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Rates and Poisson regression

Epidemiological studies often involve the calculation of rates, typically
rates of death or incidence rates of a chronic or acute disease. This is
based upon counts of events occurring within a certain amount of time.
The Poisson regression method is often employed for the statistical analy-
sis of such data. However, data that are not actually counts of events but
rather measurements of time until an event (or nonevent) can be analyzed
by a technique which is formally equivalent.

15.1 Basic ideas

The data that we wish to analyze can be in one of two forms. They can
be in aggregate form as an observed count x based on a number of person-
years T. Often the latter is an approximation based on tables of population
size. There may of course be more than one group, and we may wish to
formulate various models describing the rates in different groups.

We may also have individual-level data, in which for each subject we have
a time under observation Ti and a 0/1 indicator xi of whether the subject
has had an event. The aggregate data can be thought of as being x = ∑ xi
and T = ∑ Ti, where the sums are over all individuals in the group.
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15.1.1 The Poisson distribution

The Poisson distribution can be described as the limiting case of the bino-
mial distributions when the size parameter N increases while the expected
number of successes λ = Np is fixed. This is useful to describe rare event
in large populations. The resulting distribution has point probabilities

f (x) =
λx

x!
e−λ x = 0, 1, . . .

The distribution is theoretically unbounded, although the probabilities for
large x will be very small. In R, the Poisson distribution is available via the
functions dpois, ppois, etc.

In the context of epidemiological data, the parameter of interest is usually
the expected counts per unit of observed time; i.e., the rate at which events
occur. This enables the comparison of populations that may be of differ-
ent size or observed for different lengths of time. Accordingly, we may
parameterize the Poisson distribution using

ρ = λ/T

Notice that parts of the literature use λ to denote the rate. The notation
used here is chosen so as to stay compatible with the argument name in
dpois.

The Poisson likelihood

Models for Poisson data can be fitted by the method of maximum
likelihood. If we parameterize in terms of ρ, the log-likelihood becomes

l(ρ) = constant + x log ρ− ρT

which is maximized when ρ = x/T. The log-likelihood can be generalized
to models involving several counts by summing terms of the same form.

15.1.2 Survival analysis with constant hazard

In this section, for convenience, we use terminology appropriate for mor-
tality studies, although the event may be many things other than the death
of the subject.

Individual-level data are essentially survival data as described in Chap-
ter 14, except for changes in notation. One difference, though, is that in
the analysis of rates it is often reasonable to assume that the hazard does
not change over time, or at least not abruptly so. Rates tend to be obtained
over rather short individual time periods, and the origin of the timescale
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is not usually keyed to a life-changing event such as disease onset or major
surgery.

If the hazard is constant, then the distribution of the lifetime is the
exponential distribution with density ρe−ρt and survival function e−ρt.

Likelihood analysis

Likelihoods for censored data can be constructed using terms that are
either the probability density at the time of death or the survival prob-
ability in the case of censoring. In the constant-hazard case, the two kinds
of terms differ only in the presence of the factor ρ, which we may conve-
niently encode using the event indicator xi so that the log-likelihood terms
are

l(ρ) = xi log ρ− ρTi

Except for the constant, which does not depend on ρ, these terms are for-
mally identical to a Poisson likelihood, where the count is 1 (death) or
zero (censoring). This is the crucial “trick” that allows survival data with
constant hazard to be analyzed by Poisson regression methods.

The trick can be extended to hazards that are only piecewise constant.
Suppose the lifetime of an individual is subdivided as Ti = T(1)

i + · · ·+
T(k)

i , where the hazard is assumed constant during each section of time.
The corresponding log-likelihood term is

l(ρ1, . . . , ρk) =
k

∑
j=1

(x(j)
i log ρj − ρjT

(j)
i )

in which the first k − 1 of the x(j)
i will be 0, and only the last one, x(k)

i ,
can be either 0 or one. The point of writing it in this elaborate form is
that it then becomes obvious that the likelihood contribution might as well
have come from k different individuals where the first k− 1 had censored
observations.

