
6
Regression and correlation

The main object of this chapter is to show how to perform basic regression
analyses, including plots for model checking and display of confidence
and prediction intervals. Furthermore, we describe the related topic of
correlation in both its parametric and nonparametric variants.

6.1 Simple linear regression

We consider situations where you want to describe the relation be-
tween two variables using linear regression analysis. You may, for
instance, be interested in describing short.velocity as a function of
blood.glucose. This section deals only with the very basics, whereas
several more complicated issues are postponed until Chapter 12.

The linear regression model is given by

yi = α + βxi + εi

in which the εi are assumed independent and N(0, σ2). The nonrandom
part of the equation describes the yi as lying on a straight line. The slope
of the line (the regression coefficient) is β, the increase per unit change in x.
The line intersects the y-axis at the intercept α.

The parameters α, β, and σ2 can be estimated using the method of least
squares. Find the values of α and β that minimize the sum of squared

P. Dalgaard, Introductory Statistics with R,
DOI: 10.1007/978-0-387-79054-1_6, © Springer Science+Business Media, LLC 2008

110 6. Regression and correlation

residuals

SSres = ∑
i
(yi − (α + βxi))2

This is not actually done by trial and error. One can find closed-form
expressions for the choice of parameters that gives the smallest value of
SSres:

β̂ = ∑(xi − x̄)(yi − ȳ)
∑(xi − x̄)2

α̂ = ȳ− β̂x̄

The residual variance is estimated as SSres/(n − 2), and the residual
standard deviation is of course the square root of that.

The empirical slope and intercept will deviate somewhat from the true
values due to sampling variation. If you were to generate several sets of yi
at the same set of xi, you would observe a distribution of empirical slopes
and intercepts. Just as you could calculate the SEM to describe the vari-
ability of the empirical mean, it is also possible from a single sample of
(xi, yi) to calculate the standard error of the computed estimates, s.e.(α̂)
and s.e.(β̂). These standard errors can be used to compute confidence in-
tervals for the parameters and tests for whether a parameter has a specific
value.

It is usually of prime interest to test the null hypothesis that β = 0 since
that would imply that the line was horizontal and thus that the ys have a
distribution that is the same, whatever the value of x. You can compute a
t test for that hypothesis simply by dividing the estimate by its standard
error

t =
β̂

s.e.(β̂)

which follows a t distribution on n− 2 degrees of freedom if the true β is
zero. A similar test can be calculated for whether the intercept is zero, but
you should be aware that it is often a meaningless hypothesis either be-
cause there is no natural reason to believe that the line should go through
the origin or because it would involve an extrapolation far outside the
range of data.

For the example in this section, we need the data frame thuesen, which
we attach with

> attach(thuesen)

For linear regression analysis, the function lm (linear model) is used:

6.1 Simple linear regression 111

> lm(short.velocity~blood.glucose)

Call:
lm(formula = short.velocity ~ blood.glucose)

Coefficients:
(Intercept) blood.glucose

1.09781 0.02196

The argument to lm is a model formula in which the tilde symbol (~) should
be read as “described by”. This was seen several times earlier, both in
connection with boxplots and stripcharts and with the t and Wilcoxon
tests.

The lm function handles much more complicated models than simple lin-
ear regression. There can be many other things besides a dependent and a
descriptive variable in a model formula. A multiple linear regression anal-
ysis (which we discuss in Chapter 11) of, for example, y on x1, x2, and x3
is specified as y ~ x1 + x2 + x3.

In its raw form, the output of lm is very brief. All you see is the estimated
intercept (α) and the estimated slope (β). The best-fitting straight line is
seen to be short.velocity = 1.098 + 0.0220× blood.glucose, but
for instance no tests of significance are given.

The result of lm is a model object. This is a distinctive concept of the S lan-
guage (of which R is a dialect). Whereas other statistical systems focus on
generating printed output that can be controlled by setting options, you
get instead the result of a model fit encapsulated in an object from which
the desired quantities can be obtained using extractor functions. An lm ob-
ject does in fact contain much more information than you see when it is
printed.

