
4
Descriptive statistics and graphics

Before going into the actual statistical modelling and analysis of a data
set, it is often useful to make some simple characterizations of the data in
terms of summary statistics and graphics.

4.1 Summary statistics for a single group

It is easy to calculate simple summary statistics with R. Here is how to
calculate the mean, standard deviation, variance, and median.

> x <- rnorm(50)
> mean(x)
[1] 0.03301363
> sd(x)
[1] 1.069454
> var(x)
[1] 1.143731
> median(x)
[1] -0.08682795

Notice that the example starts with the generation of an artificial data
vector x of 50 normally distributed observations. It is used in examples
throughout this section. When reproducing the examples, you will not get
exactly the same results since your random numbers will differ.

P. Dalgaard, Introductory Statistics with R,
DOI: 10.1007/978-0-387-79054-1_4, © Springer Science+Business Media, LLC 2008

68 4. Descriptive statistics and graphics

Empirical quantiles may be obtained with the function quantile like
this:

> quantile(x)
0% 25% 50% 75% 100%

-2.60741896 -0.54495849 -0.08682795 0.70018536 2.98872414

As you see, by default you get the minimum, the maximum, and the
three quartiles — the 0.25, 0.50, and 0.75 quantiles — so named because
they correspond to a division into four parts. Similarly, we have deciles for
0.1, 0.2, . . . , 0.9, and centiles or percentiles. The difference between the first
and third quartiles is called the interquartile range (IQR) and is sometimes
used as a robust alternative to the standard deviation.

It is also possible to obtain other quantiles; this is done by adding an argu-
ment containing the desired percentage points. This, for example, is how
to get the deciles:

> pvec <- seq(0,1,0.1)
> pvec
[1] 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
> quantile(x,pvec)

0% 10% 20% 30% 40%
-2.60741896 -1.07746896 -0.70409272 -0.46507213 -0.29976610

50% 60% 70% 80% 90%
-0.08682795 0.19436950 0.49060129 0.90165137 1.31873981

100%
2.98872414

Be aware that there are several possible definitions of empirical quantiles.
The one R uses by default is based on a sum polygon where the ith ranking
observation is the (i− 1)/(n− 1) quantile and intermediate quantiles are
obtained by linear interpolation. It sometimes confuses students that in
a sample of 10 there will be 3 observations below the first quartile with
this definition. Other definitions are available via the type argument to
quantile.

If there are missing values in data, things become a bit more complicated.
For illustration, we use the following example.

The data set juul contains variables from an investigation performed by
Anders Juul (Rigshospitalet, Department for Growth and Reproduction)
concerning serum IGF-I (insulin-like growth factor) in a group of healthy
humans, primarily schoolchildren. The data set is contained in the ISwR
package and contains a number of variables, of which we only use igf1
(serum IGF-I) for now, but later in the chapter we also use tanner (Tan-
ner stage of puberty, a classification into five groups based on appearance

4.1 Summary statistics for a single group 69

of primary and secondary sexual characteristics), sex, and menarche
(indicating whether or not a girl has had her first period).

Attempting to calculate the mean of igf1 reveals a problem.

> attach(juul)
> mean(igf1)
[1] NA

R will not skip missing values unless explicitly requested to do so. The
mean of a vector with an unknown value is unknown. However, you can
give the na.rm argument (not available, remove) to request that missing
values be removed:

> mean(igf1,na.rm=T)
[1] 340.168

There is one slightly annoying exception: The length function will not
understand na.rm, so we cannot use it to count the number of nonmissing
measurements of igf1. However, you can use

> sum(!is.na(igf1))
[1] 1018

The construction above uses the fact that if logical values are used in
arithmetic, then TRUE is converted to 1 and FALSE to 0.

A nice summary display of a numeric variable is obtained from the
summary function:

> summary(igf1)
Min. 1st Qu. Median Mean 3rd Qu. Max. NA’s
25.0 202.2 313.5 340.2 462.8 915.0 321.0

The 1st Qu. and 3rd Qu. refer to the empirical quartiles (0.25 and 0.75
quantiles).

