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Probability and distributions

The concepts of randomness and probability are central to statistics. It
is an empirical fact that most experiments and investigations are not
perfectly reproducible. The degree of irreproducibility may vary: Some
experiments in physics may yield data that are accurate to many decimal
places, whereas data on biological systems are typically much less reli-
able. However, the view of data as something coming from a statistical
distribution is vital to understanding statistical methods. In this section,
we outline the basic ideas of probability and the functions that R has for
random sampling and handling of theoretical distributions.

3.1 Random sampling

Much of the earliest work in probability theory was about games and gam-
bling issues, based on symmetry considerations. The basic notion then is
that of a random sample: dealing from a well-shuffled pack of cards or
picking numbered balls from a well-stirred urn.

In R, you can simulate these situations with the sample function. If you
want to pick five numbers at random from the set 1:40, then you can
write

> sample(1:40,5)
[1] 4 30 28 40 13
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The first argument (x) is a vector of values to be sampled and the second
(size) is the sample size. Actually, sample(40,5) would suffice since
a single number is interpreted to represent the length of a sequence of
integers.

Notice that the default behaviour of sample is sampling without replace-
ment. That is, the samples will not contain the same number twice, and
size obviously cannot be bigger than the length of the vector to be sam-
pled. If you want sampling with replacement, then you need to add the
argument replace=TRUE.

Sampling with replacement is suitable for modelling coin tosses or throws
of a die. So, for instance, to simulate 10 coin tosses we could write

> sample(c("H","T"), 10, replace=T)
[1] "T" "T" "T" "T" "T" "H" "H" "T" "H" "T"

In fair coin-tossing, the probability of heads should equal the probability
of tails, but the idea of a random event is not restricted to symmetric cases.
It could be equally well applied to other cases, such as the successful out-
come of a surgical procedure. Hopefully, there would be a better than 50%
chance of this. You can simulate data with nonequal probabilities for the
outcomes (say, a 90% chance of success) by using the prob argument to
sample, as in

> sample(c("succ", "fail"), 10, replace=T, prob=c(0.9, 0.1))
[1] "succ" "succ" "succ" "succ" "succ" "succ" "succ" "succ"
[9] "succ" "succ"

This may not be the best way to generate such a sample, though. See the
later discussion of the binomial distribution.

3.2 Probability calculations and combinatorics

Let us return to the case of sampling without replacement, specifically
sample(1:40, 5). The probability of obtaining a given number as the
first one of the sample should be 1/40, the next one 1/39, and so forth. The
probability of a given sample should then be 1/(40× 39× 38× 37× 36).
In R, use the prod function, which calculates the product of a vector of
numbers

> 1/prod(40:36)
[1] 1.266449e-08



3.3 Discrete distributions 57

However, notice that this is the probability of getting given numbers in a
given order. If this were a Lotto-like game, then you would rather be inter-
ested in the probability of guessing a given set of five numbers correctly.
Thus you need also to include the cases that give the same numbers in
a different order. Since obviously the probability of each such case is go-
ing to be the same, all we need to do is to figure out how many such cases
there are and multiply by that. There are five possibilities for the first num-
ber, and for each of these there are four possibilities for the second, and so
forth; that is, the number is 5× 4× 3× 2× 1. This number is also written
as 5! (5 factorial). So the probability of a “winning Lotto coupon” would be

> prod(5:1)/prod(40:36)
[1] 1.519738e-06

There is another way of arriving at the same result. Notice that since the
actual set of numbers is immaterial, all sets of five numbers must have the
same probability. So all we need to do is to calculate the number of ways
to choose 5 numbers out of 40. This is denoted(

40
5

)
=

40!
5!35!

= 658008

In R, the choose function can be used to calculate this number, and the
probability is thus

> 1/choose(40,5)
[1] 1.519738e-06

3.3 Discrete distributions

When looking at independent replications of a binary experiment, you
would not usually be interested in whether each case is a success or a fail-
ure but rather in the total number of successes (or failures). Obviously,
this number is random since it depends on the individual random out-
comes, and it is consequently called a random variable. In this case it is a
discrete-valued random variable that can take values 0, 1, . . . , n, where n is
the number of replications. Continuous random variables are encountered
later.

