it is clear that the game of solitaire mostly
involves manipulating piles of cards. Each type of pile has many features in
common with the others and a few aspects unique to the particular type. In
the next section, we will investigate in detail how inheritance can be used in
such circumstances to simplify the implementation of the various card piles by
providing a common base for the generic actions and permitting this base to be
redefined when necessary.

9.4 Card Piles—Inheritance in Action

Much of the behavior we associate with a card pile is common to each variety of
pile in the game. For example, each pile maintains a collection containing the
cards in the pile, and the operations of inserting and deleting elements from this
collection are common. Other operations are given default behavior in the class
CardPile, but they are sometimes overridden in the various subclasses. The class
CardPile is shown in Figure 9.3.

Each card pile maintains the coordinate location for the upper left corner of
the pile, as well as a collection that contains the card in the pile. The Stack
abstraction from the standard run-time library is used to hold the cards. All
these values are set by the constructor for the class. The data fields, located
near the end of the declaration, are declared as protected and thus accessible to
member functions associated with this class and to member functions associated
with subclasses.

The three functions top(), pop(), and isEmpty() manipulate the list of cards,
using functions provided by the Stack class. The remaining five operations de-
fined in class CardPile are common to the abstract notion of our card piles, but
they differ in details in each case. For example, the function canTake(PlayingCard)
asks whether it is legal to place a card on the given pile. A card can be added to
a foundation pile, for instance, only if it is an ace and the foundation is empty,
or if the card is of the same suit as the current topmost card in the pile and has

190 CHAPTER 9. CASE STUDY - A CARD GAME

public class CardPile {
public CardPile (int x1, int yl)
{ x =x1; y = yl; pile = new Stack(); }

public PlayingCard top
{ get { return (PlayingCard) pile.Peek (); } }

public bool isEmpty
{ get { return pile.Count == 0; } }

public PlayingCard pop
{ get { return (PlayingCard) pile.Pop O; } }

// the following are sometimes overridden
public virtual bool includes (int tx, int ty) {
return((x <= tx) && (tx <= x + CardView.Width) &&
(y <=ty) && (ty <= y + CardView.Height));

}

public virtual void select (int tx, int ty) {
// do nothing—override

public virtual void addCard (PlayingCard aCard)
{ pile.Push(aCard); }

public virtual void display (CardView cv) {
if (isEmpty) {
cv.display(null, x, y);
} else {
cv.display((PlayingCard) pile.Peek(), x, vy);
}

}

public virtual bool canTake (PlayingCard aCard)
{ return false; }

protected int x, y; // coordinates of the card pile
protected Stack pile; // card pile data

Figure 9.3: Description of the Class CardPile

9.4. CARD PILES-INHERITANCE IN ACTION 191

the next-higher value. A card can be added to a tableau pile, on the other hand,
only if the pile is empty and the card is a king, or if it is of the opposite color as
the current topmost card in the pile and has the next lower value.

The actions of the five virtual functions defined in CardPile can be character-
ized as follows:

includes —Determines if the coordinates given as arguments are contained within
the boundaries of the pile. The default action simply tests the topmost
card; this is overridden in the tableau piles to test all card values.

canTake —Tells whether a pile can take a specific card. Only the tableau and
suit piles can take cards, so the default action is simply to return no; this
is overridden in the two classes mentioned.

addCard —Adds a card to the card list. It is redefined in the discard pile class to
ensure that the card is face up.

display —Displays the card deck. The default method merely displays the top-
most card of the pile, but is overridden in the tableau class to display a
column of cards. The top half of each hidden card is displayed. So that
the playing surface area is conserved, only the topmost and bottommost
face-up cards are displayed (this permits us to give definite bounds to the
playing surface).

select —Performs an action in response to a mouse click. It is invoked when the
user selects a pile by clicking the mouse in the portion of the playing field
covered by the pile. The default action does nothing, but is overridden by
the table, deck, and discard piles to play the topmost card, if possible.