In fact, it is possible to summarize an entire data frame with

> summary(juul)
age menarche sex

Min. : 0.170 Min. : 1.000 Min. :1.000
1st Qu.: 9.053 1st Qu.: 1.000 1st Qu.:1.000
Median :12.560 Median : 1.000 Median :2.000
Mean :15.095 Mean : 1.476 Mean :1.534
3rd Qu.:16.855 3rd Qu.: 2.000 3rd Qu.:2.000
Max. :83.000 Max. : 2.000 Max. :2.000
NA’s : 5.000 NA’s :635.000 NA’s :5.000

igf1 tanner testvol
Min. : 25.0 Min. : 1.000 Min. : 1.000
1st Qu.:202.2 1st Qu.: 1.000 1st Qu.: 1.000

70 4. Descriptive statistics and graphics

Median :313.5 Median : 2.000 Median : 3.000
Mean :340.2 Mean : 2.640 Mean : 7.896
3rd Qu.:462.8 3rd Qu.: 5.000 3rd Qu.: 15.000
Max. :915.0 Max. : 5.000 Max. : 30.000
NA’s :321.0 NA’s :240.000 NA’s :859.000

The data set has menarche, sex, and tanner coded as numeric variables
even though they are clearly categorical. This can be mended as follows:

> detach(juul)
> juul$sex <- factor(juul$sex,labels=c("M","F"))
> juul$menarche <- factor(juul$menarche,labels=c("No","Yes"))
> juul$tanner <- factor(juul$tanner,
+ labels=c("I","II","III","IV","V"))
> attach(juul)
> summary(juul)

age menarche sex igf1
Min. : 0.170 No :369 M :621 Min. : 25.0
1st Qu.: 9.053 Yes :335 F :713 1st Qu.:202.2
Median :12.560 NA’s:635 NA’s: 5 Median :313.5
Mean :15.095 Mean :340.2
3rd Qu.:16.855 3rd Qu.:462.8
Max. :83.000 Max. :915.0
NA’s : 5.000 NA’s :321.0
tanner testvol
I :515 Min. : 1.000
II :103 1st Qu.: 1.000
III : 72 Median : 3.000
IV : 81 Mean : 7.896
V :328 3rd Qu.: 15.000
NA’s:240 Max. : 30.000

NA’s :859.000

Notice how the display changes for the factor variables. Note also that
juul was detached and reattached after the modification. This is because
modifying a data frame does not affect any attached version. It was not
strictly necessary to do it here because summary works directly on the
data frame whether attached or not.

In the above, the variables sex, menarche, and tanner were converted
to factors with suitable level names (in the raw data these are represented
using numeric codes). The converted variables were put back into the
data frame juul, replacing the original sex, tanner, and menarche
variables. We might also have used the transform function (or within):

> juul <- transform(juul,
+ sex=factor(sex,labels=c("M","F")),
+ menarche=factor(menarche,labels=c("No","Yes")),
+ tanner=factor(tanner,labels=c("I","II","III","IV","V")))

4.2 Graphical display of distributions 71

Histogram of x

x

F
re

qu
en

cy

−3 −2 −1 0 1 2 3

0
5

10
15

20

Figure 4.1. Histogram.

4.2 Graphical display of distributions

4.2.1 Histograms

You can get a reasonable impression of the shape of a distribution by
drawing a histogram; that is, a count of how many observations fall within
specified divisions (“bins”) of the x-axis (Figure 4.1).

> hist(x)

By specifying breaks=n in the hist call, you get approximately n bars in
the histogram since the algorithm tries to create “pretty” cutpoints. You
can have full control over the interval divisions by specifying breaks as
a vector rather than as a number. Altman (1991, pp. 25–26) contains an
example of accident rates by age group. These are given as a count in age
groups 0–4, 5–9, 10–15, 16, 17, 18–19, 20–24, 25–59, and 60–79 years of age.
The data can be entered as follows:

> mid.age <- c(2.5,7.5,13,16.5,17.5,19,22.5,44.5,70.5)
> acc.count <- c(28,46,58,20,31,64,149,316,103)
> age.acc <- rep(mid.age,acc.count)

72 4. Descriptive statistics and graphics

Histogram of age.acc

age.acc

D
en

si
ty

0 20 40 60 80

0.
00

0.
01

0.
02

0.
03

0.
04

Figure 4.2. Histogram with unequal divisions.

> brk <- c(0,5,10,16,17,18,20,25,60,80)
> hist(age.acc,breaks=brk)

Here the first three lines generate pseudo-data from the table in the book.
For each interval, the relevant number of “observations” is generated with
an age set to the midpoint of the interval; that is, 28 2.5-year-olds, 46 7.5-
year-olds, etc. Then a vector brk of cutpoints is defined (note that the
extremes need to be included) and used as the breaks argument to hist,
yielding Figure 4.2.

Notice that you automatically got the “correct” histogram where the area
of a column is proportional to the number. The y-axis is in density units
(that is, proportion of data per x unit), so that the total area of the his-
togram will be 1. If, for some reason, you want the (misleading) histogram
where the column height is the raw number in each interval, then it can
be specified using freq=T. For equidistant breakpoints, that is the default
(because then you can see how many observations have gone into each
column), but you can set freq=F to get densities displayed. This is really
just a change of scale on the y-axis, but it has the advantage that it be-
comes possible to overlay the histogram with a corresponding theoretical
density function.

