
Pair Collaboration in End-User Debugging

Thippaya Chintakovid and Susan Wiedenbeck
Drexel University

Philadelphia, PA 19104 USA
{tc79,sw53}@drexel.edu

Margaret Burnett and Valentina Grigoreanu
Oregon State University

Corvallis, OR 97331 USA
{burnett, grigorev}@eecs.oregonstate.edu

Abstract

The problem of dependability in end-user pro-
gramming is an emerging area of interest. Pair col-
laboration in end-user software development may offer
a way for end users to debug their programs more ef-
fectively. While pair programming studies—primarily
of computer science students and professionals—
report positive outcomes in terms of overall program
quality, little is known about specific activities that
pairs engage in that lead to those outcomes, or of how
the previous results may pertain to end-user program-
mers. In this study we analyze protocols of end-user
pairs debugging spreadsheets. The results suggest that
end-user pairs can achieve rich reasoning, effective
planning, and systematic evaluation. Furthermore,
end-user pairs provide specific types of mutual support
that facilitate the accomplishment of their goals.

1. Introduction
End users face formidable challenges in debugging.

Their programming knowledge is moderate to begin
with, and their performance skills are often weak be-
cause of intermittent use. Consequently, they are likely
to have difficulty comprehending code, devising test
cases, and correcting bugs. Support features for end-
user debugging that are built into software environ-
ments can aid end users substantially. However, human
support may also be valuable in achieving effective
debugging. This paper reports on a study of end users
collaborating in spreadsheet debugging. The goal of
the study is to understand the kinds of support that pair
collaboration affords in the debugging task.

Pair collaboration in end-user debugging is moti-
vated by the field of distributed cognition within cogni-
tive science. Distributed cognition [3, 4] views a task
together with the people and artifacts that participate in
it as forming a complex cognitive system. In the sys-
tem, no one entity possesses all the knowledge and
skill; instead it is distributed among the individuals and
artifacts. Speech and actions, with feedback from arti-
facts, externalize the cognitive state of the system, sup-
porting task outcomes via sharing of cognition.

Pair collaboration has precedents in the field of
software development. It has been used by professional
programmers in the Extreme Programming develop-
ment methodology. Pair programming for pedagogical
purposes has been adopted in university programming
courses. Positive evidence about pair programming has
been reported for both professional and student pro-
grammers [8, 9, 12, 13, 14].

To date pair research has not addressed end users,
their tasks, and tools. Furthermore, extant studies on
pair collaboration in software development focus on
quantitative performance or user perceptions. There
has been little qualitative research on the nature of the
interactions that underpin these results. In this study
we use qualitative methods to take a closer look at the
cognitive and social mechanisms employed by end-
users pairs. The contribution of the study is a detailed
understanding of how pair collaboration supports end-
user debugging in the context of spreadsheets.

2. Background
Pair collaboration is a method in which two indi-

viduals work together in a role-based protocol. The
participants sit together in front of a single monitor.
One person is the driver who controls the mouse and
keyboard and is responsible for writing code. The other
person is the observer who reviews the work and gives
advice and support to the driver. The participants
switch roles regularly, with equal time in each role.

Pair collaboration has gained popularity in both
academic and industry settings. Prior research with
student and professional programmers reports several
benefits of pair collaboration including better defect
detection and correction, higher quality programs, and
more readable and functional programs [9, 13]. Student
and professional programmers also report greater con-
fidence and enjoyment in programming than when
programming alone [8, 9, 13].

End-user pair programming has not yet been stud-
ied, although the pair setting has occasionally been
used for other purposes. For example, there has been a
pairs study using the Forms/3 spreadsheet [6]; how-
ever, the pairs were not investigated per se. They were
simply used to encourage thinking aloud about infor-

Visual Languages and Human-Centric Computing (VL-HCC'06)
0-7695-2586-5/06 $20.00 © 2006

mation needs. Also, pairs developing interactive simu-
lations were used to explore collaborative learning of
end-user programming by school children [11].

The rationale given for pair collaboration is two-
fold [12, 13]. First, pairs encourage each other to high
effort and persistence (referred to as “pair pressure”).
Second, they share their domain and programming
knowledge, increasing the pair’s ability to succeed
compared to an individual (referred to as “pair learn-
ing”). A pair has the potential to generate and evaluate
more alternative plans, as opposed to rushing to im-
plement the first plausible idea [12].