The following table illustrates the important benefits of inheritance. Given
five operations and five classes, there are 25 potential methods we might have
had to define. By making use of inheritance we need to implement only 13.
Furthermore, we are guaranteed that each pile will respond in the same way to
similar requests.

CardPile SuitPile DeckPile DiscardPile TableauPile
includes X X
canTake X X X
addCard X X
display X X
select X X X X

9.4.1 The Default Card Pile

We will examine each of the subclasses of CardPile in detail, pointing out various
uses of object-oriented features. Each of the five virtual methods is first defined
in the class CardPile. These implementations will represent the default behavior,
should they not be overridden. The implementation of these methods was shown
in Figure 9.3.

192 CHAPTER 9. CASE STUDY — A CARD GAME

9.4.2 The Suit Piles

The simplest subclass is the class SuitPile, which represents the pile of cards at
the top of the playing surface. This is the pile being built up in suit from ace to
king. The implementation of this class is as follows:

public class SuitPile : CardPile {
public SuitPile (int x, int y) : base(x, y) { }

public override bool canTake (PlayingCard aCard) {
if (isEmpty)
{ return(aCard.rank == 0); }
PlayingCard topCard = top;
return((aCard.suit == topCard.suit) &&
(aCard.rank == topCard.rank + 1));

The class SuitPile defines only two methods. The constructor for the class
takes two integer arguments and does nothing more than invoke the constructor
for the parent class CardPile.

The method canTake overrides the similarly named method in the parent
class. Note the use of the keyword override that indicates this fact. This method
determines whether or not a card can be placed on the pile. A card is legal if
the pile is empty and the card is an ace (that is, has rank zero) or if the card is
the same suit as the topmost card in the pile and of the next higher rank (for
example, a three of spades can only be played on a two of spades). Since the
methods rank and suit were declared as properties, they can be invoked without
parenthesis.

All other behavior of the suit pile is the same as that of our generic card
pile. When selected, a suit pile does nothing. When a card is added it is simply
inserted into the stack. To display the pile only the topmost card is drawn.

9.4.3 The Deck Pile

The DeckPile maintains the deck from which new cards are drawn. It differs
from the generic card pile in two ways. When constructed, rather than creating
an empty pile of cards, it initializes itself by first creating an array containing
the 52 cards in a conventional deck, then randomly selecting elements from this
collection so as to generate a sorted deck. The method select is invoked when
the mouse button is used to select the card deck. If the deck is empty, it does
nothing. Otherwise, the topmost card is removed from the deck and added to
the discard pile.

public class DeckPile : CardPile {

9.4. CARD PILES-INHERITANCE IN ACTION 193

public DeckPile (int x, int y) : base(x, y) {

// create the new deck

// first put cards into a local array

ArraylList alist = new ArrayList ();

for(int i = 0; i <= 12; i++) {
alist.Add(new PlayingCard(Suits.Heart, i));
alist.Add(new PlayingCard(Suits.Diamond, 1i));
alist.Add(new PlayingCard(Suits.Spade, i));
alist.Add(new PlayingCard(Suits.Club, i));

// then pull them out randomly

Random myRandom = new Random();

for(int count = 0; count < 52; count++) {
int index = myRandom.Next(aList.Count);
addCard((PlayingCard) alList [index]);
alList.RemoveAt (index) ;

public override void select (int tx, int ty) {
if (isEmpty) { return; }
Game.discardPile().addCard(pop) ;

The implementation of the select method presents us with a new problem.
When the mouse is pressed on the deck pile, the desired action is to move a card
from the deck pile on to the discard pile, turning it face up in the process. The
problem is that we now need to refer to a single unique card pile, namely the
pile that represents the discard pile.

One approach would be to define the various card piles as global variables,
which then could be universally accessed. In fact, this approach is used in the
program described in my earlier C++ version of the game in the first edition
of this book. But many languages, such as Java and C#, do not have global
variables. There is good reason for this. Global variables tend to make it difficult
to understand the flow of information through a program, since they can be
accessed from any location (that’s what makes them global).

