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Analysis of variance and the
Kruskal–Wallis test

In this section, we consider comparisons among more than two groups
parametrically, using analysis of variance, as well as nonparametrically,
using the Kruskal–Wallis test. Furthermore, we look at two-way analysis
of variance in the case of one observation per cell.

7.1 One-way analysis of variance

We start this section with a brief sketch of the theory underlying the one-
way analysis of variance. A little bit of notation is necessary. Let xij denote
observation no. j in group i, so that x35 is the fifth observation in group
3; x̄i is the mean for group i, and x̄. is the grand mean (average of all
observations).

We can decompose the observations as

xij = x̄. + (x̄i − x̄.)︸ ︷︷ ︸
deviation of
group mean from
grand mean

+ (xij − x̄i)︸ ︷︷ ︸
deviation of
observation from
group mean

informally corresponding to the model

Xij = µ + αi + εij, εij ∼ N(0, σ2)
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128 7. Analysis of variance and the Kruskal–Wallis test

in which the hypothesis that all the groups are the same implies that all
αi are zero. Notice that the error terms εij are assumed to be independent
and have the same variance.

Now consider the sums of squares of the underbraced terms, known as
variation within groups

SSDW = ∑
i

∑
j
(xij − x̄i)2

and variation between groups

SSDB = ∑
i

∑
j
(x̄i − x̄.)2 = ∑

i
ni(x̄i − x̄.)2

It is possible to prove that

SSDB + SSDW = SSDtotal = ∑
i

∑
j
(xij − x̄.)2

That is, the total variation is split into a term describing differences be-
tween group means and a term describing differences between individual
measurements within the groups. One says that the grouping explains
part of the total variation, and obviously an informative grouping will
explain a large part of the variation.

However, the sums of squares can only be positive, so even a completely
irrelevant grouping will always “explain” some part of the variation. The
question is how small an amount of explained variation can be before it
might as well be due to chance. It turns out that in the absence of any
systematic differences between the groups, you should expect the sum of
squares to be partitioned according to the degrees of freedom for each
term, k− 1 for SSDB and N− k for SSDW , where k is the number of groups
and N is the total number of observations.

Accordingly, you can normalize the sums of squares by calculating mean
squares:

MSW = SSDW/(N − k)
MSB = SSDB/(k− 1)

MSW is the pooled variance obtained by combining the individual group
variances and thus an estimate of σ2. In the absence of a true group effect,
MSB will also be an estimate of σ2, but if there is a group effect, then the
differences between group means and hence MSB will tend to be larger.
Thus, a test for significant differences between the group means can be
performed by comparing two variance estimates. This is why the proce-
dure is called analysis of variance even though the objective is to compare
the group means.
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A formal test needs to account for the fact that random variation will cause
some difference in the mean squares. You calculate

F = MSB/MSW

so that F is ideally 1, but some variation around that value is expected.
The distribution of F under the null hypothesis is an F distribution with
k− 1 and N − k degrees of freedom. You reject the hypothesis of identical
means if F is larger than the 95% quantile in that F distribution (if the
significance level is 5%). Notice that this test is one-sided; a very small F
would occur if the group means were very similar, and that will of course
not signify a difference between the groups.

Simple analyses of variance can be performed in R using the func-
tion lm, which is also used for regression analysis. For more elaborate
analyses, there are also the functions aov and lme (linear mixed ef-
fects models, from the nlme package). An implementation of Welch’s
procedure, relaxing the assumption of equal variances and generaliz-
ing the unequal-variance t test, is implemented in oneway.test (see
Section 7.1.2).

The main example in this section is the “red cell folate” data from Alt-
man (1991, p. 208). To use lm, it is necessary to have the data values in
one vector and a factor variable (see Section 1.2.8) describing the division
into groups. The red.cell.folate data set contains a data frame in the
proper format.

> attach(red.cell.folate)
> summary(red.cell.folate)

folate ventilation
Min. :206.0 N2O+O2,24h:8
1st Qu.:249.5 N2O+O2,op :9
Median :274.0 O2,24h :5
Mean :283.2
3rd Qu.:305.5
Max. :392.0

Recall that summary applied to a data frame gives a short summary of
the distribution of each of the variables contained in it. The format of the
summary is different for numeric vectors and factors, so that provides a
check that the variables are defined correctly.