The pair programming literature has identified sev-
eral behaviors that pairs engage in to push a program-
ming task to successful completion. The driver writes
the design or code, and thus is seen as having primary
control of the emergent artifact. The observer has sev-
eral roles: generating alternatives, suggesting courses
of action, reviewing the driver’s work (syntax, logic,
typographical errors), and keeping a higher level stra-
tegic sense of how the design is evolving [13, 14].

These behaviors seem promising in supporting the
efforts of end-user programmers to improve the de-
pendability of their programs. Although end-user pro-
gramming occurs in several paradigms, one of the most
important and widespread is the spreadsheet paradigm.
Spreadsheets are an important and very widespread
end-user environment. End users of spreadsheets gen-
erally have low programming experience, which leads
to challenges in programming even moderately com-
plex spreadsheets. Indeed, studies of spreadsheet de-
pendability have shown that spreadsheets are rife with
errors [10]. This problem of dependability encourages
our investigation of pair collaboration in this paradigm.

3. Methodology
3.1 Participants

Twelve university students took part in the study
reported here. Since our target population is spread-
sheet end users, we recruited students with little or no
computer programming experience.

Participants worked in pairs. There were three male
pairs and three female pairs. Participants either came to
the study with a student they knew or were paired with
another student by the researcher. Counts of the pairs’
coded verbalizations suggest that the pairs assigned by
the researcher were not more constrained in their com-
munication than pairs who knew each other.

3.2 Environment and Task
The environment was the Forms/3 research spread-

sheet system, which includes WYSIWYT (“What You
See Is What You Test”). WYSIWYT is a collection of
testing and debugging features that allow users to in-

crementally “check off” or “X out” values that are cor-
rect or incorrect, respectively [2]. In WYSIWYT un-
tested cells have red borders (light gray in this paper).
See Figure 1. When users notice a correct value, they
can place a checkmark () in the decision box at the
corner of the cell they observe to be correct. Placing a
checkmark indicates a successful test and increases
“testedness” of a cell according to a test adequacy cri-
terion based on formula expression coverage. As a cell
becomes more tested, the cell’s border becomes more
blue (more black in this paper).

Figure 1. WYSIWYT features: checkmarks and X-
marks (in decision boxes of cells), arrows, cell bor-
der colors, cell interior colors, tooltips

Users can also place an X-mark in the cell’s deci-
sion box when they notice an incorrect value. X-marks
trigger fault likelihood calculations, which cause the
interiors of cell suspected of containing faults to be
colored in shades along a yellow-orange continuum
(shades of gray in this paper).

Optional dataflow arrows, which the user can turn
on and off at will, allow users to see relationships be-
tween cells. The arrows are colored to reflect tested-
ness of specific relationships between cells and subex-
pressions. Also notice in Figure 1 two user feedback
features: tooltips which pop up when the mouse hovers
over an item and the bars at the top showing the
spreadsheet’s overall testedness (top bar) and estimated
bug likelihood distribution (second bar).

Our ongoing experiment consists of two spread-
sheets, Gradebook and Payroll, but the analysis
dealt only with Gradebook. Gradebook is a typical
spreadsheet for calculating student course grades. The
spreadsheet has been used in several past experiments
(e.g., [1]). The Gradebook spreadsheet was seeded
with five faults that provided coverage of the catego-
ries in Panko’s classification system [10]: three me-
chanical faults, one logical fault, and one omission
fault.

Visual Languages and Human-Centric Computing (VL-HCC'06)
0-7695-2586-5/06 $20.00 © 2006

The participants were given the Gradebook
spreadsheet, a written description of the spreadsheet,
and two examples with correct values. Due to con-
straints of the larger ongoing study, the Gradebook
and Payroll tasks were counterbalanced, so half
the pairs debugged the Gradebook first and half de-
bugged it second. The Gradebook task had a time
limit of 22 minutes. The participants were instructed,
“Test the…spreadsheet to see if it works correctly and
correct any errors you find.”

3.3 Pair Procedures
Pairs participated one at a time. First, the two indi-

viduals sat at separate computers to complete a hands-
on tutorial on the environment. Using a sample spread-
sheet, they learned how to enter input values and edit
formulas. They also were introduced to and given op-
portunities to practice the new WYSIWYT features

Next, the individuals sat side-by-side at a computer,
with one monitor and one mouse. They were given
instructions about pair roles and were told that they
would be prompted to switch roles halfway through the
task. They were told to discuss with their partner while
carrying out the task. Their sessions were videotaped.

