
10
Advanced data handling

In the preceding text, we have covered a basic set of elementary statistical
procedures. In the chapters that follow, we begin to discuss more elaborate
statistical modelling.

This is also a natural point to discuss some data handling techniques that
are useful in the practical analysis of data but were too advanced to cover
in the first two chapters of the book.

10.1 Recoding variables

This section describes some techniques that are used to construct derived
variables: grouping quantitative data, combining and renaming factor
levels, and handling date values.

10.1.1 The cut function

You may need to convert a quantitative variable to a grouping factor. For
instance, you may wish to present your data in terms of age in 5-year
groups, but age is in the data set as a quantitative variable, recorded as
whole years or perhaps to a finer resolution. This is what the cut function

P. Dalgaard, Introductory Statistics with R,
DOI: 10.1007/978-0-387-79054-1_10, © Springer Science+Business Media, LLC 2008

164 10. Advanced data handling

is for. The basic principles are quite simple, although there are some fine
points to be aware of.

The function has two basic arguments: a numeric vector and a vector of
breakpoints. The latter defines a set of intervals into which the variable is
grouped. You have to specify both ends of all intervals; that is, the total
number of break points must be one more than the number of intervals.
It is a common mistake to believe that the outer breakpoints can be omit-
ted but the result for a value outside all intervals is set to NA. The outer
breakpoints can be chosen as -Inf and Inf, though.

The intervals are left-open, right-closed by default. That is, they include
the breakpoint at the right end of each interval. The lowest breakpoint
is not included unless you set include.lowest=TRUE, making the first
interval closed at both ends.

In (e.g.) epidemiology, you are more likely to want groupings like “40–
49 years of age”. This opposite convention can be obtained by setting
right=FALSE.

Of course, as you switch to left-closed, right-open intervals, the issue of
losing the extreme interval endpoint shifts to the other end of the scale.
In that case, include.lowest actually includes the highest value! In the
example below, the difference lies in the inclusion of two subjects who
were exactly 16 years old.

> age <- subset(juul, age >= 10 & age <= 16)$age
> range(age)
[1] 10.01 16.00
> agegr <- cut(age, seq(10,16,2), right=F, include.lowest=T)
> length(age)
[1] 502
> table(agegr)
agegr
[10,12) [12,14) [14,16]

190 168 144
> agegr2 <- cut(age, seq(10,16,2), right=F)
> table(agegr2)
agegr2
[10,12) [12,14) [14,16)

190 168 142

It is sometimes desired to split data into roughly equal-sized groups. This
can be achieved by using breakpoints computed by quantile, which was
described in Section 4.1. For instance, you could do

> q <- quantile(age, c(0, .25, .50, .75, 1))
> q

0% 25% 50% 75% 100%
10.0100 11.3825 12.6400 14.2275 16.0000

10.1 Recoding variables 165

> ageQ <- cut(age, q, include.lowest=T)
> table(ageQ)
ageQ
[10,11.4] (11.4,12.6] (12.6,14.2] (14.2,16]

126 125 125 126

The level names resulting from cut turn out rather ugly at times. Fortu-
nately they are easily changed. You can modify each of the factors created
above as follows:

> levels(ageQ) <- c("1st", "2nd", "3rd", "4th")
> levels(agegr) <- c("10-11", "12-13", "14-15")

Frank Harrell’s Hmisc package contains the cut2 function, which simpli-
fies some of these matters.

10.1.2 Manipulating factor levels

In Section 1.2.8, we used levels(f)<- to change the level set of a
factor. Some related tasks will be discussed in this section.

First, notice that the conversion from numeric input and renaming of
levels can be done in one operation:

> pain <- c(0,3,2,2,1)
> fpain <- factor(pain,levels=0:3,
+ labels=c("none","mild","medium","severe"))

Beware the slightly confusing distinction between levels and labels.
The latter end up being the levels of the result, whereas the former refers
to the coding of the input vector (pain in this case). That is, levels refers
to the input and labels to the output.

If you do not specify a levels argument, the levels will be the sorted,
unique values represented in the vector. This is not always desirable when
dealing with text variables since the sorting is alphabetical. Consider, for
instance,

> text.pain <- c("none","severe", "medium", "medium", "mild")
> factor(text.pain)
[1] none severe medium medium mild
Levels: medium mild none severe

Another reason for specifying levels is that the default levels, obvi-
ously, do not include values that are not present in data. This may or may
not be a problem, but it has consequences for later analyses; for instance,
whether tables contain zero entries or whether barplots leave space for the
empty columns.