4.2 Graphical display of distributions 73

−2 −1 0 1 2 3

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

sort(x)

(1
:n

)/
n

Figure 4.3. Empirical cumulative distribution function.

4.2.2 Empirical cumulative distribution

The empirical cumulative distribution function is defined as the fraction of
data smaller than or equal to x. That is, if x is the kth smallest observation,
then the proportion k/n of the data is smaller than or equal to x (7/10
if x is no. 7 of 10). The empirical cumulative distribution function can be
plotted as follows (see Figure 4.3) where x is the simulated data vector
from Section 4.1:

> n <- length(x)
> plot(sort(x),(1:n)/n,type="s",ylim=c(0,1))

The plotting parameter type="s" gives a step function where (x, y) is the
left end of the steps and ylim is a vector of two elements specifying the
extremes of the y-coordinates on the plot. Recall that c(...) is used to
create vectors.

Some more elaborate displays of empirical cumulative distribution func-
tions are available via the ecdf function. This is also more precise
regarding the mathematical definition of the step function.

74 4. Descriptive statistics and graphics

−2 −1 0 1 2

−
2

−
1

0
1

2
3

Normal Q−Q Plot

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

Figure 4.4. Q–Q plot using qqnorm(x).

4.2.3 Q–Q plots

One purpose of calculating the empirical cumulative distribution function
(c.d.f.) is to see whether data can be assumed normally distributed. For
a better assessment, you might plot the kth smallest observation against
the expected value of the kth smallest observation out of n in a standard
normal distribution. The point is that in this way you would expect to
obtain a straight line if data come from a normal distribution with any
mean and standard deviation.

Creating such a plot is slightly complicated. Fortunately, there is a built-
in function for doing it, qqnorm. The result of using it can be seen in
Figure 4.4. You only have to write

> qqnorm(x)

As the title of the plot indicates, plots of this kind are also called “Q–Q
plots” (quantile versus quantile). Notice that x and y are interchanged rel-
ative to the empirical c.d.f. — the observed values are now drawn along
the y-axis. You should notice that with this convention the distribution has
heavy tails if the outer parts of the curve are steeper than the middle part.

4.3 Summary statistics by groups 75

Some readers will have been taught “probability plots”, which are similar
but have the axes interchanged. It can be argued that the way R draws the
plot is the better one since the theoretical quantiles are known in advance,
while the empirical quantiles depend on data. You would normally choose
to draw fixed values horizontally and variable values vertically.

4.2.4 Boxplots

A “boxplot”, or more descriptively a “box-and-whiskers plot”, is a graph-
ical summary of a distribution. Figure 4.5 shows boxplots for IgM and its
logarithm; see the example on page 23 in Altman (1991).

Here is how a boxplot is drawn in R. The box in the middle indicates
“hinges” (nearly quartiles; see the help page for boxplot.stats) and
median. The lines (“whiskers”) show the largest or smallest observation
that falls within a distance of 1.5 times the box size from the nearest hinge.
If any observations fall farther away, the additional points are considered
“extreme” values and are shown separately.

The practicalities are these:

> par(mfrow=c(1,2))
> boxplot(IgM)
> boxplot(log(IgM))
> par(mfrow=c(1,1))

A layout with two plots side by side is specified using the mfrow graph-
ical parameter. It should be read as “multif rame, rowwise, 1× 2 layout”.
Individual plots are organized in one row and two columns. As you might
guess, there is also an mfcol parameter to plot columnwise. In a 2× 2 lay-
out, the difference is whether plot no. 2 is drawn in the top right or bottom
left corner.

Notice that it is necessary to reset the layout parameter to c(1,1) at the
end unless you also want two plots side by side subsequently.

4.3 Summary statistics by groups

When dealing with grouped data, you will often want to have vari-
ous summary statistics computed within groups; for example, a table of
means and standard deviations. To this end, you can use tapply (see Sec-
tion 1.2.15). Here is an example concerning the folate concentration in red
blood cells according to three types of ventilation during anesthesia (Alt-

76 4. Descriptive statistics and graphics

0
1

2
3

4

−
2

−
1

0
1

Figure 4.5. Boxplots for IgM and log IgM.

man, 1991, p. 208). We return to this example in Section 7.1, which also
contains the explanation of the category names.

> attach(red.cell.folate)
> tapply(folate,ventilation,mean)
N2O+O2,24h N2O+O2,op O2,24h
316.6250 256.4444 278.0000

The tapply call takes the folate variable, splits it according to
ventilation, and computes the mean for each group. In the same way,
standard deviations and the number of observations in the groups can be
computed.

