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Tabular data

This chapter describes a series of functions designed to analyze tabular
data. Specifically, we look at the functions prop.test, binom.test,
chisq.test, and fisher.test.

8.1 Single proportions

Tests of single proportions are generally based on the binomial distribu-
tion (see Section 3.3) with size parameter N and probability parameter p.
For large sample sizes, this can be well approximated by a normal distri-
bution with mean Np and variance Np(1 − p). As a rule of thumb, the
approximation is satisfactory when the expected numbers of “successes”
and “failures” are both larger than 5.

Denoting the observed number of “successes” by x, the test for the
hypothesis that p = p0 can be based on

u =
x− Np0√

Np0(1− p0)

which has an approximate normal distribution with mean zero and stan-
dard deviation 1, or on u2, which has an approximate χ2 distribution with
1 degree of freedom.
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The normal approximation can be somewhat improved by the Yates correc-
tion, which shrinks the observed value by half a unit towards the expected
value when calculating u.

We consider an example (Altman, 1991, p. 230) where 39 of 215 randomly
chosen patients are observed to have asthma and one wants to test the
hypothesis that the probability of a “random patient” having asthma is
0.15. This can be done using prop.test:

> prop.test(39,215,.15)

1-sample proportions test with continuity correction

data: 39 out of 215, null probability 0.15
X-squared = 1.425, df = 1, p-value = 0.2326
alternative hypothesis: true p is not equal to 0.15
95 percent confidence interval:
0.1335937 0.2408799
sample estimates:

p
0.1813953

The three arguments to prop.test are the number of positive outcomes,
the total number, and the (theoretical) probability parameter that you
want to test for. The latter is 0.5 by default, which makes sense for sym-
metrical problems, but this is not the case here. The amount 15% is a bit
synthetic since it is rarely the case that one has a specific a priori value to
test for. It is usually more interesting to compute a confidence interval for
the probability parameter, such as is given in the last part of the output.
Notice that we have a slightly unfortunate double usage of the symbol p
as the probability parameter of the binomial distribution and as the test
probability or p-value.

You can also use binom.test to obtain a test in the binomial distribution.
In that way, you get an exact test probability, so it is generally preferable
to using prop.test, but prop.test can do more than testing single
proportions. The procedure to obtain the p-value is to calculate the point
probabilities for all the possible values of x and sum those that are less
than or equal to the point probability of the observed x.

> binom.test(39,215,.15)

Exact binomial test

data: 39 and 215
number of successes = 39, number of trials = 215, p-value = 0.2135
alternative hypothesis: true probability ... not equal to 0.15
95 percent confidence interval:
0.1322842 0.2395223
sample estimates:
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probability of success
0.1813953

The “exact” confidence intervals at the 0.05 level are actually constructed
from the two one-sided tests at the 0.025 level. Finding an exact confi-
dence interval using two-sided tests is not a well-defined problem (see
Exercise 8.5).

8.2 Two independent proportions

The function prop.test can also be used to compare two or more pro-
portions. For that purpose, the arguments should be given as two vectors,
where the first contains the number of positive outcomes and the second
the total number for each group.

The theory is similar to that for a single proportion. Consider the dif-
ference in the two proportions d = x1/N1 − x2/N2, which will be
approximately normally distributed with mean zero and variance Vp(d) =
(1/N1 + 1/N2) × p(1 − p) if the counts are binomially distributed with
the same p parameter. So to test the hypothesis that p1 = p2, plug the
common estimate p̂ = (x1 + x2)/(n1 + n2) into the variance formula and

look at u = d/
√

Vp̂(d), which approximately follows a standard normal

distribution, or look at u2, which is approximately χ2(1)-distributed. A
Yates-type correction is possible, but we skip the details.

For illustration, we use an example originally due to Lewitt and Machin
(Altman, 1991, p. 232):

> lewitt.machin.success <- c(9,4)
> lewitt.machin.total <- c(12,13)
> prop.test(lewitt.machin.success,lewitt.machin.total)

2-sample test for equality of proportions with continuity
correction

data: lewitt.machin.success out of lewitt.machin.total
X-squared = 3.2793, df = 1, p-value = 0.07016
alternative hypothesis: two.sided
95 percent confidence interval:
0.01151032 0.87310506
sample estimates:

prop 1 prop 2
0.7500000 0.3076923
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The confidence interval given is for the difference in proportions. The the-
ory behind its calculation is similar to that of the test, but there are some
technical complications, and a different approximation is used.

