
11
Multiple regression

This chapter discusses the case of regression analysis with multiple pre-
dictors. There is not really much new here since model specification and
output do not differ a lot from what has been described for regression
analysis and analysis of variance. The news is mainly the model search
aspect, namely among a set of potential descriptive variables to look for a
subset that describes the response sufficiently well.

The basic model for multiple regression analysis is

y = β0 + β1x1 + · · ·+ βkxk + ε

where x1, . . . xk are explanatory variables (also called predictors) and the
parameters β1, . . . , βk can be estimated using the method of least squares
(see Section 6.1). A closed-form expression for the estimates can be derived
using matrix calculus, but we do not go into the details of that here.

11.1 Plotting multivariate data

As an example in this chapter, we use a study concerning lung function in
patients with cystic fibrosis in Altman (1991, p. 338). The data are in the
cystfibr data frame in the ISwR package.
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Figure 11.1. Pairwise plots for cystic fibrosis data.

You can obtain pairwise scatterplots between all the variables in the data
set. This is done using the function pairs. To get Figure 11.1, you simply
write

> par(mex=0.5)
> pairs(cystfibr, gap=0, cex.labels=0.9)

The arguments gap and cex.labels control the visual appearance by
removing the space between subplots and decreasing the font size. The
mex graphics parameter reduces the interline distance in the margins.

A similar plot is obtained by simply saying plot(cystfibr) since the
plot function is generic and behaves differently depending on the class
of its arguments (see Section 2.3.2). Here the argument is a data frame and
a pairs plot is a fairly reasonable thing to get when asking for a plot of an
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entire data frame (although you might equally reasonably have expected
a histogram or a barchart of each variable instead).

The individual plots do get rather small, probably not suitable for di-
rect publication, but such plots are quite an effective way of obtaining
an overview of multidimensional issues. For example, the close relations
among age, height, and weight appear clearly on the plot.

In order to be able to refer directly to the variables in cystfibr, we add
it to the search path (a harmless warning about masking of tlc ensues at
this point):

> attach(cystfibr)

Because this data set contains common variable names such as age,
height, and weight, it is a good idea to ensure that you do not have
identically named variables in the workspace at this point. In particular,
such names were used in the introductory session.

11.2 Model specification and output

Specification of a multiple regression analysis is done by setting up a
model formula with + between the explanatory variables:

lm(pemax~age+sex+height+weight+bmp+fev1+rv+frc+tlc)

which is meant to be read as “pemax is described using a model that
is additive in age, sex, and so forth.” (pemax is the maximal expira-
tory pressure. See Appendix B for a description of the other variables in
cystfibr.)

As usual, there is not much output from lm itself, but with the aid of
summary you can obtain some more interesting output:

> summary(lm(pemax~age+sex+height+weight+bmp+fev1+rv+frc+tlc))

Call:
lm(formula = pemax ~ age + sex + height + weight + bmp + fev1 +

rv + frc + tlc)

Residuals:
Min 1Q Median 3Q Max

-37.338 -11.532 1.081 13.386 33.405

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 176.0582 225.8912 0.779 0.448
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age -2.5420 4.8017 -0.529 0.604
sex -3.7368 15.4598 -0.242 0.812
height -0.4463 0.9034 -0.494 0.628
weight 2.9928 2.0080 1.490 0.157
bmp -1.7449 1.1552 -1.510 0.152
fev1 1.0807 1.0809 1.000 0.333
rv 0.1970 0.1962 1.004 0.331
frc -0.3084 0.4924 -0.626 0.540
tlc 0.1886 0.4997 0.377 0.711

Residual standard error: 25.47 on 15 degrees of freedom
Multiple R-squared: 0.6373, Adjusted R-squared: 0.4197
F-statistic: 2.929 on 9 and 15 DF, p-value: 0.03195

The layout should be well known by now. Notice that there is not one
single significant t value, but the joint F test is nevertheless significant,
so there must be an effect somewhere. The reason is that the t tests only
say something about what happens if you remove one variable and leave
in all the others. You cannot see whether a variable would be statistically
significant in a reduced model; all you can see is that no variable must be
included.