A random variable X has a probability distribution that can be described
using point probabilities f (x) = P(X = x) or the cumulative distribution
function F(x) = P(X ≤ x). In the case at hand, the distribution can be
worked out as having the point probabilities

f (x) =
(

n
x

)
px(1− p)n−x
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This is known as the binomial distribution, and the (n
x) are known as bino-

mial coefficients. The parameter p is the probability of a successful outcome
in an individual trial. A graph of the point probabilities of the binomial
distribution appears in Figure 3.2 ahead.

We delay describing the R functions related to the binomial distribution
until we have discussed continuous distributions so that we can present
the conventions in a unified manner.

Many other distributions can be derived from simple probability models.
For instance, the geometric distribution is similar to the binomial distri-
bution but records the number of failures that occur before the first
success.

3.4 Continuous distributions

Some data arise from measurements on an essentially continuous scale,
for instance temperature, concentrations, etc. In practice, they will be
recorded to a finite precision, but it is useful to disregard this in the
modelling. Such measurements will usually have a component of random
variation, which makes them less than perfectly reproducible. However,
these random fluctuations will tend to follow patterns; typically they will
cluster around a central value, with large deviations being more rare than
smaller ones.

In order to model continuous data, we need to define random variables
that can obtain the value of any real number. Because there are infinitely
many numbers infinitely close, the probability of any particular value will
be zero, so there is no such thing as a point probability as for discrete-
valued random variables. Instead we have the concept of a density. This is
the infinitesimal probability of hitting a small region around x divided by
the size of the region. The cumulative distribution function can be defined
as before, and we have the relation

F(x) =
∫ x

−∞
f (x) dx

There are a number of standard distributions that come up in statistical
theory and are available in R. It makes little sense to describe them in
detail here except for a couple of examples.

The uniform distribution has a constant density over a specified interval (by
default [0, 1]).
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The normal distribution (also known as the Gaussian distribution) has
density

f (x) =
1√
2πσ

exp
(
− (x− µ)2

2σ2

)
depending on its mean µ and standard deviation σ. The normal distribu-
tion has a characteristic bell shape (Figure 3.1), and modifying µ and σ
simply translates and widens the distribution. It is a standard building
block in statistical models, where it is commonly used to describe error
variation. It also comes up as an approximating distribution in several
contexts; for instance, the binomial distribution for large sample sizes can
be well approximated by a suitably scaled normal distribution.

3.5 The built-in distributions in R

The standard distributions that turn up in connection with model building
and statistical tests have been built into R, and it can therefore completely
replace traditional statistical tables. Here we look only at the normal dis-
tribution and the binomial distribution, but other distributions follow
exactly the same pattern.

Four fundamental items can be calculated for a statistical distribution:

• Density or point probability

• Cumulated probability, distribution function

• Quantiles

• Pseudo-random numbers

For all distributions implemented in R, there is a function for each of the
four items listed above. For example, for the normal distribution, these are
named dnorm, pnorm, qnorm, and rnorm (density, probability, quantile,
and random, respectively).

3.5.1 Densities

The density for a continuous distribution is a measure of the relative prob-
ability of “getting a value close to x”. The probability of getting a value in
a particular interval is the area under the corresponding part of the curve.
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For discrete distributions, the term “density” is used for the point proba-
bility — the probability of getting exactly the value x. Technically, this is
correct: It is a density with respect to counting measure.
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Figure 3.1. Density of normal distribution.

The density function is likely the one of the four function types that is least
used in practice, but if for instance it is desired to draw the well-known
bell curve of the normal distribution, then it can be done like this:

> x <- seq(-4,4,0.1)
> plot(x,dnorm(x),type="l")

(Notice that this is the letter ‘l’, not the digit ‘1’).

The function seq (see p. 15) is used to generate equidistant values, here
from −4 to 4 in steps of 0.1; that is, (−4.0,−3.9,−3.8, . . . , 3.9, 4.0). The use
of type="l" as an argument to plot causes the function to draw lines
between the points rather than plotting the points themselves.

An alternative way of creating the plot is to use curve as follows:

> curve(dnorm(x), from=-4, to=4)
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This is often a more convenient way of making graphs, but it does require
that the y-values can be expressed as a simple functional expression in x.