166 10. Advanced data handling

The factor function works on factors as if they were character vectors,
so you can reorder the levels as follows

> ftpain <- factor(text.pain)
> ftpain2 <- factor(ftpain,
+ levels=c("none", "mild", "medium", "severe"))

Another typical task is to combine two or more levels. This is often done
when groups would otherwise be too small for valid statistical analysis.
Say you wish to combine the levels "medium" and "mild" into a sin-
gle "intermediate" level. For this purpose, the assignment form of
levels allows the right-hand side to be a list:

> ftpain3 <- ftpain2
> levels(ftpain3) <- list(
+ none="none",
+ intermediate=c("mild","medium"),
+ severe="severe")
> ftpain3
[1] none severe intermediate intermediate
[5] intermediate
Levels: none intermediate severe

However, it is often easier just to change the level names and give the
same name to several groups:

> ftpain4 <- ftpain2
> levels(ftpain4) <- c("none","intermediate","intermediate","severe")
> ftpain4
[1] none severe intermediate intermediate
[5] intermediate
Levels: none intermediate severe

The latter method is not quite as general as the former, though. It gives
less control over the final ordering of levels.

10.1.3 Working with dates

In epidemiology and survival data, you often deal with time in the form
of dates in calendar format. Different formats are used in different places
of the world, and the files you have to read were not necessarily written
in the same region as the one you are currently in. The "Date" class and
associated conversion routines exist to help you deal with the complexity.

As an example, consider the Estonian stroke study, a preprocessed version
of which is contained in the data frame stroke. The raw data files can be
found in the rawdata directory of the ISwR package and read using the
following code:

10.1 Recoding variables 167

> stroke <- read.csv2(
+ system.file("rawdata","stroke.csv", package="ISwR"),
+ na.strings=".")
> names(stroke) <- tolower(names(stroke))
> head(stroke)
sex died dstr age dgn coma diab minf han

1 1 7.01.1991 2.01.1991 76 INF 0 0 1 0
2 1 <NA> 3.01.1991 58 INF 0 0 0 0
3 1 2.06.1991 8.01.1991 74 INF 0 0 1 1
4 0 13.01.1991 11.01.1991 77 ICH 0 1 0 1
5 0 23.01.1996 13.01.1991 76 INF 0 1 0 1
6 1 13.01.1991 13.01.1991 48 ICH 1 0 0 1

(You can of course also just substitute the full path to stroke.csv instead
of using the system.file construction.)

In this data set, the two date variables died and dstr (date of stroke) ap-
pear as factor variables, which is the standard behaviour of read.table.
To convert them to class "Date", we use the function as.Date. This is
straightforward but requires some attention to the date format. The for-
mat used here is (day, month, year) separated by a period (dot character),
with year given as four digits. This is not a standard format, so we need
to specify it explicitly.

> stroke <- transform(stroke,
+ died = as.Date(died, format="%d.%m.%Y"),
+ dstr = as.Date(dstr, format="%d.%m.%Y"))

Notice the use of “percent-codes” to represent specific parts of the date:
%d indicates the day of the month, %m means the month as a number, and
%Y means that a four-digit year is used (notice the uppercase Y). The full
set of codes is documented on the help page for strptime.

Internally, dates are represented as the number of days before or after a
given point in time, known as the epoch. Specifically, the epoch is January
1, 1970, although this is an implementation detail that should not be relied
upon.

It is possible to perform arithmetic on dates; that is, they behave mostly
like numeric vectors:

> summary(stroke$died)
Min. 1st Qu. Median Mean 3rd Qu.

"1991-01-07" "1992-03-14" "1993-01-23" "1993-02-15" "1993-11-04"
Max.

"1996-02-22"
> summary(stroke$dstr)

Min. 1st Qu. Median Mean 3rd Qu.
"1991-01-02" "1991-11-08" "1992-08-12" "1992-07-27" "1993-04-30"

Max.
"1993-12-31"

168 10. Advanced data handling

> summary(stroke$died - stroke$dstr)
Min. 1st Qu. Median Mean 3rd Qu. Max. NA’s
0.0 8.0 28.0 225.7 268.5 1836.0 338.0

> head(stroke$died - stroke$dstr)
Time differences in days
[1] 5 NA 145 2 1836 0

Notice that means and quantiles are displayed in date format (even if they
are nonintegers). The count of NA values is not displayed for date variables
even though the date of death is unknown for quite a few patients; this is
a bit unfortunate, but it would conflict with a convention that numerical
summaries have the same class as the object that is summarized (so you
would get the count displayed as a date!).

The vector of differences between the two dates is actually an object of
class "difftime". Such objects can have different units — when based
on dates, it will always be "days", but for other kinds of time vari-
ables it can be "hours" or "seconds". Accordingly, it is somewhat bad
practice just to treat the vector of differences as a numeric variable. The
recommended procedure is to use as.numeric with an explicit units
argument.

In the data file, NA for a death date means that the patient did not die be-
fore the end of the study on January 1, 1996. Six patients were recorded as
having died after this date, but since there may well be unrecorded deaths
among the remaining patients, we have to discard these death dates and
just record the patients as alive at the end of the study.

We shall transform the data so that all patients have an end date plus an
indicator of what happened at the end date: died or survived.