You can also perform the test without the Yates continuity correction.
This is done by adding the argument correct=F. The continuity cor-
rection makes the confidence interval somewhat wider than it would
otherwise be, but notice that it nevertheless does not contain zero. Thus,
the confidence interval is contradicting the test, which says that there
is no significant difference between the two groups with a two-sided
test. The explanation lies in the different approximations, which becomes
important for tables as sparse as the present one.

If you want to be sure that at least the p-value is correct, you can use
Fisher’s exact test. We illustrate this using the same data as in the preced-
ing section. The test works by making the calculations in the conditional
distribution of the 2× 2 table given both the row and column marginals.
This can be difficult to envision, but think of it like this: Take 13 white
balls and 12 black balls (success and failure, respectively), and sample the
balls without replacement into two groups of sizes 12 and 13. The num-
ber of white balls in the first group obviously defines the whole table, and
the point is that its distribution can be found as a purely combinatorial
problem. The distribution is known as the hypergeometric distribution.

The relevant function is fisher.test, which requires that data be given
in matrix form. This is obtained as follows:

> matrix(c(9,4,3,9),2)
[,1] [,2]

[1,] 9 3
[2,] 4 9

> lewitt.machin <- matrix(c(9,4,3,9),2)
> fisher.test(lewitt.machin)

Fisher’s Exact Test for Count Data

data: lewitt.machin
p-value = 0.04718
alternative hypothesis: true odds ratio is not equal to 1
95 percent confidence interval:
0.9006803 57.2549701

sample estimates:
odds ratio
6.180528

Notice that the second column of the table needs to be the number of
negative outcomes, not the total number of observations.
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Notice also that the confidence interval is for the odds ratio; that is, for the
estimate of (p1/(1− p1))/(p2/(1− p2)). One can show that if the ps are
not identical, then the conditional distribution of the table depends only
on the odds ratio, so it is the natural measure of association in connection
with the Fisher test. The exact distribution of the test can be worked out
also when the odds ratio differs from 1, but there is the same complication
as with binom.test that a two-sided 95% confidence interval must be
pasted together from two one-sided 97.5% intervals. This leads to the op-
posite inconsistency as with prop.test: The test is (barely) significant,
but the confidence interval for the odds ratio includes 1.

The standard χ2 test (see also Section 8.4) in chisq.test works with
data in matrix form, like fisher.test does. For a 2× 2 table, the test is
exactly equivalent to prop.test.

> chisq.test(lewitt.machin)

Pearson’s Chi-squared test with Yates’ continuity
correction

data: lewitt.machin
X-squared = 3.2793, df = 1, p-value = 0.07016

8.3 k proportions, test for trend

Sometimes you want to compare more than two proportions. In that
case, the categories are often ordered so that you would expect to find a
decreasing or increasing trend in the proportions with the group number.

The example used in this section concerns data from a group of women
giving birth where it was recorded whether the child was delivered by
caesarean section and what shoe size the mother used (Altman, 1991,
p. 229).

The table looks like this:

> caesar.shoe
<4 4 4.5 5 5.5 6+

Yes 5 7 6 7 8 10
No 17 28 36 41 46 140

To compare k > 2 proportions, another test based on the normal approx-
imation is available. It consists of the calculation of a weighted sum of
squared deviations between the observed proportions in each group and
the overall proportion for all groups. The test statistic has an approximate
χ2 distribution with k− 1 degrees of freedom.
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To use prop.test on a table like caesar.shoe, we need to convert it to
a vector of “successes” (which in this case is close to being the opposite)
and a vector of “trials”. The two vectors can be computed like this:

> caesar.shoe.yes <- caesar.shoe["Yes",]
> caesar.shoe.total <- margin.table(caesar.shoe,2)
> caesar.shoe.yes
<4 4 4.5 5 5.5 6+
5 7 6 7 8 10

> caesar.shoe.total
<4 4 4.5 5 5.5 6+
22 35 42 48 54 150

Thereafter it is easy to perform the test:

> prop.test(caesar.shoe.yes,caesar.shoe.total)
6-sample test for equality of proportions without
continuity correction

data: caesar.shoe.yes out of caesar.shoe.total
X-squared = 9.2874, df = 5, p-value = 0.09814
alternative hypothesis: two.sided
sample estimates:

prop 1 prop 2 prop 3 prop 4 prop 5 prop 6
0.22727273 0.20000000 0.14285714 0.14583333 0.14814815 0.06666667

Warning message:
In prop.test(caesar.shoe.yes, caesar.shoe.total) :
Chi-squared approximation may be incorrect

It is seen that the test comes out nonsignificant, but the subdivision is re-
ally unreasonably fine in view of the small number of caesarean sections.
Notice, by the way, the warning about the χ2 approximation being dubi-
ous, which is prompted by some cells having an expected count less than
5.

You can test for a trend in the proportions using prop.trend.test. It
takes three arguments: x, n, and score. The first two of these are exactly
as in prop.test, whereas the last one is the score given to the groups,
by default simply 1, 2, . . . , k. The basis of the test is essentially a weighted
linear regression of the proportions on the group scores, where we test for
a zero slope, which becomes a χ2 test on 1 degree of freedom.

> prop.trend.test(caesar.shoe.yes,caesar.shoe.total)

Chi-squared Test for Trend in Proportions

data: caesar.shoe.yes out of caesar.shoe.total ,
using scores: 1 2 3 4 5 6
X-squared = 8.0237, df = 1, p-value = 0.004617
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So if we assume that the effect of shoe size is linear in the group score,
then we can see a significant difference. This kind of assumption should
not be thought of as something that must hold for the test to be valid.
Rather, it indicates the rough type of alternative to which the test should
be sensitive.

The effect of using a trend test can be viewed as an approximate subdivi-
sion of the test for equal proportions (χ2 = 9.29) into a contribution from
the linear effect (χ2 = 8.02) on 1 degree of freedom and a contribution
from deviations from the linear trend (χ2 = 1.27) on 4 degrees of freedom.
So you could say that the test for equal proportions is being diluted or
wastes degrees of freedom on testing for deviations in a direction we are
not really interested in.

8.4 r× c tables

For the analysis of tables with more than two classes on both sides, you
can use chisq.test or fisher.test, although you should note that
the latter can be very computationally demanding if the cell counts are
large and there are more than two rows or columns. We have already seen
chisq.test in a simple example, but with larger tables, some additional
features are of interest.

An r× c table looks like this:

n11 n12 · · · n1c n1·
n21 n22 · · · n2c n2·

...
...

...
...

nr1 nr2 · · · nrc nr·
n·1 n·2 · · · n·c n··

Such a table can arise from several different sampling plans, and the
notion of “no relation between rows and columns” is correspondingly dif-
ferent. The total in each row might be fixed in advance, and you would be
interested in testing whether the distribution over columns is the same
for each row, or vice versa if the column totals were fixed. It might also
be the case that only the total number is chosen and the individuals are
grouped randomly according to the row and column criteria. In the latter
case, you would be interested in testing the hypothesis of statistical inde-
pendence, that the probability of an individual falling into the ijth cell is
the product pi·p·j of the marginal probabilities. However, the analysis of
the table turns out to be the same in all cases.
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If there is no relation between rows and columns, then you would expect
to have the following cell values:

Eij =
ni· × n·j

n··
This can be interpreted as distributing each row total according to the pro-
portions in each column (or vice versa) or as distributing the grand total
according to the products of the row and column proportions.

The test statistic

X2 = ∑
(O− E)2

E

has an approximate χ2 distribution with (r− 1)× (c− 1) degrees of free-
dom. Here the sum is over the entire table and the ij indices have been
omitted. O denotes the observed values and E the expected values as
described above.

We consider the table with caffeine consumption and marital status from
Section 4.5 and compute the χ2 test:

> caff.marital <- matrix(c(652,1537,598,242,36,46,38,21,218
+ ,327,106,67),
+ nrow=3,byrow=T)
> colnames(caff.marital) <- c("0","1-150","151-300",">300")
> rownames(caff.marital) <- c("Married","Prev.married","Single")
> caff.marital

0 1-150 151-300 >300
Married 652 1537 598 242
Prev.married 36 46 38 21
Single 218 327 106 67
> chisq.test(caff.marital)

Pearson’s Chi-squared test

data: caff.marital
X-squared = 51.6556, df = 6, p-value = 2.187e-09

The test is highly significant, so we can safely conclude that the data con-
tradict the hypothesis of independence. However, you would generally
also like to know the nature of the deviations. To that end, you can look at
some extra components of the return value of chisq.test.