For discrete distributions, where variables can take on only distinct values,
it is preferable to draw a pin diagram, here for the binomial distribution
with n = 50 and p = 0.33 (Figure 3.2):

> x <- 0:50
> plot(x,dbinom(x,size=50,prob=.33),type="h")
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Figure 3.2. Point probabilities in binom(50, 0.33).

Notice that there are three arguments to the “d-function” this time. In
addition to x, you have to specify the number of trials n and the proba-
bility parameter p. The distribution drawn corresponds to, for example,
the number of 5s or 6s in 50 throws of a symmetrical die. Actually, dnorm
also takes more than one argument, namely the mean and standard devia-
tion, but they have default values of 0 and 1, respectively, since most often
it is the standard normal distribution that is requested.

The form 0:50 is a short version of seq(0,50,1): the whole numbers
from 0 to 50 (see p. 15). It is type="h" (as in histogram-like) that causes
the pins to be drawn.
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3.5.2 Cumulative distribution functions

The cumulative distribution function describes the probability of “hitting”
x or less in a given distribution. The corresponding R functions begin with
a ‘p’ (for probability) by convention.

Just as you can plot densities, you can of course also plot cumulative dis-
tribution functions, but that is usually not very informative. More often,
actual numbers are desired. Say that it is known that some biochemical
measure in healthy individuals is well described by a normal distribution
with a mean of 132 and a standard deviation of 13. Then, if a patient has a
value of 160, there is

> 1-pnorm(160,mean=132,sd=13)
[1] 0.01562612

or only about 1.5% of the general population, that has that value or higher.
The function pnorm returns the probability of getting a value smaller
than its first argument in a normal distribution with the given mean and
standard deviation.

Another typical application occurs in connection with statistical tests.
Consider a simple sign test: Twenty patients are given two treatments each
(blindly and in randomized order) and then asked whether treatment A or
B worked better. It turned out that 16 patients liked A better. The question
is then whether this can be taken as sufficient evidence that A actually is
the better treatment or whether the outcome might as well have happened
by chance even if the treatments were equally good. If there was no dif-
ference between the two treatments, then we would expect the number of
people favouring treatment A to be binomially distributed with p = 0.5
and n = 20. How (im)probable would it then be to obtain what we have
observed? As in the normal distribution, we need a tail probability, and
the immediate guess might be to look at

> pbinom(16,size=20,prob=.5)
[1] 0.9987116

and subtract it from 1 to get the upper tail — but this would be an error!
What we need is the probability of the observed or more extreme, and pbinom
is giving the probability of 16 or less. We need to use “15 or less” instead.

> 1-pbinom(15,size=20,prob=.5)
[1] 0.005908966

If you want a two-tailed test because you have no prior idea about which
treatment is better, then you will have to add the probability of obtaining
equally extreme results in the opposite direction. In the present case, that
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means the probability that four or fewer people prefer A, giving a total
probability of

> 1-pbinom(15,20,.5)+pbinom(4,20,.5)
[1] 0.01181793

(which is obviously exactly twice the one-tailed probability).

As can be seen from the last command, it is not strictly necessary to use
the size and prob keywords as long as the arguments are given in the
right order (positional matching; see Section 1.2.2).

It is quite confusing to keep track of whether or not the observation itself
needs to be counted. Fortunately, the function binom.test keeps track
of such formalities and performs the correct binomial test. This is further
discussed in Chapter 8.

3.5.3 Quantiles

The quantile function is the inverse of the cumulative distribution func-
tion. The p-quantile is the value with the property that there is probability
p of getting a value less than or equal to it. The median is by definition the
50% quantile.

Some details concerning the definition in the case of discontinuous distri-
butions are glossed over here. You can fairly easily deduce the behaviour
by experimenting with the R functions.

Tables of statistical distributions are almost always given in terms of quan-
tiles. For a fixed set of probabilities, the table shows the boundary that a
test statistic must cross in order to be considered significant at that level.
This is purely for operational reasons; it is almost superfluous when you
have the option of computing p exactly.