> stroke <- transform(stroke,
+ end = pmin(died, as.Date("1996-1-1"), na.rm = T),
+ dead = !is.na(died) & died < as.Date("1996-1-1"))
> head(stroke)
sex died dstr age dgn coma diab minf han

1 1 1991-01-07 1991-01-02 76 INF 0 0 1 0
2 1 <NA> 1991-01-03 58 INF 0 0 0 0
3 1 1991-06-02 1991-01-08 74 INF 0 0 1 1
4 0 1991-01-13 1991-01-11 77 ICH 0 1 0 1
5 0 1996-01-23 1991-01-13 76 INF 0 1 0 1
6 1 1991-01-13 1991-01-13 48 ICH 1 0 0 1

end dead
1 1991-01-07 TRUE
2 1996-01-01 FALSE
3 1991-06-02 TRUE
4 1991-01-13 TRUE
5 1996-01-01 FALSE
6 1991-01-13 TRUE

10.1 Recoding variables 169

The pmin function calculates the minimum, but unlike the min function,
which returns a single number, it does so in parallel across multiple vec-
tors. The na.rm argument allows NA values to be ignored, so the result
is that wherever died is missing or later than 1996-01-01, the end date
becomes 1996-01-01 and the actual date of death otherwise.

The expression for dead is straightforward, although you should check
that missing values are treated correctly. (They are. The & operator handles
missingness such that if one argument is FALSE the result is FALSE, even
if the other is NA.)

Finally, to obtain the observation time for all individuals, we can do

> stroke <- transform(stroke,
+ obstime = as.numeric(end - dstr, units="days")/365.25)

in which we pragmatically convert to “epidemiological years” of average
length. (This cannot be done just by setting units="years". Objects of
class "difftime" can only have units of "weeks" or less.)

Notice that we performed the transformations in three separate calls to
transform. This was not just for the flow of the presentation; each of
the last two calls refers to variables that were not defined previously. The
transform function does not allow references to variables defined in the
same call (we could have used within, though; see Section 2.1.8).

Further time classes

R also has classes that represent time to a granularity finer than 1 day.
The "POSIXct" class (calendar time according to the POSIX standards)
is similar to "Date" except that it counts seconds rather than days, and
"POSIXlt" (local time) represents date and time using a structure that
consists of fields for various components: year, month, day of month,
hours, minutes, seconds, and more. Working with such objects involves,
by and large, the same issues as for the "Date" class, although with a
couple of extra twists related to time zones and Daylight Savings Time.
We shall not go deeper into this area here.

10.1.4 Recoding multiple variables

In the previous sections, we had some cases where essentially the same
transformation had to be applied to several variables. The solution in
those cases was simply to repeat the operation, but it can happen that a
data set contains many similar variables that all need to be recoded (ques-
tionnaire data may, for instance, have dozens of items rated on the same

170 10. Advanced data handling

five-point scale). In such cases, you can make use of the fact that data
frames are fundamentally lists and that lapply and indexing work on
them. For instance, in dealing with the raw stroke data, we could have
done the date handling as follows:

> rawstroke <- read.csv2(
+ system.file("rawdata","stroke.csv", package="ISwR"),
+ na.strings=".")
> ix <- c("DSTR", "DIED")
> rawstroke[ix] <- lapply(rawstroke[ix],
+ as.Date, format="%d.%m.%Y")
> head(rawstroke)
SEX DIED DSTR AGE DGN COMA DIAB MINF HAN

1 1 1991-01-07 1991-01-02 76 INF 0 0 1 0
2 1 <NA> 1991-01-03 58 INF 0 0 0 0
3 1 1991-06-02 1991-01-08 74 INF 0 0 1 1
4 0 1991-01-13 1991-01-11 77 ICH 0 1 0 1
5 0 1996-01-23 1991-01-13 76 INF 0 1 0 1
6 1 1991-01-13 1991-01-13 48 ICH 1 0 0 1

Similarly, the four binary variables could be converted to “No/Yes”
factors in a single operation.

> ix <- 6:9
> rawstroke[ix] <- lapply(rawstroke[ix],
+ factor, levels=0:1, labels=c("No","Yes"))

10.2 Conditional calculations

The ifelse function lets you apply different calculations to different
parts of data. For illustration, we use a subset of the stroke data dis-
cussed in Section 10.1.3, but we use the “cooked” version contained in the
ISwR package.

> strokesub <- ISwR::stroke[1:10,2:3]
> strokesub

died dstr
1 1991-01-07 1991-01-02
2 <NA> 1991-01-03
3 1991-06-02 1991-01-08
4 1991-01-13 1991-01-11
5 <NA> 1991-01-13
6 1991-01-13 1991-01-13
7 1993-12-01 1991-01-14
8 1991-12-12 1991-01-14
9 <NA> 1991-01-15
10 1993-11-10 1991-01-15

10.3 Combining and restructuring data frames 171

To compute the time on study and the event/censoring indicator needed
for survival models, we can do as follows:

> strokesub <- transform(strokesub,
+ event = !is.na(died))
> strokesub <- transform(strokesub,
+ obstime = ifelse(event, died-dstr, as.Date("1996-1-1") - dstr))
> strokesub

died dstr event obstime
1 1991-01-07 1991-01-02 TRUE 5
2 <NA> 1991-01-03 FALSE 1824
3 1991-06-02 1991-01-08 TRUE 145
4 1991-01-13 1991-01-11 TRUE 2
5 <NA> 1991-01-13 FALSE 1814
6 1991-01-13 1991-01-13 TRUE 0
7 1993-12-01 1991-01-14 TRUE 1052
8 1991-12-12 1991-01-14 TRUE 332
9 <NA> 1991-01-15 FALSE 1812
10 1993-11-10 1991-01-15 TRUE 1030

The way ifelse works is that it takes three arguments: test, yes, and
no. All three are vectors of the same length (if not, they will be made so by
recycling). The answer is “stitched together” of pieces of yes and no in
the sense that the yes element is selected wherever test is TRUE and the
no element where it is FALSE. When the condition is NA, so is the result.