The category names for ventilation mean “N2O and O2 for 24 hours”,
“N2O and O2 during operation”, and “only O2 for 24 hours”.

In the following, the analysis of variance is demonstrated first and then a
couple of useful techniques for the presentation of grouped data as tables
and graphs are shown.
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The specification of a one-way analysis of variance is analogous to a re-
gression analysis. The only difference is that the descriptive variable needs
to be a factor and not a numeric variable. We calculate a model object using
lm and extract the analysis of variance table with anova.

> anova(lm(folate~ventilation))
Analysis of Variance Table

Response: folate
Df Sum Sq Mean Sq F value Pr(>F)

ventilation 2 15516 7758 3.7113 0.04359 *
Residuals 19 39716 2090
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Here we have SSDB and MSB in the top line and SSDW and MSW in the
second line.

In statistics textbooks, the sums of squares are most often labelled “be-
tween groups” and “within groups”. Like most other statistical software,
R uses slightly different labelling. Variation between groups is labelled
by the name of the grouping factor (ventilation), and variation within
groups is labelled Residual. ANOVA tables can be used for a wide range
of statistical models, and it is convenient to use a format that is less linked
to the particular problem of comparing groups.

For a further example, consider the data set juul, introduced in Sec-
tion 4.1. Notice that the tanner variable in this data set is a numeric
vector and not a factor. For purposes of tabulation, this makes little dif-
ference, but it would be a serious error to use it in this form in an analysis
of variance:

> attach(juul)
> anova(lm(igf1~tanner)) ## WRONG!
Analysis of Variance Table

Response: igf1
Df Sum Sq Mean Sq F value Pr(>F)

tanner 1 10985605 10985605 686.07 < 2.2e-16 ***
Residuals 790 12649728 16012
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

This does not describe a grouping of data but a linear regression on the
group number! Notice the telltale 1 DF for the effect of tanner.

Things can be fixed as follows:

> juul$tanner <- factor(juul$tanner,
+ labels=c("I","II","III","IV","V"))
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> detach(juul)
> attach(juul)
> summary(tanner)

I II III IV V NA’s
515 103 72 81 328 240
> anova(lm(igf1~tanner))
Analysis of Variance Table

Response: igf1
Df Sum Sq Mean Sq F value Pr(>F)

tanner 4 12696217 3174054 228.35 < 2.2e-16 ***
Residuals 787 10939116 13900
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

We needed to reattach the juul data frame in order to use the changed
definition. An attached data frame is effectively a separate copy of it
(although it does not take up extra space as long as the original is
unchanged). The Df column now has an entry of 4 for tanner, as it
should.

7.1.1 Pairwise comparisons and multiple testing

If the F test shows that there is a difference between groups, the ques-
tion quickly arises of where the difference lies. It becomes necessary to
compare the individual groups.

Part of this information can be found in the regression coefficients. You can
use summary to extract regression coefficients with standard errors and t
tests. These coefficients do not have their usual meaning as the slope of a
regression line but have a special interpretation, which is described below.

> summary(lm(folate~ventilation))
Call:
lm(formula = folate ~ ventilation)
Residuals:

Min 1Q Median 3Q Max
-73.625 -35.361 -4.444 35.625 75.375
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 316.62 16.16 19.588 4.65e-14 ***
ventilationN2O+O2,op -60.18 22.22 -2.709 0.0139 *
ventilationO2,24h -38.62 26.06 -1.482 0.1548
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 45.72 on 19 degrees of freedom
Multiple R-squared: 0.2809, Adjusted R-squared: 0.2052
F-statistic: 3.711 on 2 and 19 DF, p-value: 0.04359
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The interpretation of the estimates is that the intercept is the mean in the
first group (N2O+O2,24h), whereas the two others describe the difference
between the relevant group and the first one.

There are multiple ways of representing the effect of a factor variable in
linear models (and one-way analysis of variance is the simplest example of
a linear model with a factor variable). The representations are in terms of
contrasts, the choice of which can be controlled either by global options or
as part of the model formula. We do not go deeply into this but just men-
tion that the contrasts used by default are the so-called treatment contrasts,
in which the first group is treated as a baseline and the other groups are
given relative to that. Concretely, the analysis is performed as a multiple
regression analysis (see Chapter 11) by introducing two dummy variables,
which are 1 for observations in the relevant group and 0 elsewhere.