> tapply(folate,ventilation,sd)
N2O+O2,24h N2O+O2,op O2,24h
58.71709 37.12180 33.75648

> tapply(folate,ventilation,length)
N2O+O2,24h N2O+O2,op O2,24h

8 9 5

Try something like this for a nicer display:

4.3 Summary statistics by groups 77

> xbar <- tapply(folate, ventilation, mean)
> s <- tapply(folate, ventilation, sd)
> n <- tapply(folate, ventilation, length)
> cbind(mean=xbar, std.dev=s, n=n)

mean std.dev n
N2O+O2,24h 316.6250 58.71709 8
N2O+O2,op 256.4444 37.12180 9
O2,24h 278.0000 33.75648 5

For the juul data, we might want the mean igf1 by tanner group, but
of course we run into the problem of missing values again:

> tapply(igf1, tanner, mean)
I II III IV V
NA NA NA NA NA

We need to get tapply to pass na.rm=T as a parameter to mean to make
it exclude the missing values. This is achieved simply by passing it as an
additional argument to tapply.

> tapply(igf1, tanner, mean, na.rm=T)
I II III IV V

207.4727 352.6714 483.2222 513.0172 465.3344

The functions aggregate and by are variations on the same topic. The
former is very much like tapply, except that it works on an entire data
frame and presents its results as a data frame. This is useful for presenting
many variables at once; e.g.,

> aggregate(juul[c("age","igf1")],
+ list(sex=juul$sex), mean, na.rm=T)
sex age igf1

1 M 15.38436 310.8866
2 F 14.84363 368.1006

Notice that the grouping argument in this case must be a list, even when
it is one-dimensional, and that the names of the list elements get used
as column names in the output. Notice also that since the function is ap-
plied to all columns of the data frame, you may have to choose a subset of
columns, in this case the numeric variables.

The indexing variable is not necessarily part of the data frame that is being
aggregated, and there is no attempt at “smart evaluation” as there is in
subset, so you have to spell out juul$sex. You can also use the fact
that data frames are list-like and say

> aggregate(juul[c("age","igf1")], juul["sex"], mean, na.rm=T)
sex age igf1

1 M 15.38436 310.8866
2 F 14.84363 368.1006

78 4. Descriptive statistics and graphics

(the “trick” being that indexing a data frame with single brackets yields a
data frame as the result).

The by function is again similar, but different. The difference is that the
function now takes an entire (sub-) data frame as its argument, so that
you can for instance summarize the Juul data by sex as follows:

> by(juul, juul["sex"], summary)
sex: M

age menarche sex igf1 tanner
Min. : 0.17 No : 0 M:621 Min. : 29.0 I :291
1st Qu.: 8.85 Yes : 0 F: 0 1st Qu.:176.0 II : 55
Median :12.38 NA’s:621 Median :280.0 III : 34
Mean :15.38 Mean :310.9 IV : 41
3rd Qu.:16.77 3rd Qu.:430.2 V :124
Max. :83.00 Max. :915.0 NA’s: 76

NA’s :145.0
testvol

Min. : 1.000
1st Qu.: 1.000
Median : 3.000
Mean : 7.896
3rd Qu.: 15.000
Max. : 30.000
NA’s :141.000

sex: F

age menarche sex igf1 tanner
Min. : 0.25 No :369 M: 0 Min. : 25.0 I :224
1st Qu.: 9.30 Yes :335 F:713 1st Qu.:233.0 II : 48
Median :12.80 NA’s: 9 Median :352.0 III : 38
Mean :14.84 Mean :368.1 IV : 40
3rd Qu.:16.93 3rd Qu.:483.0 V :204
Max. :75.12 Max. :914.0 NA’s:159

NA’s :176.0
testvol

Min. : NA
1st Qu.: NA
Median : NA
Mean :NaN
3rd Qu.: NA
Max. : NA
NA’s :713

The result of the call to by is actually a list of objects that has has been
wrapped as an object of class "by" and printed using a print method for
that class. You can assign the result to a variable and access the result for
each subgroup using standard list indexing.

The same technique can also be used to generate more elaborate statistical
analyses for each group.

4.4 Graphics for grouped data 79

4.4 Graphics for grouped data

In dealing with grouped data, it is important to be able not only to create
plots for each group but also to compare the plots between groups. In
this section we review some general graphical techniques that allow us to
display similar plots for several groups on the same page. Some functions
have specific features for displaying data from more than one group.

4.4.1 Histograms

We have already seen in Section 4.2.1 how to obtain a histogram simply by
typing hist(x), where x is the variable containing the data. R will then
choose a number of groups so that a reasonable number of data points fall
in each bin while at the same time ensuring that the cutpoints are “pretty”
numbers on the x-axis.