Note further that there is quite a large difference between the unadjusted
and the adjusted R2, which is due to the large number of variables relative
to the number of degrees of freedom for the variance. Recall that the for-
mer is the change in residual sum of squares relative to an empty model,
whereas the latter is the similar change in residual variance:

> 1-25.5^2/var(pemax)
[1] 0.4183949

The 25.5 comes from “residual standard error” in the summary output.

The ANOVA table for a multiple regression analysis is obtained using
anova and gives a rather different picture:

> anova(lm(pemax~age+sex+height+weight+bmp+fev1+rv+frc+tlc))
Analysis of Variance Table

Response: pemax
Df Sum Sq Mean Sq F value Pr(>F)

age 1 10098.5 10098.5 15.5661 0.001296 **
sex 1 955.4 955.4 1.4727 0.243680
height 1 155.0 155.0 0.2389 0.632089
weight 1 632.3 632.3 0.9747 0.339170
bmp 1 2862.2 2862.2 4.4119 0.053010 .
fev1 1 1549.1 1549.1 2.3878 0.143120
rv 1 561.9 561.9 0.8662 0.366757
frc 1 194.6 194.6 0.2999 0.592007
tlc 1 92.4 92.4 0.1424 0.711160
Residuals 15 9731.2 648.7
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---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Note that, except for the very last line (“tlc”), there is practically no
correspondence between these F tests and the t tests from summary. In
particular, the effect of age is now significant. That is because these tests
are successive; they correspond to (reading upward from the bottom) a
stepwise removal of terms from the model until finally only age is left.
During the process, bmp came close to the magical 5% limit, but in view of
the number of tests, this is hardly noteworthy.

The probability that one out of eight independent tests gives a p-value of
0.053 or below is actually just over 35%! The tests in the ANOVA table are
not completely independent, but the approximation should be good.

The ANOVA table indicates that there is no significant improvement of
the model once age is included. It is possible to perform a joint test for
whether all the other variables can be removed by adding up the sums of
squares contributions and using the sum for an F test; that is,

> 955.4+155.0+632.3+2862.2+1549.1+561.9+194.6+92.4
[1] 7002.9
> 7002.9/8
[1] 875.3625
> 875.36/648.7
[1] 1.349407
> 1-pf(1.349407,8,15)
[1] 0.2935148

This corresponds to collapsing the eight lines of the table so that it would
look like this:

Df Sum Sq Mean Sq F Pr(>F)
age 1 10098.5 10098.5 15.566 0.00130
others 8 7002.9 875.4 1.349 0.29351
Residual 15 9731.2 648.7

(Note that this is “cheat output”, in which we have manually inserted the
numbers computed above.)

A procedure leading directly to the result is

> m1<-lm(pemax~age+sex+height+weight+bmp+fev1+rv+frc+tlc)
> m2<-lm(pemax~age)
> anova(m1,m2)
Analysis of Variance Table

Model 1: pemax ~ age + sex + height + weight + bmp + fev1 + rv +
frc + tlc

Model 2: pemax ~ age
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Res.Df RSS Df Sum of Sq F Pr(>F)
1 15 9731.2
2 23 16734.2 -8 -7002.9 1.3493 0.2936

which gives the appropriate F test with no manual computation.

Notice, however, that you need to be careful to ensure that the two models
are actually nested. R does not check this, although it does verify that
the number of response observations is the same to safeguard against the
more obvious mistakes. (When there are missing values in the descriptive
variables, it’s easy for the smaller model to contain more data points.)

From the ANOVA table, we can thus see that it is allowable to remove all
variables except age. However, that this particular variable is left in the
model is primarily due to the fact that it was mentioned first in the model
specification, as we see below.

11.3 Model search

R has the step() function for performing model searches by the Akaike
information criterion. Since that is well beyond the scope of this book, we
use simple manual variants of backwards elimination.