Notice that both alternatives are computed (exceptions are made for the
cases where the condition is all TRUE or all FALSE). This is not usually
a problem in terms of speed, but it does mean that ifelse is not the
right tool to use if you want to avoid, for example, taking the logarithm
of negative values. Also notice that ifelse discards attributes, including
the class, so that obstime is not of class "difftime" even though both
the yes and the no part are. This sometimes makes using ifelse more
trouble than it is worth, and it can be preferable simply to use explicit
subsetting operations.

10.3 Combining and restructuring data frames

In this section, we discuss ways of joining data frames either “vertically”
(adding records) or “horizontally” (adding variables). We also look at
the issue of converting data with repeated measurements of the same
variables between the “long” and the “wide” formats.

172 10. Advanced data handling

10.3.1 Appending frames

Sometimes data are received from multiple sources and you need to com-
bine them to form one bigger data set. In this subsection, we consider the
case where data are combined by “vertical stacking”; that is, you start out
with data frames which refer to separate rows of the result — typically
different subjects. It is required that the data frames contain the same vari-
ables, although not necessarily in the same order (this is unlike some other
statistical systems, which will simply insert missing values for variables
that are absent in a data set).

To simulate such a situation, suppose that the juul data set had been
collected separately for boys and girls. In that case, the data frames might
not contain the variable sex, since this is the same for everyone in the
same data frame, and variables that only make sense for one gender may
also have been omitted for the other group.

> juulgrl <- subset(juul, sex==2, select=-c(testvol,sex))
> juulboy <- subset(juul, sex==1, select=-c(menarche,sex))

Notice the use of the select argument to subset. The processing of this
argument replaces column names by column numbers, and the resulting
expression is used to index the data frame. The net effect of the negative
indices is to remove, for example, testvol and sex from juulgrl.

To put the data frames back together, you must first add in the missing
variables

> juulgrl$sex <- factor("F")
> juulgrl$testvol <- NA
> juulboy$sex <- factor("M")
> juulboy$menarche <- NA

and then it is just a matter of using the rbind method for data frames:

> juulall <- rbind(juulboy, juulgrl)
> names(juulall)
[1] "age" "igf1" "tanner" "testvol" "sex"
[6] "menarche"

Notice that rbind uses the column names (so that it does not concatenate
unrelated variables even though the order of columns differs in the two
data frames) and that the order of variables in the first data frame “wins”:
The result has the variables in the same order as juulboy. Notice also
that rbind is being smart about factor levels:

> levels(juulall$sex)
[1] "M" "F"

10.3 Combining and restructuring data frames 173

10.3.2 Merging data frames

Just as you may have different groups of subjects collected in separate
data sets, you may also have different sorts of data on the same patients
collected separately. For example, you could have one data frame with
registry data, one with clinical biochemistry data, and one with question-
naire data. It may work to use cbind to stick the data frames together
side-by-side, but it could be dangerous: What if the data are not complete
in all data frames or out of sequence? You typically have to work with a
unique subject identification code to avoid mistakes of this sort.

The merge function deals with these issues. It works by matching on one
or several variables from each data frame. By default, this is the set of
variables that have the same name in both frames (typically, there is a
variable called something like ID, which holds the subject identification).
Assuming that this default works and that the two data frames are called
respectively dfx and dfy, the merged frame is computed simply as

merge(dfx, dfy)

However, there may be variables of the same name in both frames. In such
cases, you can add a by argument, which contains the variable name or
names to match on as in

merge(dfx, dfy, by="ID")

Any other variables that appear in both frames will have .x or .y ap-
pended to their name in the result. It is recommended to use this format in
any case as a safeguard and for readability and explicitness. If the match-
ing variable(s) have different names in the two data frames, you can use
by.x and by.y.

Matching is not necessarily one-to-one. One of the data sets might for in-
stance hold tabular material corresponding to the study population. The
common example is mortality tables. In such cases, there is generally a
many-to-one relationship between the data frames. More than one subject
in the study population will belong to the table entry for 40–49 year-olds,
and the rows of the table will have to be duplicated accordingly during
the merge.

To illustrate these concepts, we use the data set nickel. This describes a
cohort of nickel smelting workers in South Wales. The data set ewrates
contains a table of the population mortality by year and age group in five-
year intervals.