A basic extractor function is summary:

> summary(lm(short.velocity~blood.glucose))

Call:
lm(formula = short.velocity ~ blood.glucose)

Residuals:
Min 1Q Median 3Q Max

-0.40141 -0.14760 -0.02202 0.03001 0.43490

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.09781 0.11748 9.345 6.26e-09 ***
blood.glucose 0.02196 0.01045 2.101 0.0479 *

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

112 6. Regression and correlation

Residual standard error: 0.2167 on 21 degrees of freedom
(1 observation deleted due to missingness)

Multiple R-squared: 0.1737, Adjusted R-squared: 0.1343
F-statistic: 4.414 on 1 and 21 DF, p-value: 0.0479

The format above looks more like what other statistical packages would
output. The following is a “dissection” of the output:

Call:
lm(formula = short.velocity ~ blood.glucose)

As in t.test, etc., the output starts with something that is essentially
a repeat of the function call. This is not very interesting when one has
just given it as a command to R, but it is useful if the result is saved in a
variable that is printed later.

Residuals:
Min 1Q Median 3Q Max

-0.40141 -0.14760 -0.02202 0.03001 0.43490

This gives a superficial view of the distribution of the residuals that may
be used as a quick check of the distributional assumptions. The average
of the residuals is zero by definition, so the median should not be far from
zero, and the minimum and maximum should be roughly equal in ab-
solute value. In the example, it can be noticed that the third quartile is
remarkably close to zero, but in view of the small number of observations,
this is not really something to worry about.

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.09781 0.11748 9.345 6.26e-09 ***
blood.glucose 0.02196 0.01045 2.101 0.0479 *

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Here we see the regression coefficient and the intercept again, but this time
with accompanying standard errors, t tests, and p-values. The symbols
to the right are graphical indicators of the level of significance. The line
below the table shows the definition of these indicators; one star means
0.01 < p < 0.05.

The graphical indicators have been the target of some controversy. Some
people like to have the possibility of seeing at a glance whether there is
“anything interesting” in an analysis, whereas others feel that the indica-
tors too often correspond to meaningless tests. For instance, the intercept
in the analysis above is hardly a meaningful quantity at all, and the three-
star significance of it is certainly irrelevant. If you are bothered by the
stars, turn them off with options(show.signif.stars=FALSE).

6.2 Residuals and fitted values 113

Residual standard error: 0.2167 on 21 degrees of freedom
(1 observation deleted due to missingness)

This is the residual variation, an expression of the variation of the ob-
servations around the regression line, estimating the model parameter
σ. The model is not fitted to the entire data set because one value of
short.velocity is missing.

Multiple R-squared: 0.1737, Adjusted R-squared: 0.1343

The first item above is R2, which in a simple linear regression may be rec-
ognized as the squared Pearson correlation coefficient (see Section 6.4.1);
that is, R2 = r2. The other one is the adjusted R2; if you multiply it by
100%, it can be interpreted as “% variance reduction” (this can, in fact,
become negative).

F-statistic: 4.414 on 1 and 21 DF, p-value: 0.0479

This is an F test for the hypothesis that the regression coefficient is zero.
This test is not really interesting in a simple linear regression analysis since
it just duplicates information already given — it becomes more interesting
when there is more than one explanatory variable. Notice that it gives the
exact same result as the t test for a zero slope. In fact, the F test is identical
to the square of the t test: 4.414 = (2.101)2. This is true in any model with
1 degree of freedom.

We will see later how to draw residual plots and plots of data with confi-
dence and prediction limits. First, we draw just the points and the fitted
line. Figure 6.1 has been constructed as follows:

> plot(blood.glucose,short.velocity)
> abline(lm(short.velocity~blood.glucose))

abline, meaning (a, b)-line, draws lines based on the intercept and
slope, a and b, respectively. It can be used with scalar values as in
abline(1.1,0.022), but conveniently it can also extract the informa-
tion from a linear model fitted to data with lm.

6.2 Residuals and fitted values

We have seen how summary can be used to extract information about
the results of a regression analysis. Two further extraction functions are
fitted and resid. They are used as follows. For convenience, we
first store the value returned by lm under the name lm.velo (short for
“velocity”, but you could of course use any other name).

114 6. Regression and correlation

5 10 15 20

1.
0

1.
2

1.
4

1.
6

1.
8

blood.glucose

sh
or

t.v
el

oc
ity

Figure 6.1. Scatterplot with regression line.