Among the t tests in the table, you can immediately find a test for the hy-
pothesis that the first two groups have the same true mean (p = 0.0139)
and also whether the first and the third might be identical (p = 0.1548).
However, a comparison of the last two groups cannot be found. This can
be overcome by modifying the factor definition (see the help page for
relevel), but that gets tedious when there are more than a few groups.

If we want to compare all groups, we ought to correct for multiple testing.
Performing many tests will increase the probability of finding one of them
to be significant; that is, the p-values tend to be exaggerated. A common
adjustment method is the Bonferroni correction, which is based on the fact
that the probability of observing at least one of n events is less than the
sum of the probabilities for each event. Thus, by dividing the significance
level by the number of tests or, equivalently, multiplying the p-values, we
obtain a conservative test where the probability of a significant result is less
than or equal to the formal significance level.

A function called pairwise.t.test computes all possible two-group
comparisons. It is also capable of making adjustments for multiple
comparisons and works like this:

> pairwise.t.test(folate, ventilation, p.adj="bonferroni")

Pairwise comparisons using t tests with pooled SD

data: folate and ventilation

N2O+O2,24h N2O+O2,op
N2O+O2,op 0.042 -
O2,24h 0.464 1.000

P value adjustment method: bonferroni
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The output is a table of p-values for the pairwise comparisons. Here, the
p-values have been adjusted by the Bonferroni method, where the unad-
justed values have been multiplied by the number of comparisons, namely
3. If that results in a value bigger than 1, then the adjustment procedure
sets the adjusted p-value to 1.

The default method for pairwise.t.test is actually not the Bonferroni
correction but a variant due to Holm. In this method, only the smallest p
needs to be corrected by the full number of tests, the second smallest is
corrected by n − 1, etc., unless that would make it smaller than the pre-
vious one, since the order of the p-values should be unaffected by the
adjustment.

> pairwise.t.test(folate,ventilation)

Pairwise comparisons using t tests with pooled SD

data: folate and ventilation

N2O+O2,24h N2O+O2,op
N2O+O2,op 0.042 -
O2,24h 0.310 0.408

P value adjustment method: holm

7.1.2 Relaxing the variance assumption

The traditional one-way ANOVA requires an assumption of equal vari-
ances for all groups. There is, however, an alternative procedure that
does not require that assumption. It is due to Welch and similar to the
unequal-variances t test. This has been implemented in the oneway.test
function:

> oneway.test(folate~ventilation)

One-way analysis of means (not assuming equal variances)

data: folate and ventilation
F = 2.9704, num df = 2.000, denom df = 11.065, p-value = 0.09277

In this case, the p-value increased to a nonsignificant value, presumably
related to the fact that the group that seems to differ from the two others
also has the largest variance.

It is also possible to perform the pairwise t tests so that they do not use
a common pooled standard deviation. This is controlled by the argument
pool.sd.
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> pairwise.t.test(folate,ventilation,pool.sd=F)

Pairwise comparisons using t tests with non-pooled SD

data: folate and ventilation

N2O+O2,24h N2O+O2,op
N2O+O2,op 0.087 -
O2,24h 0.321 0.321

P value adjustment method: holm

Again, it is seen that the significance disappears as we remove the
constraint on the variances.

7.1.3 Graphical presentation

Of course, there are many ways to present grouped data. Here we create
a somewhat elaborate plot where the raw data are plotted as a stripchart
and overlaid with an indication of means and SEMs (Figure 7.1):

> xbar <- tapply(folate, ventilation, mean)
> s <- tapply(folate, ventilation, sd)
> n <- tapply(folate, ventilation, length)
> sem <- s/sqrt(n)
> stripchart(folate~ventilation, method="jitter",
+ jitter=0.05, pch=16, vert=T)
> arrows(1:3,xbar+sem,1:3,xbar-sem,angle=90,code=3,length=.1)
> lines(1:3,xbar,pch=4,type="b",cex=2)

Here we used pch=16 (small plotting dots) in stripchart and put
vertical=T to make the “strips” vertical.

The error bars have been made with arrows, which adds arrows to a
plot. We slightly abuse the fact that the angle of the arrowhead is ad-
justable to create the little crossbars at either end. The first four arguments
specify the endpoints, (x1, y1, x2, y2); the angle argument gives the an-
gle between the lines of the arrowhead and shaft, here set to 90◦; and
length is the length of the arrowhead (in inches on a printout). Finally,
code=3 means that the arrow should have a head at both ends. Note that
the x-coordinates of the stripcharts are simply the group numbers.