A better and more object-oriented alternative to the use of global variables
is a series of static values. This reduces the number of global values to one; the
class name. Static methods in the class can then be used to access further state.
In our program we will name this class Game. A discussion of the details of this
class will be postponed until after the description of the various card piles.

194 CHAPTER 9. CASE STUDY - A CARD GAME

9.4.4 The Discard Pile

The class DiscardPile redefines the addCard and select methods. The class is
described as follows:

public class DiscardPile : CardPile {
public DiscardPile (int x, int y) : base(x, y) { }

public override void addCard (PlayingCard aCard) {
if (! aCard.isFaceUp)
{ aCard.f1lip(); }
base.addCard(aCard);

}

public override void select (int tx, int ty) {
if (isEmpty) { return; }
PlayingCard topCard = pop;
for(int i = 0; i < 4; i++) {
if (Game.suitPile(i).canTake(topCard)) {
Game.suitPile(i).addCard(topCard);
return;

}

for(int i = 0; i < 7; i++) {
if (Game.tableau(i).canTake(topCard)) {
Game.tableau(i) .addCard(topCard);
return;
}
}
// nobody can use it, put it back on our stack
addCard (topCard) ;

The implementation of these methods is interesting in that they exhibit two
very different forms of inheritance. The select method overrides or replaces the
default behavior provided by class CardPile, replacing it with code that when
invoked (when the mouse is pressed over the card pile) checks to see if the
topmost card can be played on any suit pile or, alternatively, on any tableau
pile. If the card cannot be played, it is kept in the discard pile.

The method addCard is a different sort of overriding. Here the behavior is
a refinement of the default behavior in the parent class. That is, the behavior
of the parent class is completely executed, and, in addition, new behavior is
added. In this case, the new behavior ensures that when a card is placed on

9.4. CARD PILES-INHERITANCE IN ACTION 195

the discard pile it is always face up. After satisfying this condition, the code
in the parent class is invoked to add the card to the pile. The keyword base
is necessary to avoid the confusion with the addCard method being defined. In
Java the same problem would be addressed by sending a message to super (as in
super.addCard(aCard)).

Another form of refinement occurs in the constructors for the various sub-
classes. Each must invoke the constructor for the parent class to guarantee that
the parent is properly initialized before the constructor performs its own actions.
The parent constructor is invoked by an initializer clause inside the constructor
for the child class.

9.4.5 The Tableau Piles

The most complex of the subclasses of CardPile is that used to hold a tableau,
or table pile. The implementation of this class redefines nearly all of the virtual
methods defined in ClassPile. When initialized, by the constructor, the tableau
pile removes a certain number of cards from the deck, placing them in its own
pile. The number of cards so removed is determined by an additional argument
to the constructor. The topmost card of this pile is then displayed face up.

public class TablePile : CardPile {
public TablePile (int x, int y, int c) : base(x, y) {
// initialize our pile of cards
for(int i = 0; i < c; i++) {
addCard (Game .deckPile() .pop);
}

top.flip();

}

public override bool canTake (PlayingCard aCard) {
if (isEmpty) { return(aCard.rank == 12); }
PlayingCard topCard = top;
return((aCard.color != topCard.color) &&
(aCard.rank == topCard.rank - 1));

}

public override bool includes (int tx, int ty) {
return((x <= tx) && (tx <= x + CardView.Width) &&
(y<=ty));

}

public override void select (int tx, int ty) {
if (isEmpty) { return; }
// if face down, then flip
PlayingCard topCard = top;

196 CHAPTER 9. CASE STUDY - A CARD GAME

if (! topCard.isFaceUp) {
topCard.flip();
return;
}
// else see if any suit pile can take card
topCard = pop;
for(int i = 0; i < 4; i++) {
if (Game.suitPile(i).canTake(topCard)) {
Game.suitPile(i).addCard(topCard);
return;
}
}
// else see if any other table pile can take card
for(int i = 0; 1 < 7; i++) {
if (Game.tableau(i).canTake(topCard)) {
Game.tableau(i) .addCard(topCard);
return;
}
}
addCard(topCard);