In the following, we go through a practical model reduction for the exam-
ple data. Notice that the output has been slightly edited to take up less
space.

> summary(lm(pemax~age+sex+height+weight+bmp+fev1+rv+frc+tlc))
...

Estimate Std. Error t value Pr(>|t|)
(Intercept) 176.0582 225.8912 0.779 0.448
age -2.5420 4.8017 -0.529 0.604
sex -3.7368 15.4598 -0.242 0.812
height -0.4463 0.9034 -0.494 0.628
weight 2.9928 2.0080 1.490 0.157
bmp -1.7449 1.1552 -1.510 0.152
fev1 1.0807 1.0809 1.000 0.333
rv 0.1970 0.1962 1.004 0.331
frc -0.3084 0.4924 -0.626 0.540
tlc 0.1886 0.4997 0.377 0.711
...

One advantage of doing model reductions by hand is that you may im-
pose some logical structure on the process. In the present case, it may, for
instance, be natural to try to remove other lung function indicators first.

> summary(lm(pemax~age+sex+height+weight+bmp+fev1+rv+frc))
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...
Estimate Std. Error t value Pr(>|t|)

(Intercept) 221.8055 185.4350 1.196 0.2491
age -3.1346 4.4144 -0.710 0.4879
sex -4.6933 14.8363 -0.316 0.7558
height -0.5428 0.8428 -0.644 0.5286
weight 3.3157 1.7672 1.876 0.0790 .
bmp -1.9403 1.0047 -1.931 0.0714 .
fev1 1.0183 1.0392 0.980 0.3417
rv 0.1857 0.1887 0.984 0.3396
frc -0.2605 0.4628 -0.563 0.5813
...
> summary(lm(pemax~age+sex+height+weight+bmp+fev1+rv))
...

Estimate Std. Error t value Pr(>|t|)
(Intercept) 166.71822 154.31294 1.080 0.2951
age -1.81783 3.66773 -0.496 0.6265
sex 0.10239 11.89990 0.009 0.9932
height -0.40981 0.79257 -0.517 0.6118
weight 2.87386 1.55120 1.853 0.0814 .
bmp -1.94971 0.98415 -1.981 0.0640 .
fev1 1.41526 0.74788 1.892 0.0756 .
rv 0.09567 0.09798 0.976 0.3425
...
> summary(lm(pemax~age+sex+height+weight+bmp+fev1))
...

Estimate Std. Error t value Pr(>|t|)
(Intercept) 260.6313 120.5215 2.163 0.0443 *
age -2.9062 3.4898 -0.833 0.4159
sex -1.2115 11.8083 -0.103 0.9194
height -0.6067 0.7655 -0.793 0.4384
weight 3.3463 1.4719 2.273 0.0355 *
bmp -2.3042 0.9136 -2.522 0.0213 *
fev1 1.0274 0.6329 1.623 0.1219
...
> summary(lm(pemax~age+sex+height+weight+bmp))
...

Estimate Std. Error t value Pr(>|t|)
(Intercept) 280.4482 124.9556 2.244 0.0369 *
age -3.0750 3.6352 -0.846 0.4081
sex -11.5281 10.3720 -1.111 0.2802
height -0.6853 0.7962 -0.861 0.4001
weight 3.5546 1.5281 2.326 0.0312 *
bmp -1.9613 0.9263 -2.117 0.0476 *
...

As is seen, there was no obstacle to removing the four lung function
variables. Next we try to reduce among the variables that describe the
patient’s state of physical development or size. Initially, we avoid remov-
ing weight and bmp since they appear to be close to the 5% significance
limit.
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> summary(lm(pemax~age+height+weight+bmp))
...

Estimate Std. Error t value Pr(>|t|)
(Intercept) 274.5307 125.5745 2.186 0.0409 *
age -3.0832 3.6566 -0.843 0.4091
height -0.6985 0.8008 -0.872 0.3934
weight 3.6338 1.5354 2.367 0.0282 *
bmp -1.9621 0.9317 -2.106 0.0480 *
...
> summary(lm(pemax~height+weight+bmp))
...