The indication of averages and the connecting lines are done with lines,
where type="b" (both) means that both points and lines are printed,
leaving gaps in the lines to make room for the symbols. pch=4 is a cross,
and cex=2 requests that the symbols be drawn in double size.
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Figure 7.1. “Red cell folate” data with x̄± 1 SEM.

It is debatable whether you should draw the plot using 1 SEM as is done
here or whether perhaps it is better to draw proper confidence intervals for
the means (approximately 2 SEM), or maybe even SD instead of SEM. The
latter point has to do with whether the plot is to be used in a descriptive
or an analytical manner. Standard errors of the mean are not useful for
describing the distributions in the groups; they only say how precisely
the mean is determined. On the other hand, SDs do not enable the reader
to see at a glance which groups are significantly different.

In many fields it appears to have become the tradition to use 1 SEM
“because they are the smallest”; that is, it makes differences look more
dramatic. Probably, the best thing to do is to follow the traditions in the
relevant field and “calibrate your eyeballs” accordingly.

One word of warning, though: At small group sizes, the rule of thumb that
the confidence interval is the mean± 2 SEM becomes badly misleading.
At a group size of 2, it actually has to be 12.7 SEM! That is a correction
heavily dependent on data having the normal distribution. If you have
such small groups, it may be advisable to use a pooled SD for the entire
data set rather than the group-specific SDs. This does, of course, require
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that you can reasonably assume that the true standard deviation actually
is the same in all groups.

7.1.4 Bartlett’s test

Testing whether the distribution of a variable has the same variance in
all groups can be done using Bartlett’s test, although like the F test for
comparing two variances, it is rather nonrobust against departures from
the assumption of normal distributions. As in var.test, it is assumed
that the data are from independent groups. The procedure is performed
as follows:

> bartlett.test(folate~ventilation)

Bartlett test of homogeneity of variances

data: folate by ventilation
Bartlett’s K-squared = 2.0951, df = 2, p-value = 0.3508

That is, in this case, nothing in the data contradicts the assumption of
equal variances in the three groups.

7.2 Kruskal–Wallis test

A nonparametric counterpart of a one-way analysis of variance is the
Kruskal–Wallis test. As in the Wilcoxon two-sample test (see Section 5.5),
data are replaced with their ranks without regard to the grouping, only
this time the test is based on the between-group sum of squares calcu-
lated from the average ranks. Again, the distribution of the test statistic
can be worked out based on the idea that, under the hypothesis of irrel-
evant grouping, the problem reduces to a combinatorial one of sampling
the within-group ranks from a fixed set of numbers.

You can make R calculate the Kruskal–Wallis test as follows:

> kruskal.test(folate~ventilation)

Kruskal-Wallis rank sum test

data: folate by ventilation
Kruskal-Wallis chi-squared = 4.1852, df = 2, p-value = 0.1234

It is seen that there is no significant difference using this test. This should
not be too surprising in view of the fact that the F test in the one-way anal-
ysis of variance was only borderline significant. Also, the Kruskal–Wallis
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test is less efficient than its parametric counterpart if the assumptions
hold, although it does not invariably give a larger p-value.

7.3 Two-way analysis of variance

One-way analysis of variance deals with one-way classifications of data.
It is also possible to analyze data that are cross-classified according to
several criteria. When a cross-classified design is balanced, then you can
almost read the entire statistical analysis from a single analysis of vari-
ance table, and that table generally consists of items that are simple to
compute, which was very important before the computer era. Balanced-
ness is a concept that is hard to define exactly; for a two-way classification,
a sufficient condition is that the cell counts be equal, but there are other
balanced designs.

Here we restrict ourselves to the case of a single observation per cell.
This typically arises from having multiple measurements on the same
experimental unit and in this sense generalizes the paired t test.

Let xij denote the observation in row i and column j of the m×n table. This
is similar to the notation used for one-way analysis of variance, but notice
that there is now a connection between observations with the same j, so
that it makes sense to look at both row averages x̄i· and column averages
x̄·j.