}

public override void display (CardView cv) {

Object [] cardArray = pile.ToArray();

int size = pile.Count;

int hs = CardView.Height / 2; // half size

int ty = y;

for (int i = pile.Count - 1; i >= 0; i--) {
cv.display((PlayingCard) cardArrayl[il, x, ty);
ty += hs;

A card can be added to the pile (method canTake) only if the pile is empty
and the card is a king, or if the card is the opposite color from that of the
current topmost card and one smaller in rank. When a mouse press is tested to
determine if it covers the pile (method includes) the bottom bound is not tested
since the pile may be of variable length. When the pile is selected, the topmost
card is flipped if it is face down. If it is face up, an attempt is made to move the
card first to any available suit pile, and then to any available table pile. Only
if no pile can take the card is it left in place. Finally, to display a pile all the
underlying cards are displayed. The stack must be converted into an array to do
this, since we must access the cards top to bottom, which is the opposite of the
order that stack elements would normally be enumerated.

9.5. PLAYING THE POLYMORPHIC GAME 197

9.5 Playing the Polymorphic Game

The need for the class Game was described earlier. This class holds the actual
card piles used by the program, making them available through methods that
are declared as static. Because these methods are static, they can be accessed
using only the class name as a basis.

The definition of this class is shown in Figure 9.4. The game manager stores
the various card piles in an array, one that is declared as CardPile, although
in fact the values are polymorphic and hold a variety of different types of card
piles. These values are initialized in the constructor, which is declared as static.
A static constructor will be executed when the program begins execution.

By storing the card values in a polymorphic array the game manager need
not distinguish the characteristics of the individual piles. For example, to repaint
the display it is only necessary to tell each pile to repaint itself. The method
display will be different, depending upon the actual type of card pile. Similarly,
to respond to a mouse down, the manager simply cycles through the list of card
piles.

9.6 The Graphical User Interface

We have taken pains in the development of this program to isolate the details of
both the graphical user interface and of the high level program execution. This
is because of all the elements of a program, the user interface is the most likely to
require change as new graphical libraries are introduced or existing libraries are
changed. Similarly the way that applications are initiated using C# introduces
details that would have obscured the overall design of the application.

The card images are simple line drawings, as shown below. Diamonds and
hearts are drawn in red, spades and clubs in black. The hash marks on the back
are drawn in yellow.

We deal first with the user interface. Recall that the display of a card was
provided by a method CardView, that was described as abstract. To produce ac-
tual output, we must create a subclass that implements the pure virtual methods.
This class we will call WinFormsCardView:

198 CHAPTER 9. CASE STUDY — A CARD GAME

public class Game {
static Game () {
allPiles = new CardPile[13 1;
allPiles[0] = new DeckPile(335, 5);
allPiles[1] = new DiscardPile(268, 5);
for(int i = 0; i < 4; i++) {
allPiles[2 + i] = new SuitPile(15 + 60 % i, 5);
}

for(int i = 0; i < 7; i++) {
allPiles[6+i] = new TablePile(5+55xi, 80, i+1);
}

}

public static void paint (CardView cv) {
for(int i = 0; i < 13; i++) {
allPiles[i].display(cv);
}

}

public static void mouseDown (int x, int y) {
for(int i = 0; i < 13; i++) {
if (allPiles[i].includes(x, y)) {
allPiles [i].select(x, y);
}

}

public static CardPile deckPile ()
{ return allPiles[0]; }

public static CardPile discardPile ()
{ return allPiles[1]; }

public static CardPile tableau (int index)
{ return allPiles[6+index]; }

public static CardPile suitPile (int index)
{ return allPiles[2+index]; }

private static CardPile[] allPiles;

Figure 9.4: The Class Game

9.6. THE GRAPHICAL USER INTERFACE 199

public class WinFormsCardView : CardView {
public WinFormsCardView (Graphics aGraphicsObject) {
g = aGraphicsObject;
}

public override void display (PlayingCard aCard,int x,int y) {

if (aCard == null) {
Pen myPen = new Pen(Color.Black,2);
Brush myBrush = new SolidBrush (Color.White);
g.FillRectangle (myBrush,x,y,CardView.Width,CardView.Height) ;
g.DrawRectangle (myPen,x,y,CardView.Width,CardView.Height);