Theoretical quantiles are commonly used for the calculation of confi-
dence intervals and for power calculations in connection with designing
and dimensioning experiments (see Chapter 9). A simple example of a
confidence interval can be given here (see also Chapter 5).

If we have n normally distributed observations with the same mean µ
and standard deviation σ, then it is known that the average x̄ is normally
distributed around µ with standard deviation σ/

√
n. A 95% confidence

interval for µ can be obtained as

x̄ + σ/
√

n× N0.025 ≤ µ ≤ x̄ + σ/
√

n× N0.975

where N0.025 is the 2.5% quantile in the normal distribution. If σ = 12 and
we have measured n = 5 persons and found an average of x̄ = 83, then
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we can compute the relevant quantities as (“sem” means standard error of
the mean)

> xbar <- 83
> sigma <- 12
> n <- 5
> sem <- sigma/sqrt(n)
> sem
[1] 5.366563
> xbar + sem * qnorm(0.025)
[1] 72.48173
> xbar + sem * qnorm(0.975)
[1] 93.51827

and thus find a 95% confidence interval for µ going from 72.48 to 93.52.
(Notice that this is based on the assumption that σ is known. This is some-
times reasonable in process control applications. The more common case
of estimating σ from the data leads to confidence intervals based on the t
distribution and is discussed in Chapter 5.)

Since it is known that the normal distribution is symmetric, so that
N0.025 = −N0.975, it is common to write the formula for the confidence in-
terval as x̄±σ/

√
n×N0.975. The quantile itself is often written Φ−1(0.975),

where Φ is standard notation for the cumulative distribution function of
the normal distribution (pnorm).

Another application of quantiles is in connection with Q–Q plots (see
Section 4.2.3), which can be used to assess whether a set of data can
reasonably be assumed to come from a given distribution.

3.5.4 Random numbers

To many people, it sounds like a contradiction in terms to generate
random numbers on a computer since its results are supposed to be pre-
dictable and reproducible. What is in fact possible is to generate sequences
of “pseudo-random” numbers, which for practical purposes behave as if
they were drawn randomly.

Here random numbers are used to give the reader a feeling for the way in
which randomness affects the quantities that can be calculated from a set
of data. In professional statistics, they are used to create simulated data
sets in order to study the accuracy of mathematical approximations and
the effect of assumptions being violated.

The use of the functions that generate random numbers is straightfor-
ward. The first argument specifies the number of random numbers to
compute, and the subsequent arguments are similar to those for other
functions related to the same distributions. For instance,
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> rnorm(10)
[1] -0.2996466 -0.1718510 -0.1955634 1.2280843 -2.6074190
[6] -0.2999453 -0.4655102 -1.5680666 1.2545876 -1.8028839
> rnorm(10)
[1] 1.7082495 0.1432875 -1.0271750 -0.9246647 0.6402383
[6] 0.7201677 -0.3071239 1.2090712 0.8699669 0.5882753
> rnorm(10,mean=7,sd=5)
[1] 8.934983 8.611855 4.675578 3.670129 4.223117 5.484290
[7] 12.141946 8.057541 -2.893164 13.590586
> rbinom(10,size=20,prob=.5)
[1] 12 11 10 8 11 8 11 8 8 13

3.6 Exercises

3.1 Calculate the probability for each of the following events: (a) A
standard normally distributed variable is larger than 3. (b) A normally
distributed variable with mean 35 and standard deviation 6 is larger than
42. (c) Getting 10 out of 10 successes in a binomial distribution with prob-
ability 0.8. (d) X < 0.9 when X has the standard uniform distribution. (e)
X > 6.5 in a χ2 distribution with 2 degrees of freedom.

3.2 A rule of thumb is that 5% of the normal distribution lies outside an
interval approximately ±2s about the mean. To what extent is this true?
Where are the limits corresponding to 1%, 0.5%, and 0.1%? What is the
position of the quartiles measured in standard deviation units?

3.3 For a disease known to have a postoperative complication frequency
of 20%, a surgeon suggests a new procedure. He tests it on 10 patients
and there are no complications. What is the probability of operating on 10
patients successfully with the traditional method?

3.4 Simulated coin-tossing can be done using rbinom instead of sample.
How exactly would you do that?
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