3.4 Development of the Coding Scheme
The analysis focused on the content of the verbali-

zations supplemented by non-verbal actions visible in
the videotapes [5, 7]. First, the verbalizations were
transcribed and annotated with the actions visible in
the video. Next, the protocols were divided into epi-
sodes based on changes of focus, usually a change
from one cell to another.

Initial codes were developed based on pair pro-
gramming literature that suggested typical types of pair
interactions [12] and an earlier pair-based study of
Forms/3’s explanation system [6]. In the next step two

of the researchers applied the codes to the transcript of
a pair who debugged the Gradebook, looking for: (1)
evidence that the initial codes were relevant and (2)
other elements in the protocol that should be coded.
The transcript used was not one of the six pairs re-
ported in this study; this transcript was held back from
the study to use it for this purpose. As a result of this
procedure, several codes were added and rules were
developed for applying them. In the final coding
scheme (Table 1), there were 13 codes organized into
four categories representing the primary activities of
the participants: reasoning, action planning, evaluation,
and partner support.

Next the two researchers applied the coding scheme
independently to one protocol included in this study.
Disagreements on the application of the codes were
noted and the rules for application of the codes were
made more precise. Subsequently, the remaining five
protocols were coded independently by the two re-
searchers. The level of agreement was calculated, after
correcting simple slips in coding. Agreement was 89
percent, within accepted standards of reliability.

4. Results
In this section we first report descriptive statistics

of pair performance outcomes. (These statistics are
presented simply to establish the context for the fol-
lowing protocol results; we remind readers that the
experiment was not designed to support statistical
analysis per se.) This provides important context for
the remainder of the results.

We then present results from the coded pair proto-
cols. The protocols consist of qualitative data, mostly
verbalizations. We present quantitative counts of the
coded protocols, which are further informed by exam-
ples of qualitative verbalizations and pair behaviors.

Table 1. The coding scheme
Code category Code name Description

Reasoning request Explicit request for help in reasoning or question asking for explanation of
partner’s reasoning

Reasoning codes

Reasoning provide Statement providing help in reasoning or giving explanation of the reason-
ing

Strategy question Explicit question about what is a suitable process or what to do next
Strategy hypothesis Statement suggesting a hypothesized strategy or next step
Testing tactics Statements suggesting how to carry out specific test cases

Action planning
codes

Formula building Statement describing or dictating how a formula should be written
Evaluation request Explicit request for evaluation of actions taken or review of progress Evaluation codes
Evaluation provide Statement evaluating actions or reviewing progress
Feature/feedback question Question about the meaning of the system’s visual feedback or action items
Feature/feedback explanation Statement providing explanation of the system’s feedback or action items
Logistic support request Explicit request or verbal suggestion for logistic support
Logistic support provide Provision of logistic support

Partner support
codes

Coordination activity Verbalizations or actions to coordinate with partner

Visual Languages and Human-Centric Computing (VL-HCC'06)
0-7695-2586-5/06 $20.00 © 2006

4.1 Summary of Pair Performance
Table 2 shows performance measures of the six

pairs and a ranking of the pairs (where 1 indicates
highest performance), based on a combination of two
indicators: seeded bugs fixed and percent testedness of
the spreadsheet. None of the pairs introduced bugs that
remained in the spreadsheet at the end of the task.

Table 2: Pair performance
Pair Gender Bugs fixed

(out of 5)
Percent

testedness
Rank

P4 F 4 100 1
P5 F 4 90 2
P2 M 4 86 3
P1 M 4 77 4
P6 F 1 80 5
P3 M 0 40 6
Table 3 summarizes for each pair the use of the dif-

ferent debugging features, including the familiar fea-
ture of editing formulas and the new debugging fea-
tures available in the WYSIWYT environment. The
total number of features used by pairs ranged from 36
to 57. The mean feature usage was 43.67 and the me-
dian was 38.5.
Table 3: Pairs’ use of debugging features (or-

dered by rank as in Table 2)
Pair Gender Formula edit X-mark Check-mark Arrow
P4 F 10 (27.78%) 0 26 (72.22%) 0
P5 F 21 (36.84%) 0 36 (56.14%) 4 (7.02%)
P2 M 12 (31.58%) 0 23 (60.53%) 3 (7.89%)
P1 M 8 (21.05%) 0 23 (60.53%) 7 (18.42%)
P6 F 1 (2.56%) 0 29 (69.23%) 11 (28.21%)
P3 M 1 (1.85%) 0 35 (64.81%) 18 (33.33%)