> lm.velo <- lm(short.velocity~blood.glucose)
> fitted(lm.velo)

1 2 3 4 5 6 7
1.433841 1.335010 1.275711 1.526084 1.255945 1.214216 1.302066

8 9 10 11 12 13 14
1.341599 1.262534 1.365758 1.244964 1.212020 1.515103 1.429449

15 17 18 19 20 21 22
1.244964 1.190057 1.324029 1.372346 1.451411 1.389916 1.205431

23 24
1.291085 1.306459
> resid(lm.velo)

1 2 3 4 5
0.326158532 0.004989882 -0.005711308 -0.056084062 0.014054962

6 7 8 9 10
0.275783754 0.007933665 -0.251598875 -0.082533795 -0.145757649

11 12 13 14 15
0.005036223 -0.022019994 0.434897199 -0.149448964 0.275036223

17 18 19 20 21
-0.070057471 0.045971143 -0.182346406 -0.401411486 -0.069916424

22 23 24
-0.175431237 -0.171085074 0.393541161

The function fitted returns fitted values — the y-values that you
would expect for the given x-values according to the best-fitting straight

6.2 Residuals and fitted values 115

line; in the present case, 1.098+0.0220*blood.glucose. The resid-
uals shown by resid is the difference between this and the observed
short.velocity.

Note that the fitted values and residuals are labelled with the row names
of the thuesen data frame. Notice in particular that they do not contain
observation no. 16, which had a missing value in the response variable.

It is necessary to discuss some awkward aspects that arise when there are
missing values in data.

To put the fitted line on the plot, you might, although it is easier to use
abline(lm.velo), get the idea of doing it with lines, but

> plot(blood.glucose,short.velocity)
> lines(blood.glucose,fitted(lm.velo))
Error in xy.coords(x, y) : ’x’ and ’y’ lengths differ
Calls: lines -> lines.default -> plot.xy -> xy.coords

which is true. There are 24 observations but only 23 fitted values because
one of the short.velocity values is NA. Notice, incidentally, that the
error occurs within a series of nested function calls, which are being listed
along with the error message to reduce confusion.

What we needed was blood.glucose, but only for those patients whose
short.velocity has been recorded.

> lines(blood.glucose[!is.na(short.velocity)],fitted(lm.velo))

Recall that the is.na function yields a vector that is TRUE wherever the
argument is NA (missing). One advantage to this method is that the fitted
line does not extend beyond the range of data. The technique works but
becomes clumsy if there are missing values in several variables:

...blood.glucose[!is.na(short.velocity) & !is.na(blood.glucose)]...

It becomes easier with the function complete.cases, which can find
observations that are nonmissing on several variables or across an entire
data frame.

> cc <- complete.cases(thuesen)

We could then attach thuesen[cc,] and work on from there. How-
ever, there is a better alternative available: You can use the na.exclude
method for NA handling. This can be set either as an argument to lm or as
an option; that is,

> options(na.action=na.exclude)
> lm.velo <- lm(short.velocity~blood.glucose)

116 6. Regression and correlation

5 10 15 20

1.
0

1.
2

1.
4

1.
6

1.
8

blood.glucose

sh
or

t.v
el

oc
ity

Figure 6.2. Scatterplot of short.velocity versus blood.glucose with fitted
line and residual line segments.

> fitted(lm.velo)
1 2 3 4 5 6 7

1.433841 1.335010 1.275711 1.526084 1.255945 1.214216 1.302066
8 9 10 11 12 13 14

1.341599 1.262534 1.365758 1.244964 1.212020 1.515103 1.429449
15 16 17 18 19 20 21

1.244964 NA 1.190057 1.324029 1.372346 1.451411 1.389916
22 23 24

1.205431 1.291085 1.306459

Notice how the missing observation, no. 16, now appears in the fitted val-
ues with a missing fitted value. It is necessary to recalculate the lm.velo
object after changing the option.

To create a plot where residuals are displayed by connecting observations
to corresponding points on the fitted line, you can do the following. The
final result will look like Figure 6.2. segments draws line segments; its
arguments are the endpoint coordinates in the order (x1, y1, x2, y2).

> segments(blood.glucose,fitted(lm.velo),
+ blood.glucose,short.velocity)

6.3 Prediction and confidence bands 117

1.20 1.25 1.30 1.35 1.40 1.45 1.50

−
0.

4
−

0.
2

0.
0

0.
2

0.
4

fitted(lm.velo)

re
si

d(
lm

.v
el

o)

Figure 6.3. short.velocity and blood.glucose: residuals versus fitted value.