Estimate Std. Error t value Pr(>|t|)
(Intercept) 245.3936 119.8927 2.047 0.0534 .
height -0.8264 0.7808 -1.058 0.3019
weight 2.7717 1.1377 2.436 0.0238 *
bmp -1.4876 0.7375 -2.017 0.0566 .
...
> summary(lm(pemax~weight+bmp))
...

Estimate Std. Error t value Pr(>|t|)
(Intercept) 124.8297 37.4786 3.331 0.003033 **
weight 1.6403 0.3900 4.206 0.000365 ***
bmp -1.0054 0.5814 -1.729 0.097797 .
...
> summary(lm(pemax~weight))
...

Estimate Std. Error t value Pr(>|t|)
(Intercept) 63.5456 12.7016 5.003 4.63e-05 ***
weight 1.1867 0.3009 3.944 0.000646 ***
...

Notice that, once age and height were removed, bmp was no longer sig-
nificant. In the original reference (Altman, 1991), weight, fev1, and bmp
all ended up with p-values below 5%. However, far from all elimination
procedures lead to that result.

It is also a good idea to pay close attention to the age, weight, and
height variables, which are heavily correlated since we are dealing with
children and adolescents.

> summary(lm(pemax~age+weight+height))
...

Estimate Std. Error t value Pr(>|t|)
(Intercept) 64.65555 82.40935 0.785 0.441
age 1.56755 3.14363 0.499 0.623
weight 0.86949 0.85922 1.012 0.323
height -0.07608 0.80278 -0.095 0.925
...
> summary(lm(pemax~age+height))
...

Estimate Std. Error t value Pr(>|t|)
(Intercept) 17.8600 68.2493 0.262 0.796
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age 2.7178 2.9325 0.927 0.364
height 0.3397 0.6900 0.492 0.627
...
> summary(lm(pemax~age))
...

Estimate Std. Error t value Pr(>|t|)
(Intercept) 50.408 16.657 3.026 0.00601 **
age 4.055 1.088 3.726 0.00111 **
...
> summary(lm(pemax~height))
...

Estimate Std. Error t value Pr(>|t|)
(Intercept) -33.2757 40.0445 -0.831 0.41453
height 0.9319 0.2596 3.590 0.00155 **
...

As it turns out, there is really no reason to prefer one of the three variables
over the two others. The fact that an elimination method ends up with a
model containing only weight is essentially a coincidence. You can easily
be misled by model search procedures that end up with one highly sig-
nificant variable — it is far from certain that the same variable would be
chosen if you were to repeat the analysis on a new, similar data set.

What you may reasonably conclude is that there is probably a connection
with the patient’s physical development or size, which may be described
in terms of age, height, or weight. Which description to use is arbitrary. If
you want to choose one over the others, a decision cannot be based on the
data, although possibly on theoretical considerations and/or results from
previous investigations.

11.4 Exercises

11.1 The secher data are best analyzed after log-transforming birth
weight as well as the abdominal and biparietal diameters. Fit a prediction
equation for birth weight. How much is gained by using both diameters in
a prediction equation? The sum of the two regression coefficients is almost
exactly 3 — can this be given a nice interpretation?

11.2 The tlc data set contains a variable also called tlc. This is not in
general a good idea; explain why. Describe tlc using the other variables
in the data set and discuss the validity of the model.

11.3 The analyses of cystfibr involve sex, which is a binary variable.
How would you interpret the results for this variable?

11.4 Consider the juul2 data set and select the group of those over 25
years old. Perform a regression analysis of

√
igf1 on age, and extend
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the model by including height and weight. Generate the analysis of
variance table for the extended model. What is the surprise, and why does
it happen?

11.5 Analyze and interpret the effect of explanatory variables on the milk
intake in the kfm data set using a multiple regression model. Notice that
sex is a factor here; what does that imply for the analyses?
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