This is the rationale behind time-splitting techniques where the obser-
vation time of one subject is divided into observations for multiple
pseudo-individuals.

It should be noted that although the models with (piecewise) constant haz-
ard can be fitted and analyzed by likelihood techniques, pretending that
the data have come from a Poisson distribution, this does not extend to
all aspects of the model. For instance following a cohort to extinction will
lead to a fixed total number of events by definition, whereas the corre-
sponding Poisson model implies that the total event count has a Poisson
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distribution. Both types of models deal in rates, counts per time, but the
difference is to what extent the random variation lies in the counts or in the
amount of time. When data are frequently censored (i.e., the event is rare),
the survival model becomes well approximated by the Poisson model.

15.2 Fitting Poisson models

The class of generalized linear models (see Section 13.1) also includes the
Poisson distribution, which by default uses a log link function. This is the
mathematically convenient option and also a quite natural choice since it
allows the linear predictor to span the entire real line. We can use this to
formulate models for the log rates of the form

log ρ = β0 + β1x1 + β2x2 + . . . βkxk

or, since glm needs a model for the expected counts rather than rates,

log λ = β0 + β1x1 + β2x2 + . . . βkxk + log T

A feature of many Poisson models is that the model contains an offset in
the linear predictor, log T in this case. Notice that this is not the same as
including the term as a regression variable since the regression coefficient
is fixed at 1.

The following example was used by Erling B. Andersen in 1977. It in-
volves the rates of lung cancer by age in four Danish cities and may be
found as eba1977 in the ISwR package.

> names(eba1977)
[1] "city" "age" "pop" "cases"
> attach(eba1977)

To fit a model that has multiplicative effects of age and city on the
rate of lung cancer cases, we use the glm function in much the same
way as in logistic regression. Of course, we need to change the family
argument to accommodate Poisson-distributed data. We also need to in-
corporate an offset to account for the different sizes and age structures of
the populations in the four cities.

> fit <- glm(cases~city+age+offset(log(pop)), family=poisson)
> summary(fit)
Call:
glm(formula = cases ~ city + age + offset(log(pop)), family=poisson)

Deviance Residuals:
Min 1Q Median 3Q Max

-2.63573 -0.67296 -0.03436 0.37258 1.85267
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Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -5.6321 0.2003 -28.125 < 2e-16 ***
cityHorsens -0.3301 0.1815 -1.818 0.0690 .
cityKolding -0.3715 0.1878 -1.978 0.0479 *
cityVejle -0.2723 0.1879 -1.450 0.1472
age55-59 1.1010 0.2483 4.434 9.23e-06 ***
age60-64 1.5186 0.2316 6.556 5.53e-11 ***
age65-69 1.7677 0.2294 7.704 1.31e-14 ***
age70-74 1.8569 0.2353 7.891 3.00e-15 ***
age75+ 1.4197 0.2503 5.672 1.41e-08 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 129.908 on 23 degrees of freedom
Residual deviance: 23.447 on 15 degrees of freedom
AIC: 137.84

Number of Fisher Scoring iterations: 5

The offset was included in the model formula in this case. Alternatively, it
could have been given as a separate argument as in

glm(cases~city+age, offset = log(pop), family=poisson)

The table labelled “Coefficients:” contains regression coefficients for the
linear predictor along with standard errors and z tests. These can be in-
terpreted in the same way as in ordinary multiple regression or logistic
regression. Since both variables are factors and we are using treatment
contrasts (see Section 12.3), the coefficients indicate differences in the log
rate (i.e., the log of the rate ratio) compared with the city of Fredericia and
with the 50–54-year-olds, respectively.

The intercept term refers to the log rate for the group of 50–54-year-olds
in Fredericia. Notice that because we used the population size rather than
the number of person-years in the offset and the data cover the years 1968–
1971, this rate will effectively be per 4 person-years.