Discussion
The four high-performing pairs, each of which

fixed four bugs, used a combination of formula inspec-
tion, formula edits, and testing. More specifically, they
relied on examining formulas and testing values to
discover seeded bugs and made multiple edits in at-
tempting to correct bugs. The videos show that the
main reason for the high number of edits was an itera-
tive style of debugging, in which pairs made small,
incremental changes, usually testing each formula edit
immediately. The two low-performing pairs each made
only one formula edit. Instead, they concentrated on
trying out different input values. Note that P6 made
good use of these tests, achieving 80% testedness (Ta-
ble 2), whereas P3 did not seem concerned with
achieving higher testedness. Previous studies have
shown ties between higher testedness and successful
bug fixing [2]. Still, since neither of these pairs made
many formula edits, they could not make much pro-
gress.

The low-performing pairs used a higher number of
arrows. Turning on the arrows allowed them to see
relationships of cells and the testedness of the relation-
ships, but again this did not lead to actually correcting
seeded bugs. By contrast, the high-performing pairs
used the arrows less often and specifically for finding
difficult bugs. Five pairs used the checkmark feature
systematically to push the testing forward. Finally, the
X-marks, which give fault likelihood feedback for a
value suspected to be wrong, went unused. This may
not be surprising: in a previous study of individuals
debugging the Gradebook [1], the X-mark was
sparsely used, apparently because the spreadsheet was
simple enough for most users to make progress without
fault localization help. Additionally, pairs had the rea-
soning support of two individuals, which may have
further reduced the perceived need of using X-marks.

Recall that the two spreadsheets, Gradebook and
Payroll, were counterbalanced. This provided an
opportunity to look for differences when pairs had
varying levels of familiarity with the environment.
Pairs who debugged Gradebook first had 33 percent
more coded verbalizations than pairs who did it sec-
ond. This suggests that pairs debugging Gradebook
first required more communication to understand the
environment and task. However, the counts of the
coded verbalizations were proportional regardless of
the order in which pairs debugged the spreadsheet.

4.2 Driver and Observer Roles
A total of 1356 verbalizations were assigned codes

in the analysis. Recall that each individual served as
both a driver and observer. The mean number of codes
assigned was 45.33 (SD 18.17, n=12) for drivers and
65.42 (SD 25.75, n=12) for observers.
Discussion

The protocols show that drivers and observers were
both strongly engaged in debugging and kept each
other on track—the “pair pressure” described by Wil-
liams and Kessler [12, 13]. The term “observer” may
suggest a less active role, but observers in this study
were involved in the classical activities identified in
pair programming: reviewing, monitoring, suggesting
approaches [12], as well as providing logistic support.
Although individuals in the observer role made more
coded verbalizations, the driver role involved much
more than editing formulas. The primary effort in de-
bugging, shared by both observer and driver, centered
on identifying bugs and figuring out how they might be
fixed, a strongly cognitive activity. The driver con-
trolled the spreadsheet, but used that control to facili-
tate the cognitive work, opening and closing formulas,
entering and changing cell values as needed, bringing
up arrows and tooltips, and placing checkmarks. Carry-

Visual Languages and Human-Centric Computing (VL-HCC'06)
0-7695-2586-5/06 $20.00 © 2006

ing out these actions may explain the lower verbaliza-
tions of drivers.

6.34

13.79

7.3
12.69

21.91

9.88

20.05

6.04

0

5

10

15

20

25

30

35

40

Reasoning Action Planning Evaluation Partner Support
Code categories

Pe
rc

en
ta

ge

Observer
Driver

Figure 2: Code categories by role

4.3 Cognitive Activities
Cognitive activities of pairs included reasoning, ac-

tion planning, and evaluation.
Reasoning requests and provision of reasoning re-

sponses together accounted for 12.38 percent of all
coded verbalizations (Figure 2). Reasoning was highly
focused on understanding the formulas and determin-
ing whether they corresponded to the narrative descrip-
tion of the problem provided in writing. Pairs’ reason-
ing was conversational. Typically, one partner stated
his or her reasoning and asked for the partner (explic-
itly or implicitly) to respond. This was usually fol-
lowed by more reasoning from the other partner, even-
tually coming to a conclusion. For example, in reason-
ing about a formula for choosing one of two midterm
examination scores:
D: …if midterm 1 is less than midterm 2, then you pick

midterm 1?
O: It should be if midterm 1 is greater than midterm 2,

then you pick midterm 1, else midterm 2.