> head(nickel)
id icd exposure dob age1st agein ageout

1 3 0 5 1889.019 17.4808 45.2273 92.9808

174 10. Advanced data handling

2 4 162 5 1885.978 23.1864 48.2684 63.2712
3 6 163 10 1881.255 25.2452 52.9917 54.1644
4 8 527 9 1886.340 24.7206 47.9067 69.6794
5 9 150 0 1879.500 29.9575 54.7465 76.8442
6 10 163 2 1889.915 21.2877 44.3314 62.5413
> head(ewrates)
year age lung nasal other

1 1931 10 1 0 1269
2 1931 15 2 0 2201
3 1931 20 6 0 3116
4 1931 25 14 0 3024
5 1931 30 30 1 3188
6 1931 35 68 1 4165

Suppose we wish to merge these two data sets according to the values
at entry into the study population. This age is contained in agein, and
the date of entry is computed as dob + agein. You can compute group
codes corresponding to ewrates as follows:

> nickel <- transform(nickel,
+ agr = trunc(agein/5)*5,
+ ygr = trunc((dob+agein-1)/5)*5+1)

The trunc function rounds values towards zero. Notice that the age
groups start on values that are evenly divisible by 5, whereas the year
groups end on such values; this is why the expression for ygr subtracts 1
and adds it back after truncation. (Actually this does not matter because
all enrollment dates were April 1 of 1934, 1939, 1944, or 1949.) Notice also
that we do not use the same variable names as in ewrates. We could have
done so, but the names age and year would be unintuitive in the context
of the nickel data.

With the age and year groups defined, it is an easy matter to perform the
merge. We just need to account for the fact that we have used different
variable names in the two data frames.

> mrg <- merge(nickel, ewrates,
+ by.x=c("agr","ygr"), by.y=c("age","year"))
> head(mrg,10)

agr ygr id icd exposure dob age1st agein ageout
1 20 1931 273 154 0 1909.500 14.6913 24.7465 55.9302
2 20 1931 213 162 0 1910.129 14.2018 24.1177 63.0493
3 20 1931 546 0 0 1909.500 14.4945 24.7465 72.5000
4 20 1931 574 491 0 1909.729 14.0356 24.5177 70.6592
5 20 1931 110 0 0 1909.247 14.0302 24.9999 72.7534
6 20 1931 325 434 0 1910.500 14.0737 23.7465 43.0343
7 25 1931 56 502 2 1904.500 18.2917 29.7465 51.5847
8 25 1931 690 420 0 1906.500 17.2206 27.7465 55.1219
9 25 1931 443 420 0 1905.326 14.5562 28.9204 65.7616
10 25 1931 137 465 0 1905.386 19.0808 28.8601 74.2794

lung nasal other

10.3 Combining and restructuring data frames 175

1 6 0 3116
2 6 0 3116
3 6 0 3116
4 6 0 3116
5 6 0 3116
6 6 0 3116
7 14 0 3024
8 14 0 3024
9 14 0 3024
10 14 0 3024

We have only described the main function of merge. There are also op-
tions to include rows that only exist in one of the two frames (all, all.x,
all.y), and it may also be useful to know that the pseudo-variable
row.names will allow matching on row names.

We have discussed the cases of one-to-one and many-to-one matching.
Many-to-many is possible but rarely useful. What happens in that case
is that the “Cartesian product” is formed by generating all combinations
of rows from the two frames within each matching set. The extreme case
of many-to-many matching occurs if the by set is empty, which gives a
result with as many rows as the product of the row counts. This sometimes
surprises people who expect that the row number will act as an implicit
ID.

10.3.3 Reshaping data frames

Longitudinal data come in two different forms: a “wide” format, where
there is a separate column for each time point but only one record per
case; and a “long” format, where there are multiple records for each case,
one for each time point. The long format is more general since it does not
need to assume that the cases are recorded at the same set of times, but
when applicable it may be easier to work with data in the wide format,
and some statistical functions expect it that way. Other functions expect to
find data in the long format. Either way, there is a need to convert from
one format to another. This is what the reshape function does.

Consider the following data from a randomized study of bone metabolism
data during Tamoxifen treatment after breast cancer. The concentration
of alkaline phosphatase is recorded at baseline and 3, 6, 9, 12, 18, and
24 months after treatment start.

> head(alkfos)
grp c0 c3 c6 c9 c12 c18 c24

1 1 142 140 159 162 152 175 148
2 1 120 126 120 146 134 119 116
3 1 175 161 168 164 213 194 221

176 10. Advanced data handling

4 1 234 203 174 197 289 174 189
5 1 94 107 146 124 128 98 114
6 1 128 97 113 203 NA NA NA

In the simplest uses of reshape, the function will assume that the vari-
able names encode the information necessary for reshaping to the long
format. By default, it assumes that variable names are separated from time
of measurement by a "." (dot), so we might oblige by modifying the name
format.

> a2 <- alkfos
> names(a2) <- sub("c", "c.", names(a2))
> names(a2)
[1] "grp" "c.0" "c.3" "c.6" "c.9" "c.12" "c.18" "c.24"

The sub function does substitutions within character strings, in this case
replacing the string "c" with "c.". Alternatively, the original name for-
mat (c0, . . . , c24) can be handled by adding sep="" to the reshape
call.