A simple plot of residuals versus fitted values is obtained as (Figure 6.3)

> plot(fitted(lm.velo),resid(lm.velo))

and we can get an indication of whether residuals might have come from
a normal distribution by checking for a straight line on a Q–Q plot (see
Section 4.2.3) as follows (Figure 6.4):

> qqnorm(resid(lm.velo))

6.3 Prediction and confidence bands

Fitted lines are often presented with uncertainty bands around them.
There are two kinds of bands, often referred to as the “narrow” and
“wide” limits.

The narrow bands, confidence bands, reflect the uncertainty about the line
itself, like the SEM expresses the precision with which a mean is known.
If there are many observations, the bands will be quite narrow, reflecting

118 6. Regression and correlation

−2 −1 0 1 2

−
0.

4
−

0.
2

0.
0

0.
2

0.
4

Normal Q−Q Plot

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

Figure 6.4. short.velocity and blood.glucose: Q–Q plot of residuals.

a well-determined line. These bands often show a marked curvature since
the line is better determined near the center of the point cloud. This is a
fact that can be shown mathematically, but you may also understand it
intuitively as follows: The predicted value at x̄ will be ȳ, whatever the
slope is, and hence the standard error of the fitted value at that point is
the SEM of the ys. At other values of x, there will also be a contribution
from the variability of the estimated slope, having increasing influence as
you move away from x̄. Technically, you also need to establish that ȳ and
β̂ are uncorrelated.

The wide bands, prediction bands, include the uncertainty about future
observations. These bands should capture the majority of the observed
points and will not collapse to a line as the number of observations in-
creases. Rather, the limits approach the true line ±2 standard deviations
(for 95% limits). In smaller samples, the bands do curve since they include
uncertainty about the line itself, but not as markedly as the confidence
bands. Obviously, these limits rely strongly on the assumption of nor-
mally distributed errors with a constant variance, so you should not
use such limits unless you believe that the assumption is a reasonable
approximation for the data at hand.

6.3 Prediction and confidence bands 119

Predicted values, with or without prediction and confidence bands, may
be extracted with the function predict. With no arguments, it just gives
the fitted values:

> predict(lm.velo)
1 2 3 4 5 6 7

1.433841 1.335010 1.275711 1.526084 1.255945 1.214216 1.302066
8 9 10 11 12 13 14

1.341599 1.262534 1.365758 1.244964 1.212020 1.515103 1.429449
15 16 17 18 19 20 21

1.244964 NA 1.190057 1.324029 1.372346 1.451411 1.389916
22 23 24

1.205431 1.291085 1.306459

If you add interval="confidence" or interval="prediction",
then you get the vector of predicted values augmented with limits. The
arguments can be abbreviated:

> predict(lm.velo,int="c")
fit lwr upr

1 1.433841 1.291371 1.576312
2 1.335010 1.240589 1.429431
...
23 1.291085 1.191084 1.391086
24 1.306459 1.210592 1.402326
> predict(lm.velo,int="p")

fit lwr upr
1 1.433841 0.9612137 1.906469
2 1.335010 0.8745815 1.795439
...
23 1.291085 0.8294798 1.752690
24 1.306459 0.8457315 1.767186
Warning message:
In predict.lm(lm.velo, int = "p") :
Predictions on current data refer to _future_ responses

fit denotes the expected values, here identical to the fitted values
(they need not be; read on). lwr and upr are the lower and upper
confidence limits for the expected values, respectively, the prediction
limits for short.velocity for new persons with these values of
blood.glucose. The warning in this case does not really mean that any-
thing is wrong, but there is a pitfall: The limits should not be used for
evaluating the observed data to which the line has been fitted. These will
tend to lie closer to the line for the extreme x values because those data
points are the more influential; that is, the prediction bands curve the
wrong way.

The best way to add prediction and confidence intervals to a scatterplot is
to use the matlines function, which plots the columns of a matrix against
a vector.

120 6. Regression and correlation

There are a few snags to this, however: (a) The blood.glucose values
are in random order; we do not want line segments connecting points
haphazardly along the confidence curves; (b) the prediction limits, partic-
ularly the lower one, extend outside the plot region; and (c) the matlines
command needs to be prevented from cycling through line styles and
colours. Notice that the na.exclude setting (p. 115) prevents us from
also having an observation omitted from the predicted values.