Action planning activities were generally of the fol-
lowing types: strategy questions and strategy hypothe-
ses (together accounting for 22.72 percent of all coded
verbalizations), tactics for testing the spreadsheet (7.67
percent), and building formulas (5.31 percent). Regard-
ing strategy, there were few strategy questions, but
strategy hypotheses were the most common of the 13
codes. Observers were more active than drivers in stat-
ing strategy hypotheses. For example, before entering
values in the input cells:
D: Ok, er..you wanna make it [Quiz4] lower or ..?

O: Just..yeah, make it lower.
The activity of devising testing tactics concentrated

on how to test all of the situations in the formulas.
Pairs were jointly concerned with identifying different

branches of formulas that needed to be tested and
choosing appropriate input values for testing. For ex-
ample:
O: Oh, go up there and change it to 40.

The activity of building (i.e., writing or revising)
formulas was collaborative in all but simple changes. If
a formula edit involved rewriting the entire formula or
modifying it extensively, the observer typically dic-
tated what to type to the driver in a step-by-step man-
ner. The driver verbally verified the instructions in
each step by repeating them out loud. Notably, the test-
ing tactics and formula building verbalizations were
fewer percentage-wise than strategy verbalizations.
When pairs reached the point of actually correcting
formulas and testing they were ready to push directly
toward their goal with a minimum of discussion.

Requests for and provision of evaluation together
accounted for 17.18 percent of all coded verbalizations.
Evaluation involved two related activities: evaluating a
test case to determine whether a value was correct and
reviewing the current state of the debugging effort in a
broader sense. Evaluations of both kinds were largely
spontaneous; there were few explicit requests for re-
views. In the evaluation of test cases the verbalizations
were most often just a few words, since the participants
could verify whether a cell was correct by looking at
the values in the given examples. For example:
D: Midterm average is 89. That’s right.

Elaboration on the evaluation occurred when a
value was found to be wrong by comparison to the
example. In such cases, the participants were apt to
question or hypothesize why the test failed. For exam-
ple, after a failed test:
O: Do we have the right formula?

Reviews of progress on a larger scale occurred
rarely, not more than once or twice in any given proto-
col. In our data the observer initiated and carried out
the review. For example, initiating a review:
O: What else is not tested?

In one case, the observer asked the researcher for a
pencil. Then the observer scanned the cells systemati-
cally, taking notes as she went, to determine each cell‘s
testedness status.
Discussion

The protocols indicate that the core of the debug-
ging effort was determining whether a cell value was
correct (evaluation), what the source of an error might
be (reasoning), and what course of action to take (strat-
egy). Developing tactics for specific tests and actually
correcting formulas were less demanding. While they
had to be carried out correctly to succeed in debugging,

Visual Languages and Human-Centric Computing (VL-HCC'06)
0-7695-2586-5/06 $20.00 © 2006

they were more procedural in nature. Once a pair un-
derstood that they had to test all situations and that
they should vary input values to achieve that goal, they
had little difficulty in deciding how to approach the
testing. In writing or editing formulas, syntactic and
logical misunderstandings occurred, but pairs were
observed to experiment to correct the formulas (e.g.,
sharing their knowledge, trying out hypotheses about
structuring the formula code, looking at similar formu-
las as examples). Exceptions to this generalization are
the two low-performing pairs who avoided modifying
formulas.

4.4. Social Support Mechanisms
Mutual support included feature and feedback ques-

tions and explanations (together accounting for 3.83
percent of all coded verbalizations), requests for and
provision of logistic support (24.19 percent), and coor-
dination activities (4.72 percent).