Consequently, it now makes sense to look at both variation between rows

SSDR = n ∑
i
(x̄i· − x̄..)2

and variation between columns

SSDC = m ∑
j
(x̄·j − x̄..)2

Subtracting these two from the total variation leaves the residual variation,
which works out as

SSDres = ∑
i

∑
j
(xij − x̄i· − x̄·j + x̄..)2

This corresponds to a statistical model in which it is assumed that the
observations are composed of a general level, a row effect, and a column
effect plus a noise term:

Xij = µ + αi + β j + εij εij ∼ N(0, σ2)
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The parameters of this model are not uniquely defined unless we impose
some restriction on the parameters. If we impose ∑ αi = 0 and ∑ β j = 0,
then the estimates of αi, β j, and µ turn out to be x̄i· − x̄.., x̄·j − x̄.., and x̄...

Dividing the sums of squares by their respective degrees of freedom m− 1
for SSDR, n − 1 for SSDC, and (m − 1)(n − 1) for SSDres, we get a set of
mean squares. F tests for no row and column effect can be carried out by
dividing the respective mean squares by the residual mean square.

It is important to notice that this works out so nicely only because of the
balanced design. If you have a table with “holes” in it, the analysis is con-
siderably more complicated. The simple formulas for the sum of squares
are no longer valid and, in particular, the order independence is lost, so
that there is no longer a single SSDC but ones with and without adjusting
for row effects.

To perform a two-way ANOVA, it is necessary to have data in one vec-
tor, with the two classifying factors parallel to it. We consider an example
concerning heart rate after administration of enalaprilate (Altman, 1991,
p. 327). Data are found in this form in the heart.rate data set:

> attach(heart.rate)
> heart.rate

hr subj time
1 96 1 0
2 110 2 0
3 89 3 0
4 95 4 0
5 128 5 0
6 100 6 0
7 72 7 0
8 79 8 0
9 100 9 0
10 92 1 30
11 106 2 30
12 86 3 30
13 78 4 30
14 124 5 30
15 98 6 30
16 68 7 30
17 75 8 30
18 106 9 30
19 86 1 60
20 108 2 60
21 85 3 60
22 78 4 60
23 118 5 60
24 100 6 60
25 67 7 60
26 74 8 60
27 104 9 60
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28 92 1 120
29 114 2 120
30 83 3 120
31 83 4 120
32 118 5 120
33 94 6 120
34 71 7 120
35 74 8 120
36 102 9 120

If you look inside the heart.rate.R file in the data directory of the
ISwR package, you will see that the actual definition of the data frame is

heart.rate <- data.frame(hr = c(96,110,89,95,128,100,72,79,100,
92,106,86,78,124,98,68,75,106,
86,108,85,78,118,100,67,74,104,
92,114,83,83,118,94,71,74,102),

subj=gl(9,1,36),
time=gl(4,9,36,labels=c(0,30,60,120)))

The gl (generate levels) function is specially designed for generating pat-
terned factors for balanced experimental designs. It has three arguments:
the number of levels, the block length (how many times each level should
repeat), and the total length of the result. The two patterns in the data
frame are thus

> gl(9,1,36)
[1] 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4
[32] 5 6 7 8 9
Levels: 1 2 3 4 5 6 7 8 9
> gl(4,9,36,labels=c(0,30,60,120))
[1] 0 0 0 0 0 0 0 0 0 30 30 30 30 30 30
[16] 30 30 30 60 60 60 60 60 60 60 60 60 120 120 120
[31] 120 120 120 120 120 120
Levels: 0 30 60 120

Once the variables have been defined, the two-way analysis of variance is
specified simply by

> anova(lm(hr~subj+time))
Analysis of Variance Table

Response: hr
Df Sum Sq Mean Sq F value Pr(>F)

subj 8 8966.6 1120.8 90.6391 4.863e-16 ***
time 3 151.0 50.3 4.0696 0.01802 *
Residuals 24 296.8 12.4
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
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Figure 7.2. Interaction plot of heart-rate data.

Interchanging subj and time in the model formula (hr~time+subj)
yields exactly the same analysis except for the order of the rows of the
ANOVA table. This is because we are dealing with a balanced design (a
complete two-way table with no missing values). In unbalanced cases, the
factor order will matter.

7.3.1 Graphics for repeated measurements

At least for your own use, it is useful to plot a “spaghettigram” of the data;
that is, a plot where data from the same subject are connected with lines.
To this end, you can use the function interaction.plot, which graphs
the values against one factor while connecting data for the other factor
with line segments to form traces.