The solution is to predict in a new data frame containing suitable x values
(here blood.glucose) at which to predict. It is done as follows:

> pred.frame <- data.frame(blood.glucose=4:20)
> pp <- predict(lm.velo, int="p", newdata=pred.frame)
> pc <- predict(lm.velo, int="c", newdata=pred.frame)
> plot(blood.glucose,short.velocity,
+ ylim=range(short.velocity, pp, na.rm=T))
> pred.gluc <- pred.frame$blood.glucose
> matlines(pred.gluc, pc, lty=c(1,2,2), col="black")
> matlines(pred.gluc, pp, lty=c(1,3,3), col="black")

What happens is that we create a new data frame in which the variable
blood.glucose contains the values at which we want predictions to be
made. pp and pc are then made to contain the result of predict for the
new data in pred.frame with prediction limits and confidence limits,
respectively.

For the plotting, we first create a standard scatterplot, except that we en-
sure that it has enough room for the prediction limits. This is obtained by
setting ylim=range(short.velocity, pp, na.rm=T). The func-
tion range returns a vector of length 2 containing the minimum and
maximum values of its arguments. We need the na.rm=T argument to
cause missing values to be skipped for the range computation; notice that
short.velocity is included to ensure that points outside the predic-
tion limits are not missed (although in this case there are none). Finally,
the curves are added, using as x-values the blood.glucose used for the
prediction and setting the line types and colours to more sensible values.
The final result is seen in Figure 6.5.

6.4 Correlation

A correlation coefficient is a symmetric, scale-invariant measure of associ-
ation between two random variables. It ranges from −1 to +1, where the
extremes indicate perfect correlation and 0 means no correlation. The sign
is negative when large values of one variable are associated with small
values of the other and positive if both variables tend to be large or small

6.4 Correlation 121

5 10 15 20

0.
8

1.
0

1.
2

1.
4

1.
6

1.
8

2.
0

blood.glucose

sh
or

t.v
el

oc
ity

Figure 6.5. Plot with confidence and prediction bands.

simultaneously. The reader should be warned that there are many incor-
rect uses of correlation coefficients, particularly when they are used in
regression-type settings.

This section describes the computation of parametric and nonparametric
correlation measures in R.

6.4.1 Pearson correlation

The Pearson correlation is rooted in the two-dimensional normal distri-
bution where the theoretical correlation describes the contour ellipses for
the density. If both variables are scaled to have a variance of 1, then a
correlation of zero corresponds to circular contours, whereas the ellipses
become narrower and finally collapse into a line segment as the correlation
approaches ±1.

The empirical correlation coefficient is

r = ∑(xi − x̄)(yi − ȳ)√
∑(xi − x̄)2 ∑(yi − ȳ)2

122 6. Regression and correlation

It can be shown that |r| will be less than 1 unless there is a perfect linear
relation between xi and yi, and for that reason the Pearson correlation is
sometimes called the “linear correlation”.

It is possible to test the significance of the correlation by transforming it to
a t-distributed variable (the formula is not particularly elucidating so we
skip it here), which will be identical with the test obtained from testing the
significance of the slope of either the regression of y on x or vice versa.

The function cor can be used to compute the correlation between two
or more vectors. However, if it is naively applied to the two vectors in
thuesen, the following happens:

> cor(blood.glucose,short.velocity)
Error in cor(blood.glucose, short.velocity) :

missing observations in cov/cor

All the elementary statistical functions in R require either that all values
be nonmissing or that you explicitly state what should be done with the
cases with missing values. For mean, var, sd, and similar one-vector func-
tions, you can give the argument na.rm=T to indicate that missing values
should be removed before the computation. For cor, you can write

> cor(blood.glucose,short.velocity,use="complete.obs")
[1] 0.4167546

The reason that cor does not use na.rm=T like the other functions is
that there are more possibilities than just removing incomplete cases or
failing. If more than two variables are in play, it is also possible to use in-
formation from all nonmissing pairs of measurements (this might result in
a correlation matrix that is not positive definite, though).

You can obtain the entire matrix of correlations between all variables in a
data frame by saying, for instance,

> cor(thuesen,use="complete.obs")
blood.glucose short.velocity

blood.glucose 1.0000000 0.4167546
short.velocity 0.4167546 1.0000000

Of course, this is more interesting when the data frame contains more than
two vectors!