} else {
paintCard (aCard,x,y);

}

}

private void paintCard (PlayingCard aCard,int x,int y) {
String [] names = { ||A|| s ||2|| s ||3|| s ||4|| s ||5|| s
||6|| s ||7|| s ||8|| s ||9|| s " 10“ s ||J|| s |IQ|| s |IK|| };

Pen myPen = new Pen (Color.Black,2);
Brush myBrush = new SolidBrush (Color.White);

g.FillRectangle (myBrush,x,y,CardView.Width,CardView.Height);
g.DrawRectangle(myPen,x,y,CardView.Width,CardView.Height);
myPen.Dispose();

myBrush.Dispose();

// draw body of card with a new pen-color
if (aCard.isFaceUp) {
if (aCard.color == Color.Red) {
myPen = new Pen (Color.Red,1);
myBrush = new SolidBrush (Color.Red) ;
} else {
myPen = new Pen (Color.Blue,1);
myBrush = new SolidBrush (Color.Blue);
}
g.DrawString (names[aCard.rank],
new Font("Times New Roman",10) ,myBrush,x+3,y+7);
if (aCard.suit == Suits.Heart) {
g.DrawLine (myPen,x+25,y+30,x+35,y+20) ;
g.DrawLine (myPen,x+35,y+20,x+45,y+30) ;
g.DrawLine (myPen,x+45,y+30,x+25,y+60) ;
g.DrawLine (myPen,x+25,y+60,x+5,y+30) ;

200 CHAPTER 9. CASE STUDY — A CARD GAME

g.DrawLine (myPen,x+5,y+30,x+15,y+20) ;
g.DrawLine (myPen,x+15,y+20,x+25,y+30) ;
} else if (aCard.suit == Suits.Spade) {
... // see code in appendix
} else if (aCard.suit == Suits.Diamond) {

} else if (aCard.suit == Suits.Club) {

}

} else { // face down
myPen = new Pen (Color.Green,1);
myBrush = new SolidBrush (Color.Green);

}
}

private Graphics g;

This is not a text on graphics, so the actual display will be rather simple. Ba-
sically, a card draws itself as a rectangle with a textual description. Empty piles
are drawn in green, the backsides of cards in yellow, the faces in the appropriate
color.

Graphical output in the C# library is based around a type of object from class
Graphics. This object is passed as constructor to the class, and stored in the vari-
able g. Details of the graphical output routines provided by the Windows library
will not be discussed here, although many of the names are self-explanatory. The
display for our game is rather primitive, consisting simply of line rectangles and
the textual display of card information.

Applications in the C# framework are created by subclassing from a system
provided class named System.WinForms.Form and overriding certain key meth-
ods. Much of the structure of the class is generated automatically if one uses a
development environment, such as the Studio application. In the following we
have marked the generated code with comments. The programmer than edits
this code to fit the specific application. The final class is as follows:

public class Solitaire : System.WinForms.Form {
// start of automatically generated code
private System.ComponentModel.Container components;

public Solitaire() {

InitializeComponent();
}

public override void Dispose() {
base.Dispose();

9.6. THE GRAPHICAL USER INTERFACE 201

components.Dispose();

}

private void InitializeComponent() {

this.components = new System.ComponentModel.Container ();
this.Text = "Solitaire";

this.AutoScaleBaseSize = new System.Drawing.Size (5, 13);
this.ClientSize = new System.Drawing.Size (392, 373);

// end of automatically generated code

protected override void OnMouseDown (MouseEventArgs e) {
Game .mouseDown(e.X, e.Y);
this.Invalidate(); // force screen redraw

}

protected override void OnPaint (PaintEventArgs pe) {
Graphics g = pe.Graphics;
CardView cv = new WinFormsCardView(g) ;
Game.paint (cv) ;

}

public static void Main(stringl[] args)
{ Application.Run(new Solitaire()); }

The window class is responsible for trapping the actual mouse presses and
repainting the window. In our application these activities are simply passed
on to the game manager. As with Java, execution begins with the method
named Main. This method invokes a static method from a system class named
Application, passing it an instance of the game controller class.