It is also mentioned there that an alternative number of intervals can be
set via the argument breaks, although you do not always get exactly
the number you asked for since R reserves the right to choose “pretty”
column boundaries. For instance, multiples of 0.5 MJ are chosen in the
following example using the energy data introduced in Section 1.2.14 on
the 24-hour energy expenditure for two groups of women.

In this example, some further techniques of general use are illustrated.
The end result is seen in Figure 4.6, but first we must fetch the data:

> attach(energy)
> expend.lean <- expend[stature=="lean"]
> expend.obese <- expend[stature=="obese"]

Notice how we separate the expend vector in the energy data frame into
two vectors according to the value of the factor stature.

Now we do the actual plotting:

> par(mfrow=c(2,1))
> hist(expend.lean,breaks=10,xlim=c(5,13),ylim=c(0,4),col="white")
> hist(expend.obese,breaks=10,xlim=c(5,13),ylim=c(0,4),col="grey")
> par(mfrow=c(1,1))

We set par(mfrow=c(2,1)) to get the two histograms in the same plot.
In the hist commands themselves, we used the breaks argument as
already mentioned and col, whose effect should be rather obvious. We
also used xlim and ylim to get the same x and y axes in the two plots.
However, it is a coincidence that the columns have the same width.

80 4. Descriptive statistics and graphics

Histogram of expend.lean

expend.lean

F
re

qu
en

cy

6 8 10 12

0
1

2
3

4

Histogram of expend.obese

expend.obese

F
re

qu
en

cy

6 8 10 12

0
1

2
3

4

Figure 4.6. Histograms with refinements.

As a practical remark, when working with plots like the above, where
more than a single line of code is required, it gets cumbersome to use com-
mand recall in the R console window every time something needs to be
changed. A better idea may be to start up a script window or a plain-text
editor and cut and paste entire blocks of code from there (see Section 2.1.3).
You might also take it as an incentive to start writing simple functions.

4.4.2 Parallel boxplots

You might want a set of boxplots from several groups in the same frame.
boxplot can handle this both when data are given in the form of sepa-
rate vectors from each group and when data are in one long vector and
a parallel vector or factor defines the grouping. To illustrate the latter, we
use the energy data introduced in Section 1.2.14.

Figure 4.7 is created as follows:

> boxplot(expend ~ stature)

4.4 Graphics for grouped data 81

lean obese

6
7

8
9

10
11

12
13

Figure 4.7. Parallel boxplot.

We could also have based the plot on the separate vectors expend.lean
and expend.obese. In that case, a syntax is used that specifies the
vectors as two separate arguments:

> boxplot(expend.lean,expend.obese)

The plot is not shown here, but the only difference lies in the labelling
of the x-axis. There is also a third form, where data are given as a single
argument that is a list of vectors.

The bottom plot has been made using the complete expend vector and
the grouping variable fstature.

Notation of the type y ~ x should be read “y described using x”. This is
the first example we see of a model formula. We see many more examples
of model formulas later on.

4.4.3 Stripcharts

The boxplots made in the preceding section show a “Laurel & Hardy”
effect that is not really well founded in the data. The cause is that the in-

82 4. Descriptive statistics and graphics

6 7 8 9 10 11 12 13

le
an

ob
es

e

6 7 8 9 10 11 12 13

le
an

ob
es

e

6 7 8 9 10 11 12 13

le
an

ob
es

e

6 7 8 9 10 11 12 13

le
an

ob
es

e

Figure 4.8. Stripcharts in four variations.

terquartile range is quite a bit larger in one group than in the other, making
the boxplot appear “fatter”. With groups as small as these, the quartiles
will be quite inaccurately determined, and it may therefore be more desir-
able to plot the raw data. If you were to do this by hand, you might draw a
dot diagram where every number is marked with a dot on a number line.
R’s automated variant of this is the function stripchart. Four variants
of stripcharts are shown in Figure 4.8.

The four plots were created as follows:

> opar <- par(mfrow=c(2,2), mex=0.8, mar=c(3,3,2,1)+.1)
> stripchart(expend ~ stature)
> stripchart(expend ~ stature, method="stack")
> stripchart(expend ~ stature, method="jitter")
> stripchart(expend ~ stature, method="jitter", jitter=.03)
> par(opar)

Notice that a little par magic was used to reduce the spacing between the
four plots. The mex setting reduces the interline distance, and mar reduces
the number of lines that surround the plot region. This can be done for
these plots since they have neither main title, subtitle, nor x and y labels.

4.5 Tables 83

All the original values of the changed settings can be stored in a variable
(here opar) and reestablished with par(opar).

The first plot is a standard stripchart, where the points are simply plotted
on a line. The problem with this is that some points can become invisible
because they are overplotted. This is why there is a method argument,
which can be set to either "stack" or "jitter".