A goodness-of-fit statistic is provided by comparing the residual deviance
to a χ2 distribution on the stated degrees of freedom. This statistic is gen-
erally considered valid if the expected count in all cells is larger than 5.
Accordingly,

> min(fitted(fit))
[1] 6.731286
> pchisq(deviance(fit), df.residual(fit), lower=F)
[1] 0.07509017
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and we see that the model fits the data acceptably. Of course, we could
also just have read off the residual deviance and degrees of freedom from
the summary output:

> pchisq(23.45, 15, lower=F)
[1] 0.07504166

From the coefficient table, it is obvious that there is an age effect, but it is
less clear whether there is a city effect. We can perform χ2 tests for each
term by using drop1 and looking at the changes in the deviance.

> drop1(fit, test="Chisq")
Single term deletions

Model:
cases ~ city + age + offset(log(pop))

Df Deviance AIC LRT Pr(Chi)
<none> 23.447 137.836
city 3 28.307 136.695 4.859 0.1824
age 5 126.515 230.903 103.068 <2e-16 ***
...

We see that the age term is significant, hardly surprisingly, but the city
term apparently is not. However, if you can argue a priori that Fredericia
could be expected to have a higher cancer rate than the three other cities,
then it could be warranted to combine the three other cities into one and
perform an analysis as below.

> fit2 <- glm(cases~(city=="Fredericia")+age+offset(log(pop)),
+ family=poisson)
> anova(fit, fit2, test="Chisq")
Analysis of Deviance Table

Model 1: cases ~ city + age + offset(log(pop))
Model 2: cases ~ (city == "Fredericia") + age + offset(log(pop))
Resid. Df Resid. Dev Df Deviance P(>|Chi|)

1 15 23.4475
2 17 23.7001 -2 -0.2526 0.8814
> drop1(fit2, test="Chisq")
Single term deletions

Model:
cases ~ (city == "Fredericia") + age + offset(log(pop))

Df Deviance AIC LRT Pr(Chi)
<none> 23.700 134.088
city == "Fredericia" 1 28.307 136.695 4.606 0.03185 *
age 5 127.117 227.505 103.417 < 2e-16 ***
...

According to this, you may combine the three cities other than Fredericia,
and, once this is done, Fredericia does indeed appear to be significantly
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different from the others. Alternatively, you can look at the coefficients in
fit2 directly

> summary(fit2)
...
Coefficients:

Estimate Std. Error z value Pr(>|z|)
(Intercept) -5.9589 0.1809 -32.947 < 2e-16 ***
city == "Fredericia"TRUE 0.3257 0.1481 2.200 0.0278 *
age55-59 1.1013 0.2483 4.436 9.17e-06 ***
age60-64 1.5203 0.2316 6.564 5.23e-11 ***
age65-69 1.7687 0.2294 7.712 1.24e-14 ***
age70-74 1.8592 0.2352 7.904 2.71e-15 ***
age75+ 1.4212 0.2502 5.680 1.34e-08 ***
...

and see the p-value of 0.0278. This agrees with the 0.03185 from drop1;
you cannot expect the two p-values to be perfectly equal since they rely
on different asymptotic approximations. If you really push it, you can ar-
gue that a one-sided test with half the p-value is appropriate since you
would only expect Fredericia to be more harmful than the others, not less.
However, the argumentation becomes tenuous, and in his paper Ander-
sen outlines the possibility of testing Fredericia against the other cities but
stops short of providing any p-value, stating that in his opinion “there is
no reason to believe a priori that Fredericia is the more dangerous city”.

It is sometimes preferred to state the results of Poisson regression analy-
sis in terms of rate ratios by taking exp() of the estimates (this parallels
the presentation of logistic regression analysis in terms of odds ratios in
Section 13.4). The intercept term is not really a ratio but a rate, and for
nonfactor covariates it should be understood that the coefficient is the rel-
ative change per unit change in the covariate. Because of the nonlinear
transformation, standard errors are not useful; instead one can calculate
confidence intervals for the coefficients as follows:

> cf <- coefficients(summary(fit2))
> est <- cf[,1]
> s.e. <- cf[,2]
> rr <- exp(cbind(est, est - s.e.*qnorm(.975), est
+ + s.e.*qnorm(.975) ))
> colnames(rr) <- c("RateRatio", "CI.lo","CI.hi")
> rr