Chapter Summary

The solitaire game is a standard example program, found in many textbooks.
We have here used the program as a case study to illustrate a number of impor-
tant concepts. In the design of the PlayingCard and CardView classes, we have
separated a model from a view. This is important, since aspects of the view
are likely to change more rapidly than aspects of the model. Extending this
further, we have defined the view as an abstract class, and thereby hidden all
Windows-specific features in an implementation of this class. Moving to a differ-
ent graphical library would therefore simply involve changing the implementation
of this abstract class.

202 CHAPTER 9. CASE STUDY - A CARD GAME

Probably the most notable feature of the game is the use of inheritance
and overriding, exemplified by the classes CardPile and its various subclasses.
Through the use of overriding we avoid having to write a large amount of code.
Furthermore, the use of a polymorphic variable to reference the various classes
simplifies the task of redrawing the screen or handling mouse operations.

Further Reading

Source for the various earlier versions of this program can be found on my web-
site, http://www.cs.orst.edu/ budd.

We have in this simple application only scratched the surface of the function-
ality provided by the C# system. However, the details of how Windows programs
are created are complicated, and beyond the issues being discussed here. A good
introduction to the C# system is provided by Gunnerson [Gunnerson 2000].

Self Study Questions

1. Why should the class PlayingCard be written so as to have no knowledge
of the application in which it is being used?

2. Why is it useful to separate the class PlayingCard from the class that will
draw the image of the playing card in the current application?

3. Why is it further useful to define the interface for CardView as an abstract
class, and then later supply an implementation of this class that uses the
C# graphics facilities?

4. What are the different types of card piles in this solitare game?

5. What methods in CardPile are potentially overridden? What methods are
not overridden? How can you tell from the class description which are
which?

6. In what way does the variable allPiles exhibit polymorphism?

7. How does the polymorphism in allPiles simplify the design of the program?

Exercises

1. The solitaire game has been designed to be as simple as possible. A few
features are somewhat annoying, but can be easily remedied with more
coding. These include the following:

(a) The topmost card of a tableau pile should not be moved to another
tableau pile if there is another face-up card below it.

EXERCISES 203

(b) An entire build should not be moved if the bottommost card is a king
and there are no remaining face-down cards.

For each, describe what procedures need to be changed, and give the code
for the updated routine.

2. The following are common variations of klondike. For each, describe which
portions of the solitaire program need to be altered to incorporate the
change.

(a) If the user clicks on an empty deck pile, the discard pile is moved
(perhaps with shuffling) back to the deck pile. Thus, the user can
traverse the deck pile multiple times.

(b) Cards can be moved from the suit pile back into the tableau pile.

(c) Cards are drawn from the deck three at a time and placed on the
discard pile in reverse order. As before, only the topmost card of the
discard pile is available for playing. If fewer than three cards remain
in the deck pile, all the remaining cards (as many as that may be)
are moved to the discard pile. (In practice, this variation is often
accompanied by variation 1, permitting multiple passes through the
deck).

(d) The same as variation 3, but any of the three selected cards can be
played. (This requires a slight change to the layout as well as an
extensive change to the discard pile class).

(e) Any royalty card, not simply a king, can be moved onto an empty
tableau pile.

3. The game “thumb and pouch” is similar to klondike except that a card may
be built on any card of next-higher rank, of any suit but its own. Thus, a
nine of spades can be played on a ten of clubs, but not on a ten of spades.
This variation greatly improves the chances of winning. (According to
Morehead [Morehead 1949], the chances of winning Klondike are 1 in 30,
whereas the chances of winning thumb and pouch are 1 in 4.) Describe
what portions of the program need to be changed to accommodate this
variation.