> interaction.plot(time, subj, hr)

In fact there is a fourth argument, which specifies what should be done in
case, there is more than one observation per cell. By default, the mean is
taken, which is the reason why the y-axis in Figure 7.2 reads “mean of hr”.
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If you prefer to have the values plotted according to the times of measure-
ment (which are not equidistant in this example), you could instead write
(resulting plot not shown)

> interaction.plot(ordered(time),subj,hr)

7.4 The Friedman test

A nonparametric counterpart of two-way analysis of variance exists for
the case with one observation per cell. Friedman’s test is based on ranking
observations within each row assuming that if there is no column effect then
all orderings should be equally likely. A test statistic based on the column
sum of squares can be calculated and normalized to give a χ2-distributed
test statistic.

In the case of two columns, the Friedman test is equivalent to the sign test,
in which one uses the binomial distribution to test for equal probabili-
ties of positive and negative differences within pairs. This is a rather less
sensitive test than the Wilcoxon signed-rank test discussed in Section 5.2.

Practical application of the Friedman test is as follows:

> friedman.test(hr~time|subj,data=heart.rate)

Friedman rank sum test

data: hr and time and subj
Friedman chi-squared = 8.5059, df = 3, p-value = 0.03664

Notice that the blocking factor is specified in a model formula using the
vertical bar, which may be read as “time within subj”. It is seen that the
test is not quite as strongly significant as the parametric counterpart. This
is unsurprising since the latter test is more powerful when its assumptions
are met.

7.5 The ANOVA table in regression analysis

We have seen the use of analysis of variance tables in grouped and cross-
classified experimental designs. However, their use is not restricted to
these designs but applies to the whole class of linear models (more on this
in Chapter 12).
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The variation between and within groups for a one-way analysis of
variance generalizes to model variation and residual variation

SSDmodel = ∑
i
(ŷi − ȳ.)2

SSDres = ∑
i
(yi − ŷi)2

which partition the total variation ∑i(yi− ȳ.)2. This applies only when the
model contains an intercept; see Section 12.2. The role of the group means
in the one-way classification is taken over by the fitted values ŷi in the
more general linear model.

An F test for significance of the model is available in direct analogy with
Section 7.1. In simple linear regression, this test is equivalent to testing
that the regression coefficient is zero.

The analysis of variance table corresponding to a regression analysis
can be extracted with the function anova, just as for one- and two-way
analyses of variance. For the thuesen example, it will look like this:

> attach(thuesen)
> lm.velo <- lm(short.velocity~blood.glucose)
> anova(lm.velo)
Analysis of Variance Table

Response: short.velocity
Df Sum Sq Mean Sq F value Pr(>F)

blood.glucose 1 0.20727 0.20727 4.414 0.0479 *
Residuals 21 0.98610 0.04696
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Notice that the F test gives the same p-value as the t test for a zero slope
from Section 6.1. It is the same F test that gets printed at the end of the
summary output:

...
Residual standard error: 0.2167 on 21 degrees of freedom
Multiple R-Squared: 0.1737, Adjusted R-squared: 0.1343
F-statistic: 4.414 on 1 and 21 DF, p-value: 0.0479

The remaining elements of the three output lines above may also be de-
rived from the ANOVA table. “Residual standard error” is the square root
of “Residual mean squares”, namely 0.2167 =

√
0.04696. R2 is the propor-

tion of the total sum of squares explained by the regression line, 0.1737 =
0.2073/(0.2073 + 0.9861); and, finally, the adjusted R2 is the relative im-
provement of the residual variance, 0.1343 = (v − 0.04696)/v, where
v = (0.2073 + 0.9861)/22 = 0.05425 is the variance of short.velocity
if the glucose values are not taken into account.
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7.6 Exercises

7.1 The zelazo data are in the form of a list of vectors, one for each of
the four groups. Convert the data to a form suitable for the use of lm, and
calculate the relevant test. Consider t tests comparing selected subgroups
or obtained by combining groups.

7.2 In the lung data, do the three measurement methods give systemat-
ically different results? If so, which ones appear to be different?

7.3 Repeat the previous exercises using the zelazo and lung data with
the relevant nonparametric tests.

7.4 The igf1 variable in the juul data set is arguably skewed and has
different variances across Tanner groups. Try to compensate for this us-
ing logarithmic and square-root transformations, and use the Welch test.
However, the analysis is still problematic — why?
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