Notice that chisq.test (just like lm) actually returns more information
than what is commonly printed:
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> chisq.test(caff.marital)$expected
0 1-150 151-300 >300

Married 705.83179 1488.01183 578.06533 257.09105
Prev.married 32.85648 69.26698 26.90895 11.96759
Single 167.31173 352.72119 137.02572 60.94136
> chisq.test(caff.marital)$observed

0 1-150 151-300 >300
Married 652 1537 598 242
Prev.married 36 46 38 21
Single 218 327 106 67

These two tables may then be scrutinized to see where the differences lie.
It is often useful to look at a table of the contributions from each cell to the
total χ2. Such a table cannot be directly extracted, but it is easy to calculate:

> E <- chisq.test(caff.marital)$expected
> O <- chisq.test(caff.marital)$observed
> (O-E)^2/E

0 1-150 151-300 >300
Married 4.1055981 1.612783 0.6874502 0.8858331
Prev.married 0.3007537 7.815444 4.5713926 6.8171090
Single 15.3563704 1.875645 7.0249243 0.6023355

There are some large contributions, particularly from too many “abstain-
ing” singles, and the distribution among previously married is shifted
in the direction of a larger intake — insofar as they consume caffeine at
all. Still, it is not easy to find a simple description of the deviation from
independence in these data.

You can also use chisq.test directly on raw (untabulated) data, here
using the juul data set from Section 4.5:

> attach(juul)
> chisq.test(tanner,sex)

Pearson’s Chi-squared test

data: tanner and sex
X-squared = 28.8672, df = 4, p-value = 8.318e-06

It may not really be relevant to test for independence between these par-
ticular variables. The definition of Tanner stages is gender-dependent by
nature.

8.5 Exercises

8.1 Reconsider the situation of Exercise 3.3, where 10 consecutive pa-
tients had operations without complications and the expected rate was
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20%. Calculate the relevant one-sided test in the binomial distribution.
How large a sample (still with zero complications) would be necessary to
obtain statistical significance?

8.2 In 747 cases of “Rocky Mountain spotted fever” from the west-
ern United States, 210 patients died. Out of 661 cases from the eastern
United States, 122 died. Is the difference statistically significant? (See also
Exercise 13.4.)

8.3 Two drugs for the treatment of peptic ulcer were compared (Camp-
bell and Machin, 1993, p. 72). The results were as follows:

Healed Not Healed Total
Pirenzepine 23 7 30
Trithiozine 18 13 31
Total 41 20 61

Compute the χ2 test and Fisher’s exact test and discuss the difference.
Find an approximate 95% confidence interval for the difference in healing
probability.

8.4 (From “Mathematics 5” exam, University of Copenhagen, Summer
1969.) From September 20, 1968, to February 1, 1969, an instructor con-
sumed 254 eggs. Every day, he recorded how many eggs broke during
boiling so that the white ran out and how many cracked so that the white
did not run out. Additionally, he recorded whether the eggs were size A
or size B. From February 4, 1969, until April 10, 1969, he consumed 130
eggs, but this time he used a “piercer” to create a small hole in the egg to
prevent breaking and cracking. The results were as follows:

Period Size Total Broken Cracked
Sept. 20–Feb. 1 A 54 4 8
Sept. 20–Feb. 1 B 200 15 28
Feb. 4–Apr. 10 A 60 4 9
Feb. 4–Apr. 10 B 70 1 7

Investigate whether or not the piercer seems to have had an effect.

8.5 Make a plot of the two-sided p-value for testing that the probability
parameter is x when the observations are 3 successes in 15 trials for x
varying from 0 to 1 in steps of 0.001. Explain what makes the definition of
a two-sided confidence interval difficult.


	Tabular data
	Single proportions
	Two independent proportions
	k proportions, test for trend
	r c tables
	Exercises