RateRatio CI.lo CI.hi
(Intercept) 0.002582626 0.001811788 0.003681423
city == "Fredericia"TRUE 1.384992752 1.036131057 1.851314957
age55-59 3.008134852 1.849135187 4.893571521
age60-64 4.573665854 2.904833526 7.201245496
age65-69 5.863391064 3.740395488 9.191368903
age70-74 6.418715646 4.047748963 10.178474731
age75+ 4.142034525 2.536571645 6.763637070
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Actually, we can do better by using the confint function. This calcu-
lates confidence intervals by profiling the likelihood function instead of
using the approximation with the normal distribution inherent in the use
of asymptotic standard errors. This is done like this:

> exp(cbind(coef(fit2), confint(fit2)))
Waiting for profiling to be done...

2.5 % 97.5 %
(Intercept) 0.002582626 0.001776461 0.003617228
city == "Fredericia"TRUE 1.384992752 1.029362341 1.841224091
age55-59 3.008134852 1.843578634 4.902339637
age60-64 4.573665854 2.912314045 7.248143959
age65-69 5.863391064 3.752718226 9.256907108
age70-74 6.418715646 4.053262281 10.234338998
age75+ 4.142034525 2.527117848 6.771833979

In the present case, we are well within the regime where the asymptotic
normal approximation works well, so there is little difference between the
two displays. However, in some cases where some expected cell counts are
low and one or several coefficients are poorly determined, the difference
can be substantial.

15.3 Computing rates

We return to the Welsh nickel worker data discussed in Chapter 10. In that
section, we discussed how to split the individual lifetime data into smaller
pieces that could reasonably be merged with the standard mortality table
in the ewrates data.

The result of this initial data restructuring is in the nickel.expand data
set. It contains data from a lot of short time intervals like this:

> head(nickel.expand)
agr ygr id icd exposure dob age1st agein ageout lung

1 20 1931 325 0 0 1910.500 14.0737 23.7465 25 6
2 20 1931 273 0 0 1909.500 14.6913 24.7465 25 6
3 20 1931 110 0 0 1909.247 14.0302 24.9999 25 6
4 20 1931 574 0 0 1909.729 14.0356 24.5177 25 6
5 20 1931 213 0 0 1910.129 14.2018 24.1177 25 6
6 20 1931 546 0 0 1909.500 14.4945 24.7465 25 6
nasal other

1 0 3116
2 0 3116
3 0 3116
4 0 3116
5 0 3116
6 0 3116
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The same individuals reappear later in the data at older ages. For example,
all data for the individual with id number 325 are

> subset(nickel.expand, id==325)
agr ygr id icd exposure dob age1st agein ageout lung

1 20 1931 325 0 0 1910.5 14.0737 23.7465 25.0000 6
13 25 1931 325 0 0 1910.5 14.0737 25.0000 30.0000 14
172 30 1936 325 0 0 1910.5 14.0737 30.0000 35.0000 30
391 35 1941 325 0 0 1910.5 14.0737 35.0000 40.0000 81
728 40 1946 325 434 0 1910.5 14.0737 40.0000 43.0343 236

nasal other
1 0 3116
13 0 3024
172 1 3188
391 1 3549
728 3 3643

Accordingly, this subject enters the study at age 23.7 and we follow him
through five age groups until his death at age 43.

The variable ygr reflects the year of entry into the interval, so even though
the subject dies in 1953, the last record is coded as belonging to the years
1946–1950.

Subject no. 325 has the icd code 434 in his last record. This refers to the
International Classification of Diseases (version 7) and indicates “Other
and unspecified diseases of the heart” as the cause of death. For the pur-
poses of this chapter, we are primarily interested in lung cancer, which has
codes 162 and 163, so we define a variable to indicate whether this is the
cause of death. (Expect a warning about masking the lung data set upon
attaching.)