Once we have the variable naming in place, the only things we need to
specify are the direction of the reshape and the set of variables to be con-
sidered time-varying. As a convenience feature, the latter can be specified
by index rather than by name.

> a.long <- reshape(a2, varying=2:8, direction="long")
> head(a.long)

grp time c id
1.0 1 0 142 1
2.0 1 0 120 2
3.0 1 0 175 3
4.0 1 0 234 4
5.0 1 0 94 5
6.0 1 0 128 6
> tail(a.long)

grp time c id
38.24 2 24 95 38
39.24 2 24 NA 39
40.24 2 24 192 40
41.24 2 24 94 41
42.24 2 24 194 42
43.24 2 24 129 43

Notice that the sort order of the result is that id varies within time. This
is the most convenient format to generate technically, but if you prefer the
opposite sort order, just use

> o <- with(a.long, order(id, time))
> head(a.long[o,], 10)

grp time c id

10.3 Combining and restructuring data frames 177

1.0 1 0 142 1
1.3 1 3 140 1
1.6 1 6 159 1
1.9 1 9 162 1
1.12 1 12 152 1
1.18 1 18 175 1
1.24 1 24 148 1
2.0 1 0 120 2
2.3 1 3 126 2
2.6 1 6 120 2

To demonstrate the reverse procedure, we use the same data, in the long
format. Actually, this is a bit too easy because reshape has inserted
enough information in its output to let you convert to the wide format just
by saying reshape(a.long). To simulate the situation where the orig-
inal data are given in the long format, we remove the "reshapeLong"
attribute, which holds these data. Furthermore, we remove the records for
which we have missing data by using na.omit.

> a.long2 <- na.omit(a.long)
> attr(a.long2, "reshapeLong") <- NULL

To convert a.long2 to the wide format, use

> a.wide2 <- reshape(a.long2, direction="wide", v.names="c",
+ idvar="id", timevar="time")
> head(a.wide2)

grp id c.0 c.3 c.6 c.9 c.12 c.18 c.24
1.0 1 1 142 140 159 162 152 175 148
2.0 1 2 120 126 120 146 134 119 116
3.0 1 3 175 161 168 164 213 194 221
4.0 1 4 234 203 174 197 289 174 189
5.0 1 5 94 107 146 124 128 98 114
6.0 1 6 128 97 113 203 NA NA NA

Notice that NA values are filled in for patient no. 6, for whom only the first
four observations are available.

The arguments idvar and timevar specify the names of the variables
that contain the ID and the time for each observation. It is not strictly
necessary to specify them if they have their default names, but it is good
practice to do so. The argument v.names specifies the time-varying vari-
ables; notice that if it were omitted, then the grp variable would also be
treated as time-varying.

178 10. Advanced data handling

10.4 Per-group and per-case procedures

A specific data management task involves operations within subsets of
a data frame, particularly those where there are multiple records for
each individual. Examples include calculation of cumulative dosage in a
pharmacokinetic experiment and various methods of normalization and
standardization.

A nice general approach to such tasks is first to split the data into a list of
groups, operate on each group, and then put the pieces back together.

Consider the task of normalizing the values of alkaline phosphatase in
a.long to their baseline values. The split function can be used to
generate a list of the individual time courses:

> l <- split(a.long$c, a.long$id)
> l[1:3]
$‘1‘
[1] 142 140 159 162 152 175 148

$‘2‘
[1] 120 126 120 146 134 119 116

$‘3‘
[1] 175 161 168 164 213 194 221

Next, we apply a function to each element of the list and collect the results
using lapply.

> l2 <- lapply(l, function(x) x / x[1])

Finally, we put the pieces back together using unsplit, which is the
reverse operation of split. Notice that a.long has id varying within
time, so this is not just a matter of concatenating the elements of l2. The
data for the first patient are now

> a.long$c.adj <- unsplit(l2, a.long$id)
> subset(a.long, id==1)

grp time c id c.adj
1.0 1 0 142 1 1.0000000
1.3 1 3 140 1 0.9859155
1.6 1 6 159 1 1.1197183
1.9 1 9 162 1 1.1408451
1.12 1 12 152 1 1.0704225
1.18 1 18 175 1 1.2323944
1.24 1 24 148 1 1.0422535

In fact, there is a function that formalizes this sort of split-modify-unsplit
operation. It is called ave because the default use is to replace data with

10.5 Time splitting 179

group averages, but it can also be used for more general transformations.
The following is an alternative way of doing the same computation as
above:

> a.long$c.adj <- ave(a.long$c, a.long$id,
+ FUN = function(x) x / x[1])

In the preceding code, we worked on the single vector a.long$c.
Alternatively, we can split the entire data frame and use code like

> l <- split(a.long, a.long$id)
> l2 <- lapply(l, transform, c.adj = c / c[1])
> a.long2 <- unsplit(l2, a.long$id)

Notice how the last argument to lapply is passed on to transform, so
that you effectively call transform(x, c.adj = c / c[1]) for each
data frame x in the list l. This procedure is somewhat less efficient than
the first one because there is more copying of data, but it generalizes to
more complex transformations.