Participants used WYSIWYT features in the tuto-
rial, but questions and misunderstandings still arose
during the task. Partners supported each other by giv-
ing explanations. For example, the following question
and answer sequence about the cell border color:
O: Why [did] it get purple?
D: What? Oh, there’s another area you have to check.
Participants largely understood the meaning of the fea-
tures and feedback. The number of questions and ex-
planations was low.

Requests for and provision of logistic support were
both prominent activities. The types of support in-
cluded reading aloud to one’s partner the written de-
scription of the spreadsheet problem, the values from
the examples, and the tooltips. Other types of logistic
support were helping the partner locate a particular cell
in the spreadsheet, opening a formula that the partner
wanted to view, and reminding the partner to do rou-
tine tasks. For example, after a test:

O: Don’t forget to put the [former] values back.
 The usual pattern was that the driver requested lo-

gistic support and the observer supplied it, except for
manipulations of the spreadsheet which were the
driver’s responsibility. The division of labor was estab-
lished with little discussion. Sporadically, drivers also
asked for help to locate where a particular cell was. For
example, a driver asked an observer to help her locate a
particular cell:
D: Where’s the midterm average [cell]?
O: That’s that one right there.

Activities directed toward keeping the partners co-
ordinated were prominent in all the pairs. Coordination

took several forms. One was verbalizations suggesting
how to start debugging, for example:
O: What do you want…er…to look at first?

Another type of coordination activity was announc-
ing changes in focus. When the partners finished test-
ing one cell, one of them normally stated which cell
they were moving on to next. Generally, there was
little discussion about it, and the participants often
acted accordingly without any prompting: the driver
automatically opened the cell and (sometimes) the ob-
server read aloud the correct value of the cell in the
example. Verbal clarifications or pointing were used
by partners to assure they were both looking at the
same cell. A further pair coordination activity was
reading alternate lines of formulas and descriptions
aloud and finishing each other’s verbalizations.
Discussion

Partner interaction and support were essential to
working together. The partners talked almost continu-
ally, with only short, infrequent silent gaps. These gaps
were rarely more than about 15 seconds, substantially
shorter than gaps of 45-60 seconds reported in pairs
programming [14]. Partners provided key logistic sup-
port that eased the effort and speeded the activities.
The high percentage of requests for and provision of
logistic support underline the many small subtasks and
the value of having help to manage them. Coordination
activities appeared to be a necessary overhead of col-
laboration. However, eventually most pairs established
such smooth functioning that they anticipated the part-
ner’s needs and responded to them without prompting.

4.5 Within-Pair Interactions
We classified individuals in each pair by their con-

tributions to the pair effort. The classification was
qualitative and quantitative. Two of the researchers
individually watched the video of each pair, rating the
individuals in a pair on whether one of them largely
took the lead in the debugging task or whether they
made relatively equal contributions over the course of
the task. The researchers agreed on all six pairs.

To crosscheck the rating quantitatively, we summed
three key debugging activities for each individual in a
pair. The key activities were: reasoning provide, strat-
egy hypothesis, and evaluation provide. The columns
“High Partner” and “Low Partner” in Table 4 show
sums of the raw counts. (Note that the high and low
partners can only be compared within the pair but not
between pairs, as pairs had different total code counts.)

The rightmost column in Table 4 indicates which
pairs had a lead partner. The quantitative results show
substantial differences between the high and low part-
ner in the pairs that are indicated as having a lead part-

Visual Languages and Human-Centric Computing (VL-HCC'06)
0-7695-2586-5/06 $20.00 © 2006

ner (pairs P1, P4, and P5). Pairs P2 and P6 have small
differences in the key activities between the high and
low partner. These are consistent with the qualitative
analysis, which categorized them as not having a lead
partner. Pair P3 was qualitatively rated as not having a
lead partner, but the quantitative results did not support
the qualitative results clearly. This lack of confirmation
of the qualitative results seems to occur because the
quantitative approach missed an important subtlety:
this pair had low substantive content in their verbaliza-
tions. Thus, although one partner talked more, it could
not be said that the individual was leading the effort.

Table 4: Pair Leadership (ordered by rank
as in Table 2)

Pair Gender High
Partner

Low
Partner

Lead
Partner

P4 F 50 20 Yes
P5 F 64 19 Yes
P2 M 44 35 No
P1 M 95 24 Yes
P6 F 54 43 No
P3 M 86 56 No

Discussion
In pairs with a lead partner, that partner remained

the prime mover whether currently in the driver or ob-
server role. A lead partner who gave many explana-
tions to the other partner educated the partner. For ex-
ample, in pair P5, the non-lead partner initially was
reluctant to reason or strategize, but she became no-
ticeably more active with the lead partner’s explana-
tions and modeling, another example of “pair learning”
[13].