> nickel.expand <- within(nickel.expand,
+ lung.cancer <- as.numeric(icd %in% c(162,163)))
> attach(nickel.expand)

The %in% operator returns a logical vector that is TRUE when the corre-
sponding element of the operand on the left is contained in the vector that
is the operand on the right and FALSE in all other cases. Use of this op-
erator is slightly dangerous in the case of an NA element in icd, but in
these particular data, there are none. We convert the result to zero or one
since we are going to pretend that it is a Poisson count later on (this is not
strictly necessary). Notice that by using lung.cancer as the endpoint,
we treat death from all other causes, including “unknown”, as censoring.

Each record provides ageout - agein person-years of risk time, so to
tabulate the risk times, we can just do as follows:

> pyr <- tapply(ageout-agein,list(ygr,agr), sum)
> print(round(pyr), na.print="-")
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20 25 30 35 40 45 50 55 60 65 70 75 80
1931 3 86 268 446 446 431 455 323 159 23 4 - -
1936 - - 100 327 504 512 503 472 314 130 20 5 -
1941 - - 0 105 336 481 482 445 368 235 80 14 3
1946 - - - - 102 335 461 404 369 263 157 43 10
1951 - - - - - 95 299 415 334 277 181 92 31
1956 - - - - - - 89 252 364 257 181 101 52
1961 - - - - - - - 71 221 284 150 104 44
1966 - - - - - - - - 66 168 208 93 51
1971 - - - - - - - - - 57 133 131 54
1976 - - - - - - - - - - 31 68 53

Notice that there are many NA entries in cells that no subject ever entered.
The subjects in the study were born between 1864 and 1910, so there is a
large block missing in the lower left and a smaller block in the upper right.
The na.print option to print allows you to represent these missing
values by a string that is less visually imposing than the default "NA".

The corresponding counts of lung cancer cases are obtained as

> count <- tapply(lung.cancer, list(ygr, agr), sum)
> print(count, na.print="-")

20 25 30 35 40 45 50 55 60 65 70 75 80
1931 0 0 0 0 0 4 2 2 2 0 0 - -
1936 - - 0 0 2 3 4 6 5 1 0 0 -
1941 - - 0 0 0 3 7 5 6 3 2 0 0
1946 - - - - 0 0 8 7 6 2 2 0 0
1951 - - - - - 0 3 3 9 6 1 0 0
1956 - - - - - - 0 4 3 6 1 2 0
1961 - - - - - - - 0 1 1 3 2 1
1966 - - - - - - - - 2 0 0 1 0
1971 - - - - - - - - - 0 0 2 2
1976 - - - - - - - - - - 0 1 1

and the cancer rates can be obtained as the ratio of the counts to the risk
time. These are small, so we multiply by 1000 to get rates per 1000 person-
years.

> print(round(count/pyr*1000, 1), na.print="-")
20 25 30 35 40 45 50 55 60 65 70 75 80

1931 0 0 0 0 0 9.3 4.4 6.2 12.6 0.0 0.0 - -
1936 - - 0 0 4 5.9 7.9 12.7 15.9 7.7 0.0 0.0 -
1941 - - 0 0 0 6.2 14.5 11.2 16.3 12.8 25.0 0.0 0.0
1946 - - - - 0 0.0 17.4 17.3 16.3 7.6 12.8 0.0 0.0
1951 - - - - - 0.0 10.0 7.2 27.0 21.7 5.5 0.0 0.0
1956 - - - - - - 0.0 15.9 8.2 23.4 5.5 19.8 0.0
1961 - - - - - - - 0.0 4.5 3.5 19.9 19.3 22.8
1966 - - - - - - - - 30.1 0.0 0.0 10.7 0.0
1971 - - - - - - - - - 0.0 0.0 15.2 36.8
1976 - - - - - - - - - - 0.0 14.6 19.0
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Comparison of these rates with those in ewrates suggests that they are
very high. However, this kind of display has the disadvantage that it hides
the actual counts on which the rates are based. For instance, the lower
part of the column for 80–84-year-olds jumps by roughly 20 units for each
additional case since there are only about 50 person-years per cell.