The former method stacks points with identical values, but it only does
so if data are completely identical, so in the upper right plot, it is only the
two replicates of 7.48 that get stacked, whereas 8.08, 8.09, and 8.11 are still
plotted in almost the same spot.

The “jitter” method offsets all points a random amount vertically. The
standard jittering on plot no. 3 (bottom left) is a bit large; it may be prefer-
able to make it clearer that data are placed along a horizontal line. For that
purpose, you can set jitter lower than the default of 0.1, which is done
in the fourth plot.

In this example we have not bothered to specify data in several forms as
we did for boxplot but used expend~stature throughout. We could
also have written

stripchart(list(lean=expend.lean, obese=expend.obese))

but stripchart(expend.lean, expend.obese) cannot be used.

4.5 Tables

Categorical data are usually described in the form of tables. This section
outlines how you can create tables from your data and calculate relative
frequencies.

4.5.1 Generating tables

We deal mainly with two-way tables. In the first example, we enter a table
directly, as is required for tables taken from a book or a journal article.

A two-way table can be entered as a matrix object (Section 1.2.7). Altman
(1991, p. 242) contains an example on caffeine consumption by marital
status among women giving birth. That table may be input as follows:

84 4. Descriptive statistics and graphics

> caff.marital <- matrix(c(652,1537,598,242,36,46,38,21,218
+ ,327,106,67),
+ nrow=3,byrow=T)
> caff.marital

[,1] [,2] [,3] [,4]
[1,] 652 1537 598 242
[2,] 36 46 38 21
[3,] 218 327 106 67

The matrix function needs an argument containing the table values as
a single vector and also the number of rows in the argument nrow. By
default, the values are entered columnwise; if rowwise entry is desired,
then you need to specify byrow=T.

You might also give the number of columns instead of rows using ncol.
If exactly one of ncol and nrow is given, R will compute the other one so
that it fits the number of values. If both ncol and nrow are given and it
does not fit the number of values, the values will be “recycled”, which in
some (other!) circumstances can be useful.

To get readable printouts, you can add row and column names to the
matrices.

> colnames(caff.marital) <- c("0","1-150","151-300",">300")
> rownames(caff.marital) <- c("Married","Prev.married","Single")
> caff.marital

0 1-150 151-300 >300
Married 652 1537 598 242
Prev.married 36 46 38 21
Single 218 327 106 67

Furthermore, you can name the row and column names as follows. This
is particularly useful if you are generating many tables with similar
classification criteria.

> names(dimnames(caff.marital)) <- c("marital","consumption")
> caff.marital

consumption
marital 0 1-150 151-300 >300
Married 652 1537 598 242
Prev.married 36 46 38 21
Single 218 327 106 67

Actually, I glossed over something. Tables are not completely equivalent
to matrices. There is a "table" class for which special methods exist,
and you can convert to that class using as.table(caff.marital). The
table function below returns an object of class "table".

4.5 Tables 85

For most elementary purposes, you can use matrices where two-dimensio-
nal tables are expected. One important case where you do need as.table
is when converting a table to a data frame of counts:

> as.data.frame(as.table(caff.marital))
marital consumption Freq

1 Married 0 652
2 Prev.married 0 36
3 Single 0 218
4 Married 1-150 1537
5 Prev.married 1-150 46
6 Single 1-150 327
7 Married 151-300 598
8 Prev.married 151-300 38
9 Single 151-300 106
10 Married >300 242
11 Prev.married >300 21
12 Single >300 67

In practice, the more frequent case is that you have a data frame with
variables for each person in a data set. In that case, you should do the
tabulation with table, xtabs, or ftable. These functions will gener-
ally work for tabulating numeric vectors as well as factor variables, but
the latter will have their levels used for row and column names automati-
cally. Hence, it is recommended to convert numerically coded categorical
data into factors. The table function is the oldest and most basic of the
three. The two others offer formula-based interfaces and better printing of
multiway tables.

The data set juul was introduced on p. 68. Here we look at some other
variables in that data set, namely sex and menarche; the latter indicates
whether or not a girl has had her first period. We can generate some simple
tables as follows:

> table(sex)
sex
M F

621 713
> table(sex,menarche)

menarche
sex No Yes
M 0 0
F 369 335

> table(menarche,tanner)
tanner

menarche I II III IV V
No 221 43 32 14 2
Yes 1 1 5 26 202

86 4. Descriptive statistics and graphics

Of course, the table of menarche versus sex is just a check on internal con-
sistency of the data. The table of menarche versus Tanner stage of puberty
is more interesting.

There are also tables with more than two sides, but not many simple sta-
tistical functions use them. Briefly, to tabulate such data, just write, for
example, table(factor1,factor2,factor3). To input a table of cell
counts, use the array function (an analogue of matrix).