In pairs without a lead partner, the nature of the pair
interactions varied. One pattern was for the current
observer to take the lead, resulting in leadership
changes during the task. In another pattern, partners
were more equal across roles. With respect to concerns
about unequal partners in pairs programming [14], our
data showed no social loafing by non-lead partners.

4.6 Pair Performance Revisited
Based on feature usage (Table 3), it appears that

high formula edits and testing, and low use of arrows,
were associated with (but not necessarily predictive of)
successful debugging outcomes. But how do the pat-
terns of pair interactions, as captured in the coded ver-
balizations, relate to successful debugging outcomes?

To approach this question, we focused on the two
highest performing pairs (P4 and P5) and the two low-
est performing pairs (P3 and P6), looking for differ-
ences in their amount of verbalizations and deriving
inferences about performance. Given the small number
of pairs, the inferences are necessarily tentative and
should be seen as hypothesis finding.

The greatest differences in verbalizations between
the low and high-performing pairs occurred in the fol-
lowing four codes: formula building, reasoning pro-
vide, logistic support provide, and coordination activ-
ity. These are discussed below.

The low-performing pairs made substantially fewer
verbalizations about formula building than the high-
performing pairs (as a percentage of all coded verbali-
zations: low-performing M=0.18, SD=.0.25; high-
performing M=8.16, SD=1.67). By contrast, the low-
performing pairs provided more reasoning statements
to each other than the high-performing pairs (low-
performing M=10.08, SD=1.40; high-performing
M=5.16, SD=3.40). The low-performing pairs dis-
cussed their reasoning about the formulas rather exten-
sively compared to the high-performing pairs, but were
averse to taking the next step of modifying formulas.
This suggests that they were uncertain about whether
the formulas were correct, consequently spent more
time reasoning and discussing, and ultimately did not
attempt to make changes. We noticed multiple in-
stances in both P3 and P6 where the pair navigated
away from the cell they were currently inspecting with-
out verbalizing a clear opinion about whether the cell
formula was correct or not. The high-performing pairs,
P4 and P5, reasoned and discussed less, but most often
came to a conclusion about the correctness of the for-
mula and acted to change the formula, if necessary.

While there may be multiple reasons why the high-
performing pairs were more successful at fixing bugs,
our verbal data suggest that their debugging strategy
was more systematic than the low-performing pairs. By
systematic we mean that they carefully followed the set
of examples provided in the task description that in-
cluded input cell values and calculated cell values for
the correct spreadsheet. The high-performing pairs
entered these input values in the spreadsheet to see
whether the calculated cells corresponded to the exam-
ple. This helped them identify incorrect values that
might indicate a bug. The systematic use of these ex-
ample materials is reflected in a higher number of lo-
gistic support provide verbalizations made by the high-
performing pairs than the low-performing pairs (low-
performing M=13.94, SD=.6.00; high-performing
M=20.23, SD=8.39). Systematically using the task
description and examples was important. The low-
performing pair P3, for instance, did not use the exam-
ples in the task description until very late in the task.
Entering their own input values rather than the exam-
ple values, the pair had no idea of whether the calcu-
lated cells were correct and no idea of where to look
for formula errors. Without some direction about
which cells to investigate, they did not find any bugs.

Since the high-performing pairs adopted a system-
atic and mutually agreed upon strategy, they required

Visual Languages and Human-Centric Computing (VL-HCC'06)
0-7695-2586-5/06 $20.00 © 2006

less verbalization to coordinate their activities com-
pared to the low-performing pairs (low-performing
M=10.60, SD=2.76; high-performing M=5.36,
SD=0.18). P4, the best-performing pair, debugged the
spreadsheet by carefully following the task description
and examples provided. This pair was very aware of
each other’s current focus and information needs, for
example, carrying out anticipatory actions such as
reading a part of the task description aloud or opening
a formula without the partner making a verbal request.
In the low-performing pairs P3 and P6, there were re-
curring instances in which the members of the pairs
talked at cross purposes because they failed to track
what their partner was attending to and speaking about.
This required repair via coordination verbalizations
before the pair could move on with the task.