It may be better to compute the expected counts in each cell based on
the standard mortality table and then compare that to the actual counts.
Since we have already merged in the ewrates data, this is just a matter
of multiplying each piece of risk time by the rate. We need to divide by
1e6 (i.e., 106 = 1000000) since the standard rates are given per million
person-years.

> expect.count <- tapply(lung/1e6*(ageout-agein),
+ list(ygr,agr), sum)
> print(round(expect.count, 1), na.print="-")

20 25 30 35 40 45 50 55 60 65 70 75 80
1931 0 0 0 0 0.1 0.1 0.2 0.2 0.1 0.0 0.0 - -
1936 - - 0 0 0.1 0.1 0.2 0.3 0.2 0.1 0.0 0.0 -
1941 - - 0 0 0.1 0.2 0.3 0.4 0.4 0.2 0.1 0.0 0.0
1946 - - - - 0.0 0.2 0.4 0.5 0.6 0.5 0.2 0.0 0.0
1951 - - - - - 0.1 0.4 0.8 0.9 0.8 0.5 0.2 0.0
1956 - - - - - - 0.1 0.6 1.2 1.0 0.7 0.3 0.1
1961 - - - - - - - 0.2 0.8 1.4 0.7 0.5 0.1
1966 - - - - - - - - 0.2 0.9 1.3 0.6 0.2
1971 - - - - - - - - - 0.3 0.9 1.0 0.3
1976 - - - - - - - - - - 0.2 0.6 0.4

The observed counts are clearly much larger than expected. We can sum-
marize them by calculating the overall SMR (standardized mortality rate),
which is simply the ratio of the total number of cases to the total expected
number of cases.

> expect.tot <- sum(lung/1e6*(ageout-agein))
> expect.tot
[1] 24.19893
> count.tot <- sum(lung.cancer)
> count.tot
[1] 137
> count.tot/expect.tot
[1] 5.661408

That is, this data set has almost six times as many cancer deaths as you
would expect from the mortality of the general population.
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15.4 Models with piecewise constant intensities

We can formulate the SMR analysis as a “Poisson” regression model in the
sense of Section 15.1.2. The assumption behind the SMR is that there is a
constant rate ratio to the standard mortality, so we can fit a model with
only an intercept while having an offset, which is the log of the expected
count. This is not really different from modelling rates — the population
mortality ρi is just absorbed into the offset, log ρi + log Ti = log ρiTi.

> fit <- glm(lung.cancer ~ 1, poisson,
+ offset = log((ageout-agein)*lung/1e6))
> summary(fit)
...
Coefficients:

Estimate Std. Error z value Pr(>|z|)
(Intercept) 1.73367 0.08544 20.29 <2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 1175.6 on 3723 degrees of freedom
Residual deviance: 1175.6 on 3723 degrees of freedom
AIC: 1451.6

Number of Fisher Scoring iterations: 7

Notice that this is based on individual data; the dependent variable
lung.cancer is zero or one. We could have aggregated the data accord-
ing to the cross-classification of agr and ygr and analyzed the number of
cases in each cell. This would have allowed glm to run much faster, but on
the other hand it would then not be possible to add individual covariates
such as age at first exposure.

In this case, we cannot use the deviances for model checking both because
the expected counts per cell are very small and because we do not actu-
ally have Poisson-distributed data. However, the standard error and the
p-value should be reliable if the assumptions hold.

The connection between this analysis and the SMR can be seen immedi-
ately from

> exp(coef(fit))
(Intercept)

5.661408

This value is exactly the SMR value from the previous section.
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We can analyze the data more thoroughly using regression methods. As a
first approach, we investigate whether the SMR is constant over year and
age groups using a multiplicative Poisson model.

We need to simplify the groupings because some of the groups contain
very few cases. By calculating the marginal tables of counts, we get some
idea of what to do.