10.5 Time splitting

This section is rather advanced, and the beginner may want to skip it on
the first read. Understanding the contents is not crucial for the later parts
of the book. On the other hand, apart from solving the particular problem,
this is also a rather nice first example of the use of ad hoc programming in
R and also of the “lateral thinking” that is sometimes required.

The merge operation of the nickel and ewrates data in Section 10.3.2
does not really make sense statistically: We merged in the mortality table
corresponding to the age at the time of entry into the study population.
However, the data set is about cancer, a slow disease, and an exposure
that perhaps leads to an increased risk 20 or more years later. If the subjects
typically die around age 50, the population mortality for people of age 30
is hardly relevant.

A sensible statistical analysis needs to consider the population mortality
during the entire follow-up period. One way to handle this issue is to split
the individuals into multiple “sub-individuals”.

In the data set, the first six observations are (after the merge in Sec-
tion 10.3.2)

> head(nickel)
id icd exposure dob age1st agein ageout agr ygr

1 3 0 5 1889.019 17.4808 45.2273 92.9808 45 1931

180 10. Advanced data handling

2 4 162 5 1885.978 23.1864 48.2684 63.2712 45 1931
3 6 163 10 1881.255 25.2452 52.9917 54.1644 50 1931
4 8 527 9 1886.340 24.7206 47.9067 69.6794 45 1931
5 9 150 0 1879.500 29.9575 54.7465 76.8442 50 1931
6 10 163 2 1889.915 21.2877 44.3314 62.5413 40 1931

Consider the individual with id == 4; this person entered the study at
the age of 48.2684 and died (from lung cancer) at the age of 63.2712 (apolo-
gies for the excess precision). The time-splitting method treats this subject
as four separate subjects, one entering the study at age 48.2684 and leav-
ing at age 50 (on his 50th birthday) and the others covering the intervals
50–55, 55–60, and 60–63.2712. The first three are censored observations, as
the subject did not die.

If we merge these data with the population tables, then we can compute
the expected number of deaths in a given age interval and compare that
with the actual number of deaths.

Taking advantage of the vectorized nature of computations in R, the
nice way of doing this is to loop over age intervals, “trimming” every
observation period to each interval.

To trim the observation periods to ages between (say) 60 and 65, the entry
and exit times should be adjusted to the interval if they fall outside of it,
cases that are unobserved during the interval should be removed, and if
the subject did not die inside the interval, icd should be set to 0.

The easiest procedure is to “shoot first and ask later”. The adjusted entry
and exit times are

> entry <- pmax(nickel$agein, 60)
> exit <- pmin(nickel$ageout, 65)

or rather they would be if there were always a suitable overlap between
the observation period and the target age interval. However, there are peo-
ple leaving the study population before age 60 (by death or otherwise) and
people entering the study after age 65. In either case, what goes wrong is
that entry >= exit, and we can check for such cases by calculating

> valid <- (entry < exit)
> entry <- entry[valid]
> exit <- exit[valid]

The censoring indicator for valid cases is

> cens <- (nickel$ageout[valid] > 65)

(We might have used cens <- (exit == 65), but it is a good rule to
avoid testing floating point data for equality.)

10.5 Time splitting 181

The trimmed data set can then be obtained as

> nickel60 <- nickel[valid,]
> nickel60$icd[cens] <- 0
> nickel60$agein <- entry
> nickel60$ageout <- exit
> nickel60$agr <- 60
> nickel60$ygr <- with(nickel60, trunc((dob+agein-1)/5)*5+1)

and the first lines of the result are

> head(nickel60)
id icd exposure dob age1st agein ageout agr ygr

1 3 0 5 1889.019 17.4808 60 65.0000 60 1946
2 4 162 5 1885.978 23.1864 60 63.2712 60 1941
4 8 0 9 1886.340 24.7206 60 65.0000 60 1946
5 9 0 0 1879.500 29.9575 60 65.0000 60 1936
6 10 163 2 1889.915 21.2877 60 62.5413 60 1946
7 15 334 0 1890.500 23.2836 60 62.0000 60 1946

A couple of fine points: If someone dies exactly at age 65, they are counted
as dying inside the age interval. Conversely, we do not include people
dying exactly at age 60; they belong in the interval 55–60 (for purposes
like those of Chapter 15, one should avoid observation intervals of length
zero). It was also necessary to recompute ygr since this was based on the
original agein.

To get the fully expanded data set, you could repeat the above for each age
interval (20–25, . . . , 95–100) and append the resulting 16 data frames with
rbind. However, this gets rather long-winded, and there is a substantial
risk of copy-paste errors. Instead, you can do a little programming. First,
wrap up the procedure for one group as a function:

> trim <- function(start)
+ {
+ end <- start + 5
+ entry <- pmax(nickel$agein, start)
+ exit <- pmin(nickel$ageout, end)
+ valid <- (entry < exit)
+ cens <- (nickel$ageout[valid] > end)
+ result <- nickel[valid,]
+ result$icd[cens] <- 0
+ result$agein <- entry[valid]
+ result$ageout <- exit[valid]
+ result$agr <- start
+ result$ygr <- with(result, trunc((dob+agein-1)/5)*5+1)
+ result
+ }

(In practice, you should not type all this at the command line but use a
script window or an editor; see Section 2.1.3.)