5. Conclusion
This investigation of pair activities in collaborative

debugging of spreadsheets suggests that:
• Both the driver and the observer were continu-

ally involved in all other aspects of the debug-
ging effort. There was no evidence of social
loafing, even in pairs with a strong leader.

• The most common cognitive activities consisted
of strategy questions/hypotheses. Pairs used
strategy questions and hypotheses to elicit dis-
cussion and push their debugging toward action.

• Most partners adapted quickly to working in
pairs and developed effective protocols to sup-
port each other. It appears that competent part-
ner support is important to debugging success.

In on-going work, we are carrying out a qualitative
study of individuals and pairs in end-user debugging in
order to compare the nature of their activities. This
comparison may give insights about how to better sup-
port both individuals and pairs in debugging. Other
future work will focus on determining whether pair
collaboration in end-user debugging increases self-
efficacy and performance compared to individuals.

Acknowledgments
This work was supported in part by the EUSES Con-

sortium via NSF grants CCR-0324844 and ITR-
0325273.

6. References
[1] L. Beckwith, M. Burnett, S. Wiedenbeck, C. Cook, S.
Sorte, and M. Hastings. “Effectiveness of End-User Debug-
ging Software Features: Are There Gender Issues? Proc. CHI
2005, ACM, 2005, pp. 869-878.
[2] M. Burnett, C. Cook and G. Rothermel, “End-User Soft-
ware Engineering,” CACM, Vol. 47, No. 9, 2004, pp. 53-58.
[3] N. V. Flor and E. L. Hutchins, “Analyzing Distributed
Cognition in Software Teams,” Empirical Studies of Pro-
grammers: Fourth Workshop, Ablex, Norwood, NJ, 1991,
pp. 36-59.
[4] J. D. Hollan, E. Hutchins, and D. Kirsh, “Distributed
Cognition: A New Foundation for Human-Computer Interac-
tion Research,” ACM Trans. on Human-Computer Interac-
tion, Vol. 7, No. 2, 2000, pp. 174-196.
[5] B. Jordan and A. Henderson. “Interaction Analysis:
Foundations and Practice,” The Journal of the Learning Sci-
ences, Vol. 4, No. 1, 1995, pp. 39-103.
[6] C. Kissinger, M. Burnett, S. Stumpf, N. Subrahmaniyan,
L. Beckwith, S. Yang, and M. B. Rosson, “Supporting End-
User Debugging: What Do Users Want to Know?” Proc.
Advanced Visual Interfaces, ACM, 2006, pp. 135-142.
[7] K. Krippendorff. Content Analysis: An Introduction to Its
Methodology, Sage Publications, Everyly Hills, CA, 1980.
[8] C. McDowell, L. Werner, H. E. Bullock, J. Fernald "The
impact of pair programming on student performance, percep-
tion and persistence," in Proc. Int. Conf. on Software Engi-
neering, IEEE, 2003, pp. 602-607.
[9] T. J.Nosek, “The Case for Collaborative Programming,”
CACM, Vol. 41, No. 3, 1998, pp. 105-108.
[10] R. Panko, “What We Know About Spreadsheet Errors,”
J. of End User Computing, Vol. 10, No. 2, 1998, pp. 15-21.
[11] C. Seals, M. B. Rosson, J. Carroll, T. Lewis, L. Colson,
“Fun Learning Stagecast Creator: An Exercise in Minimal-
ism and Collaboration,” Proc. IEEE Human-Centric Com-
puting Languages and Environments, IEEE, 2002, pp. 177-
186.
[12] L. A. Williams and R. B. Kessler, “Experiments with
Industry’s ‘Pair-Programming’ Model in the Computer Sci-
ence Classroom,” Computer Science Education, Vol. 11, No.
1, 2001, pp. 7-20.
[13] L. Williams and R. Kessler, Pairs Programming Illumi-
nated, Addison Wesley, Boston, MA, 2003.
[14] L. A. Williams, E. Wiebe, K. Yang, M. Ferzi, and C.
Miller. “In Support of Pair Programming the Introductory
Computer Science Course,” Computer Science Education,
Vol. 12, No. 3, 2002, pp. 197-212.

Visual Languages and Human-Centric Computing (VL-HCC'06)
0-7695-2586-5/06 $20.00 © 2006