> tapply(lung.cancer, agr, sum)
20 25 30 35 40 45 50 55 60 65 70 75 80
0 0 0 0 2 10 24 27 34 19 9 8 4
> tapply(lung.cancer, ygr, sum)
1931 1936 1941 1946 1951 1956 1961 1966 1971 1976
10 21 26 25 22 16 8 3 4 2

To get at least 10 cases per level, we combine all values of agr up to 45 (i.e.,
ages less than 50) and also those from 70 and up. Similarly, we combine
all values of ygr for the periods from 1961 onwards.

> detach()
> nickel.expand <- within(nickel.expand,{
+ A <- factor(agr)
+ Y <- factor(ygr)
+ lv <- levels(A)
+ lv[1:6] <- "< 50"
+ lv[11:13] <- "70+"
+ levels(A) <- lv
+ lv <- levels(Y)
+ lv[7:10] <- "1961ff"
+ levels(Y) <- lv
+ rm(lv)
+ })
> attach(nickel.expand)

Notice that this is a case where the within function (see Section 2.1.8)
works better than transform because it allows more flexibility, including
the creation of temporary variables such as lv.

We can analyze the effect of A and Y on the mortality ratio by building
a log-additive model in the usual way. Notice that we still use the orig-
inal grouping in the calculation of the offset; it is only the SMR that is
assumed to be the same for everyone below 50, etc. We use drop1 to test
the significance of the two factors.

> fit <- glm(lung.cancer ~ A + Y, poisson,
+ offset=log((ageout-agein)*lung/1e6))
> drop1(fit, test="Chisq")
Single term deletions

Model:
lung.cancer ~ A + Y



272 15. Rates and Poisson regression

Df Deviance AIC LRT Pr(Chi)
<none> 1069.73 1367.73
A 5 1073.81 1361.81 4.08 0.5376
Y 6 1118.50 1404.50 48.77 8.29e-09 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

So it seems that we do not need the age grouping in the model, but
the year grouping is needed. Accordingly, we fit a model with Y alone,
and by dropping the intercept, we get a parameterization with a separate
intercept for each level of Y.

> fit <- glm(lung.cancer ~ Y - 1, poisson,
+ offset=log((ageout-agein)*lung/1e6))
> summary(fit)
...
Coefficients:

Estimate Std. Error z value Pr(>|z|)
Y1931 2.6178 0.3162 8.279 < 2e-16 ***
Y1936 3.0126 0.2182 13.805 < 2e-16 ***
Y1941 2.7814 0.1961 14.182 < 2e-16 ***
Y1946 2.2787 0.2000 11.394 < 2e-16 ***
Y1951 1.8038 0.2132 8.461 < 2e-16 ***
Y1956 1.3698 0.2500 5.479 4.27e-08 ***
Y1961ff 0.4746 0.2425 1.957 0.0504 .
....

The regression coefficients may again be recognized as log-SMR values, as
the following demonstrates:

> round(exp(coef(fit)), 1)
Y1931 Y1936 Y1941 Y1946 Y1951 Y1956 Y1961ff
13.7 20.3 16.1 9.8 6.1 3.9 1.6

> expect.count <- tapply(lung/1e6*(ageout-agein), Y, sum)
> count <- tapply(lung.cancer, Y, sum)
> cbind(count=count, expect=round(expect.count,1),
+ SMR= round(count/expect.count, 1))

count expect SMR
1931 10 0.7 13.7
1936 21 1.0 20.3
1941 26 1.6 16.1
1946 25 2.6 9.8
1951 22 3.6 6.1
1956 16 4.1 3.9
1961ff 17 10.6 1.6

The advantage of using the regression approach is that it provides a frame-
work in which you can formulate statistical tests and investigate the effect
of multiple regression variables simultaneously.
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Breslow and Day analyzed the nickel data in their seminal book (Bres-
low and Day, 1987) on the analysis of cohort studies. In their analysis,
they split the individual risk times according to three criteria, two of them
being age and period, to match the standard mortality table, but they
also treat time from employment as a time-dependent covariate with a
piecewise constant effect, which requires that the person-year be split fur-
ther according to the interval boundaries. They then represent time effects
using three variables: time since, age at, and year of first employment,
TFE, AFE, and YFE, respectively. In addition, they include a measure of
exposure level.