However, the calculations above give no indication of whether the correla-
tion is significantly different from zero. To that end, you need cor.test.
It works simply by specifying the two variables:

6.4 Correlation 123

> cor.test(blood.glucose,short.velocity)

Pearson’s product-moment correlation

data: blood.glucose and short.velocity
t = 2.101, df = 21, p-value = 0.0479
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
0.005496682 0.707429479
sample estimates:

cor
0.4167546

We also get a confidence interval for the true correlation. Notice that it is
exactly the same p-value as in the regression analysis in Section 6.1 and
also that based on the ANOVA table for the regression model, which is
described in Section 7.5.

6.4.2 Spearman’s ρ

As with the one- and two-sample problems, you may be interested in
nonparametric variants. These have the advantage of not depending
on the normal distribution and, indeed, being invariant to monotone
transformations of the coordinates. The main disadvantage is that its in-
terpretation is not quite clear. A popular and simple choice is Spearman’s
rank correlation coefficient ρ. This is obtained quite simply by replac-
ing the observations by their rank and computing the correlation. Under
the null hypothesis of independence between the two variables, the exact
distribution of ρ can be calculated.

Unlike group comparisons where there is essentially one function per
named test, correlation tests are all grouped into cor.test. There is no
special spearman.test function. Instead, the test is considered one of
several possibilities for testing correlations and is therefore specified via
an option to cor.test:

> cor.test(blood.glucose,short.velocity,method="spearman")

Spearman’s rank correlation rho

data: blood.glucose and short.velocity
S = 1380.364, p-value = 0.1392
alternative hypothesis: true rho is not equal to 0
sample estimates:

rho
0.318002

Warning message:

124 6. Regression and correlation

In cor.test.default(blood.glucose, short.velocity, method="spearman"):
Cannot compute exact p-values with ties

6.4.3 Kendall’s τ

The third correlation method that you can choose is Kendall’s τ, which is
based on counting the number of concordant and discordant pairs. A pair
of points is concordant if the difference in the x-coordinate is of the same
sign as the difference in the y-coordinate. For a perfect monotone rela-
tion, either all pairs will be concordant or all pairs will be discordant.
Under independence, there should be as many concordant pairs as there
are discordant ones.

Since there are many pairs of points to check, this is quite a computation-
ally intensive procedure compared with the two others. In small data sets
such as the present one, it does not matter at all, though, and the procedure
is generally usable up to at least 5000 observations.

The τ coefficient has the advantage of a more direct interpretation over
Spearman’s ρ, but apart from that there is little reason to prefer one over
the other.

> cor.test(blood.glucose,short.velocity,method="kendall")

Kendall’s rank correlation tau

data: blood.glucose and short.velocity
z = 1.5604, p-value = 0.1187
alternative hypothesis: true tau is not equal to 0
sample estimates:

tau
0.2350616

Warning message:
In cor.test.default(blood.glucose, short.velocity, method="kendall"):
Cannot compute exact p-value with ties

Notice that neither of the two nonparametric correlations is significant
at the 5% level, which the Pearson correlation is, albeit only borderline
significant.

6.5 Exercises

6.1 With the rmr data set, plot metabolic rate versus body weight. Fit
a linear regression model to the relation. According to the fitted model,

6.5 Exercises 125

what is the predicted metabolic rate for a body weight of 70 kg? Give a
95% confidence interval for the slope of the line.

6.2 In the juul data set, fit a linear regression model for the square root
of the IGF-I concentration versus age to the group of subjects over 25 years
old.

6.3 In the malaria data set, analyze the log-transformed antibody level
versus age. Make a plot of the relation. Do you notice anything peculiar?

6.4 One can generate simulated data from the two-dimensional normal
distribution with a correlation of ρ by the following technique: (a) Gen-
erate X as a normal variate with mean 0 and standard deviation 1; (b)
generate Y with mean ρX and standard deviation

√
1− ρ2. Use this to

create scatterplots of simulated data with a given correlation. Compute
the Spearman and Kendall statistics for some of these data sets.

	Regression and correlation
	Simple linear regression
	Residuals and fitted values
	Prediction and confidence bands
	Correlation
	Pearson correlation
	Spearman's
	Kendall's

	Exercises