The xtabs function is quite similar to table except that it uses a model
formula interface. This most often uses a one-sided formula where you
just list the classification variables separated by +.

> xtabs(~ tanner + sex, data=juul)
sex

tanner M F
I 291 224
II 55 48
III 34 38
IV 41 40
V 124 204

Notice how the interface allows you to refer to variables in a data frame
without attaching it. The empty left-hand side can be replaced by a vector
of counts in order to handle pretabulated data.

The formatting of multiway tables from table or xtabs is not really nice;
e.g.,

> xtabs(~ dgn + diab + coma, data=stroke)
, , coma = No

diab
dgn No Yes
ICH 53 6
ID 143 21
INF 411 64
SAH 38 0

, , coma = Yes

diab
dgn No Yes
ICH 19 1
ID 23 3
INF 23 2
SAH 9 0

As you add dimensions, you get more of these two-sided subtables and
it becomes rather easy to lose track. This is where ftable comes in. This
function creates “flat” tables; e.g., like this:

4.5 Tables 87

> ftable(coma + diab ~ dgn, data=stroke)
coma No Yes
diab No Yes No Yes

dgn
ICH 53 6 19 1
ID 143 21 23 3
INF 411 64 23 2
SAH 38 0 9 0

That is, variables on the left-hand side tabulate across the page and those
on the right tabulate downwards. ftable works on raw data as shown,
but its data argument can also be a table as generated by one of the other
functions.

Like any matrix, a table can be transposed with the t function:

> t(caff.marital)
marital

consumption Married Prev.married Single
0 652 36 218
1-150 1537 46 327
151-300 598 38 106
>300 242 21 67

For multiway tables, exchanging indices (generalized transposition) is
done by aperm.

4.5.2 Marginal tables and relative frequency

It is often desired to compute marginal tables; that is, the sums of the
counts along one or the other dimension of a table. Due to missing val-
ues, this might not coincide with just tabulating a single factor. This is
done fairly easily using the apply function (Section 1.2.15), but there is
also a simplified version called margin.table, described below.

First, we need to generate the table itself:

> tanner.sex <- table(tanner,sex)

(tanner.sex is an arbitrarily chosen name for the crosstable.)

> tanner.sex
sex

tanner M F
I 291 224
II 55 48
III 34 38
IV 41 40
V 124 204

88 4. Descriptive statistics and graphics

Then we compute the marginal tables:

> margin.table(tanner.sex,1)
tanner
I II III IV V

515 103 72 81 328
> margin.table(tanner.sex,2)
sex
M F

545 554

The second argument to margin.table is the number of the marginal
index: 1 and 2 give row and column totals, respectively.

Relative frequencies in a table are generally expressed as proportions of
the row or column totals. Tables of relative frequencies can be constructed
using prop.table as follows:

> prop.table(tanner.sex,1)
sex

tanner M F
I 0.5650485 0.4349515
II 0.5339806 0.4660194
III 0.4722222 0.5277778
IV 0.5061728 0.4938272
V 0.3780488 0.6219512

Note that the rows (1st index) sum to 1. If a table of percentages is desired,
just multiply the entire table by 100.

prop.table cannot be used to express the numbers relative to the grand
total of the table, but you can of course always write

> tanner.sex/sum(tanner.sex)
sex

tanner M F
I 0.26478617 0.20382166
II 0.05004550 0.04367607
III 0.03093722 0.03457689
IV 0.03730664 0.03639672
V 0.11282985 0.18562329

The functions margin.table and prop.table also work on multiway
tables — the margin argument can be a vector if the relevant margin has
two or more dimensions.

4.6 Graphical display of tables 89

0 1−150 151−300 >300

0
50

0
10

00
15

00

Figure 4.9. Simple barplot of total caffeine consumption.

4.6 Graphical display of tables

For presentation purposes, it may be desirable to display a graph rather
than a table of counts or percentages. In this section, the main methods for
doing this are described.

4.6.1 Barplots

Barplots are made using barplot. This function takes an argument,
which can be a vector or a matrix. The simplest variant goes as follows
(Figure 4.9):

> total.caff <- margin.table(caff.marital,2)
> total.caff
consumption

0 1-150 151-300 >300
906 1910 742 330

> barplot(total.caff, col="white")

90 4. Descriptive statistics and graphics

0 1−150 >300

0
50

0
15

00

Married Single

0
10

00
20

00
30

00

Married Single

0
40

0
80

0
14

00

Married Single

0.
0

0.
2

0.
4

Figure 4.10. Four variants of barplot on a two-way table.

Without the col="white" argument, the plot comes out in colour, but
this is not suitable for a black and white book illustration.