The following analysis roughly reproduces the Breslow and Day analysis.
It is not completely similar because we settle for splitting time accord-
ing to agr only and use the age at entry into each interval to define the
TFE variable as well as for choosing the relevant standard mortality rates.
However, to enable some comparison of results, we define cut groups in
a manner that is similar to that of Breslow and Day.

> detach()
> nickel.expand <- within(nickel.expand,{
+ TFE <- cut(agein-age1st, c(0,20,30,40,50,100), right=F)
+ AFE <- cut(age1st, c(0, 20, 27.5, 35, 100), right=F)
+ YFE <- cut(dob + age1st, c(0, 1910, 1915, 1920, 1925),right=F)
+ EXP <- cut(exposure, c(0, 0.5, 4.5, 8.5, 12.5, 25), right=F)
+ })
> attach(nickel.expand)

Some relabelling of group levels might be called for — e.g., the levels for
EXP are really 0, 0.5–4, 4.5–8, 8.5–12, 12.5+ — but let us not make more of
it than necessary.

We fit a multiplicative model and test the significance of the individual
terms as follows:

> fit <- glm(lung.cancer ~ TFE + AFE + YFE + EXP, poisson,
+ offset=log((ageout-agein)*lung/1e6))
> drop1(fit, test="Chisq")
Single term deletions

Model:
lung.cancer ~ TFE + AFE + YFE + EXP

Df Deviance AIC LRT Pr(Chi)
<none> 1052.91 1356.91
TFE 4 1107.33 1403.33 54.43 4.287e-11 ***
AFE 3 1054.99 1352.99 2.08 0.5560839
YFE 3 1058.06 1356.06 5.15 0.1608219
EXP 4 1071.98 1367.98 19.07 0.0007606 ***

This suggests that the two major terms are TFE and EXP, whereas AFE
and YFE could be taken out of the model. Notice, though, that it cannot be
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concluded from the above that both can be removed. In principle, one of
them could become significant when the other is removed. This does not
happen in this case, though.

The table of coefficients looks like this:

> summary(fit)
...
Coefficients:

Estimate Std. Error z value Pr(>|z|)
(Intercept) 2.36836 0.55716 4.251 2.13e-05 ***
TFE[20,30) -0.21788 0.36022 -0.605 0.545284
TFE[30,40) -0.77184 0.36529 -2.113 0.034605 *
TFE[40,50) -1.87583 0.41707 -4.498 6.87e-06 ***
TFE[50,100) -2.22142 0.55068 -4.034 5.48e-05 ***
AFE[20,27.5) 0.28506 0.31524 0.904 0.365868
AFE[27.5,35) 0.21961 0.34011 0.646 0.518462
AFE[35,100) -0.10818 0.44412 -0.244 0.807556
YFE[1910,1915) 0.04826 0.27193 0.177 0.859137
YFE[1915,1920) -0.56397 0.37585 -1.501 0.133483
YFE[1920,1925) -0.42520 0.30017 -1.417 0.156614
EXP[0.5,4.5) 0.58373 0.21200 2.753 0.005897 **
EXP[4.5,8.5) 1.03175 0.28364 3.638 0.000275 ***
EXP[8.5,12.5) 1.18345 0.37406 3.164 0.001557 **
EXP[12.5,25) 1.28601 0.48236 2.666 0.007674 **
...

A dose-response pattern and a declining effect of time since first employ-
ment seem to be present.

The results may be more readily interpreted if they are given in terms of
ratios and confidence intervals. These can be obtained in exactly the same
way as in the analysis of the eba1977 data.

15.5 Exercises

15.1 In the bcmort data set, we defined the period and area factors
in Exercise 10.2. Fit a Poisson regression model to the data with age,
period, and area as descriptors, as well as the three two-factor interac-
tion terms. The interaction between period and area can be interpreted
as the effect of screening.

15.2 With the split stroke data from Exercise 10.4, fit a Poisson regres-
sion model corresponding to a constant hazard in each interval and with
multiplicative effects of age and sex.
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