182 10. Advanced data handling

This is typical ad hoc programming. The function is far from general
since it relies on knowing various names, and it also hardcodes the in-
terval length as 5. However, more generality is not required for a one-off
calculation. The important thing for the purpose at hand is to make the
dependence on start explicit so that we can loop over it.

With this definition, trim(60) is equivalent to the nickel60 we
computed earlier:

> head(trim(60))
id icd exposure dob age1st agein ageout agr ygr

1 3 0 5 1889.019 17.4808 60 65.0000 60 1946
2 4 162 5 1885.978 23.1864 60 63.2712 60 1941
4 8 0 9 1886.340 24.7206 60 65.0000 60 1946
5 9 0 0 1879.500 29.9575 60 65.0000 60 1936
6 10 163 2 1889.915 21.2877 60 62.5413 60 1946
7 15 334 0 1890.500 23.2836 60 62.0000 60 1946

To get results for all intervals, do the following:

> nickel.expand <- do.call("rbind", lapply(seq(20,95,5), trim))
> head(nickel.expand)

id icd exposure dob age1st agein ageout agr ygr
84 110 0 0 1909.247 14.0302 24.9999 25 20 1931
156 213 0 0 1910.129 14.2018 24.1177 25 20 1931
197 273 0 0 1909.500 14.6913 24.7465 25 20 1931
236 325 0 0 1910.500 14.0737 23.7465 25 20 1931
384 546 0 0 1909.500 14.4945 24.7465 25 20 1931
400 574 0 0 1909.729 14.0356 24.5177 25 20 1931

The do.call construct works by creating a call to rbind with a given
argument list, which in this case is the return value from lapply, which
in turn has applied the trim function to each of the values 20, 25, . . . 95.
That is, the whole thing is equivalent to

rbind(trim(20), trim(25),, trim(95))

Displaying the result for a single subject yields, for example,

> subset(nickel.expand, id==4)
id icd exposure dob age1st agein ageout agr ygr

2 4 0 5 1885.978 23.1864 48.2684 50.0000 45 1931
2100 4 0 5 1885.978 23.1864 50.0000 55.0000 50 1931
2102 4 0 5 1885.978 23.1864 55.0000 60.0000 55 1936
2104 4 162 5 1885.978 23.1864 60.0000 63.2712 60 1941

(The strange row names occur because multiple data frames with the
same row names are being rbind-ed together and data frames must have
unique row names.)

10.6 Exercises 183

A weakness of the ygr computation is that since ygr refers to the calen-
dar time group at agein, it may be off by up to 5 years. However, lung
cancer death rates by age do not change that quickly, so we leave it at this.
A more careful procedure, and in fact the common practice in epidemiol-
ogy, is to split on both age and calendar time. The Epi package contains
generalized time-splitters splitLexis and cutLexis, which are useful
for this purpose and also for handling the related case of splitting time
based on individual events (e.g., childbirth).

As a final step, we can merge in the mortality table as we did in
Section 10.3.2.

> nickel.expand <- merge(nickel.expand, ewrates,
+ by.x=c("agr","ygr"), by.y=c("age","year"))
> head(nickel.expand)
agr ygr id icd exposure dob age1st agein ageout lung

1 20 1931 325 0 0 1910.500 14.0737 23.7465 25 6
2 20 1931 273 0 0 1909.500 14.6913 24.7465 25 6
3 20 1931 110 0 0 1909.247 14.0302 24.9999 25 6
4 20 1931 574 0 0 1909.729 14.0356 24.5177 25 6
5 20 1931 213 0 0 1910.129 14.2018 24.1177 25 6
6 20 1931 546 0 0 1909.500 14.4945 24.7465 25 6
nasal other

1 0 3116
2 0 3116
3 0 3116
4 0 3116
5 0 3116
6 0 3116

For later use, the expanded data set is made available “precooked” in the
ISwR package under the name nickel.expand. We return to the data
set in connection with the analysis of rates in Chapter 15.

10.6 Exercises

10.1 Create a factor in which the blood.glucose variable in the
thuesen data is divided into the intervals (4, 7], (7, 9], (9, 12], and (12, 20].
Change the level names to “low”, “intermediate”, “high”, and “very
high”.

10.2 In the bcmort data set, the four-level factor cohort can be consid-
ered the product of two two-level factors, say period and area. How
can you generate them?

184 10. Advanced data handling

10.3 Convert the ashina data to the long format. Consider how to
encode whether the vas measurement is from the first or the second
measurement session.

10.4 Split the stroke data according to obsmonths into time intervals
0–0.5, 0.5–2, 2–12, and 12+ months after stroke.

	Advanced data handling
	Recoding variables
	The cut function
	Manipulating factor levels
	Working with dates
	Recoding multiple variables

	Conditional calculations
	Combining and restructuring data frames
	Appending frames
	Merging data frames
	Reshaping data frames

	Per-group and per-case procedures
	Time splitting
	Exercises