If the argument is a matrix, then barplot creates by default a “stacked
barplot”, where the columns are partitioned according to the contri-
butions from different rows of the table. If you want to place the
row contributions beside each other instead, you can use the argu-
ment beside=T. A series of variants is found in Figure 4.10, which is
constructed as follows:

> par(mfrow=c(2,2))
> barplot(caff.marital, col="white")
> barplot(t(caff.marital), col="white")
> barplot(t(caff.marital), col="white", beside=T)
> barplot(prop.table(t(caff.marital),2), col="white", beside=T)
> par(mfrow=c(1,1))

In the last three plots, we switched rows and columns with the trans-
position function t. In the very last one, the columns are expressed as
proportions of the total number in the group. Thus, information is lost on
the relative sizes of the marital status groups, but the group of previously
married women (recall that the data set deals with women giving birth)

4.6 Graphical display of tables 91

Married Prev.married Single

0
1−150
151−300
>300

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Figure 4.11. Bar plot with specified colours and legend.

is so small that it otherwise becomes almost impossible to compare their
caffeine consumption profile with those of the other groups.

As usual, there are a multitude of ways to “prettify” the plots. Here is one
possibility (Figure 4.11):

> barplot(prop.table(t(caff.marital),2),beside=T,
+ legend.text=colnames(caff.marital),
+ col=c("white","grey80","grey50","black"))

Notice that the legend overlaps the top of one of the columns. R is not
designed to be able to find a clear area in which to place the legend.
However, you can get full control of the legend’s position if you insert
it explicitly with the legend function. For that purpose, it will be help-
ful to use locator(), which allows you to click a mouse button over the
plot and have the coordinates returned. See p. 209 for more about this.

4.6.2 Dotcharts

The Cleveland dotcharts, named after William S. Cleveland (1994), can be
employed to study a table from both sides at the same time. They contain

92 4. Descriptive statistics and graphics

0
1−150
151−300
>300

0
1−150
151−300
>300

0
1−150
151−300
>300

Married

Prev.married

Single

0 500 1000 1500

Figure 4.12. Dotchart of caffeine consumption.

the same information as barplots with beside=T but give quite a differ-
ent visual impression. We content ourselves with a single example here
(Figure 4.12):

> dotchart(t(caff.marital), lcolor="black")

(The line colour was changed from the default "gray" because it tends to
be hard to see in print.)

4.6.3 Piecharts

Piecharts are traditionally frowned upon by statisticians because they are
so often used to make trivial data look impressive and are difficult to
decode for the human mind. They very rarely contain information that
would not have been at least as effectively conveyed in a barplot. Once
in a while they are useful, though, and it is no problem to get R to draw
them. Here is a way to represent the table of caffeine consumption versus
marital status (Figure 4.13; see Section 4.4.3 for an explanation of the “par
magic” used to reduce the space between the subplots):

4.7 Exercises 93

0

1−150

151−300

>300

Married

0
1−150

151−300

>300

Previously married

0

1−150

151−300

>300

Single

Figure 4.13. Pie charts of caffeine consumption according to marital status.

> opar <- par(mfrow=c(2,2),mex=0.8, mar=c(1,1,2,1))
> slices <- c("white","grey80","grey50","black")
> pie(caff.marital["Married",], main="Married", col=slices)
> pie(caff.marital["Prev.married",],
+ main="Previously married", col=slices)
> pie(caff.marital["Single",], main="Single", col=slices)
> par(opar)

The col argument sets the colour of the pie slices.

There are more possibilities with piechart. The help page for pie con-
tains an illustrative example concerning the distribution of pie sales (!) by
pie type.

4.7 Exercises

4.1 Explore the possibilities for different kinds of line and point plots.
Vary the plot symbol, line type, line width, and colour.

94 4. Descriptive statistics and graphics

4.2 If you make a plot like plot(rnorm(10),type="o") with over-
plotted lines and points, the lines will be visible inside the plotting
symbols. How can this be avoided?

4.3 How can you overlay two qqnorm plots in the same plotting area?
What goes wrong if you try to generate the plot using type="l", and
how do you avoid that?

4.4 Plot a histogram for the react data set. Since these data are highly
discretized, the histogram will be biased. Why? You may want to try
truehist from the MASS package as a replacement.

4.5 Generate a sample vector z of five random numbers from the uni-
form distribution, and plot quantile(z,x) as a function of x (use
curve, for instance).

	Descriptive statistics and graphics
	Summary statistics for a single group
	Graphical display of distributions
	Histograms
	Empirical cumulative distribution
	Q--Q plots
	Boxplots

	Summary statistics by groups
	Graphics for grouped data
	Histograms
	Parallel boxplots
	Stripcharts

	Tables
	Generating tables
	Marginal tables and relative frequency

	Graphical display of tables
	Barplots
	Dotcharts
	Piecharts

	Exercises

