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Survival analysis

The analysis of lifetimes is an important topic within biology and
medicine in particular but also in reliability analysis with engineering ap-
plications. Such data are often highly nonnormally distributed, so that the
use of standard linear models is problematic.

Lifetime data are often censored: You do not know the exact lifetime, only
that it is longer than a given value. For instance, in a cancer trial, some
people are lost to follow-up or simply live beyond the study period. It
is an error to ignore the censoring in the statistical analysis, sometimes
with extreme consequences. Consider, for instance, the case where a new
treatment is introduced towards the end of the study period, so that nearly
all the observed lifetimes will be cut short.

14.1 Essential concepts

Let X be the true lifetime and T a censoring time. What you observe is
the minimum of X and T together with an indication of whether it is one
or the other. T can be a random variable or a fixed time depending on
context, but if it is random, then it should generally be noninformative for
the methods we describe here to be applicable. Sometimes “dead from
other causes” is considered a censoring event for the mortality of a given

P. Dalgaard, Introductory Statistics with R,
DOI: 10.1007/978-0-387-79054-1_14, © Springer Science+Business Media, LLC 2008



250 14. Survival analysis

disease, and in those cases it is particularly important to ensure that these
other causes are unassociated with the disease state.

The survival function S(t) measures the probability of being alive at a given
time. It is really just 1 minus the cumulative distribution function for X,
1− F(t).

The hazard function or force of mortality h(t) measures the (infinitesimal)
risk of dying within a short interval of time t, given that the subject is alive
at time t. If the lifetime distribution has density f , then h(t) = f (t)/S(t).
This is often considered a more fundamental quantity than (say) the mean
or median of the survival distribution and is used as a basis for modelling.

14.2 Survival objects

We use the package survival, written by Terry Therneau and ported
to R by Thomas Lumley. The package implements a large number of ad-
vanced techniques. For the present purposes, we use only a small subset
of it.

To load survival, use

> library(survival)

(This may produce a harmless warning about masking the lung data set
from the ISwR package.)

The routines in survival work with objects of class "Surv", which is
a data structure that combines times and censoring information. Such ob-
jects are constructed using the Surv function, which takes two arguments:
an observation time and an event indicator. The latter can be coded as a
logical variable, a 0/1 variable, or a 1/2 variable. The latter coding is not
recommended since Surv will assume 0/1 coding if all values are 1.

Actually, Surv can also be used with three arguments for dealing with
data that have a start time as well as an end time (“staggered entry”) and
also interval censored data (where you know that an event happened be-
tween two dates, as happens, for instance, in repeated testing for a disease)
can be handled.

We use the data set melanom collected by K. T. Drzewiecki and re-
produced in Andersen et al. (1991). The data become accessible as
follows:

> attach(melanom)
> names(melanom)
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[1] "no" "status" "days" "ulc" "thick" "sex"

The variable status is an indicator of the patient’s status by the end of
the study: 1 means “dead from malignant melanoma”, 2 means “alive on
January 1, 1978”, and 3 means “dead from other causes”. The variable
days is the observation time in days, ulc indicates (1 for present and 2
for absent) whether the tumor was ulcerated, thick is the thickness in
1/100 mm, and sex contains the gender of the patient (1 for women and
2 for men).

We want to create a Surv object in which we consider the values 2 and 3
of the status variable as censorings. This is done as follows:

> Surv(days, status==1)
[1] 10+ 30+ 35+ 99+ 185 204 210 232 232+ 279
[11] 295 355+ 386 426 469 493+ 529 621 629 659
[21] 667 718 752 779 793 817 826+ 833 858 869
...
[181] 3476+ 3523+ 3667+ 3695+ 3695+ 3776+ 3776+ 3830+ 3856+ 3872+
[191] 3909+ 3968+ 4001+ 4103+ 4119+ 4124+ 4207+ 4310+ 4390+ 4479+
[201] 4492+ 4668+ 4688+ 4926+ 5565+

Associated with the Surv objects is a print method that displays the ob-
jects in the format above, with a ‘+’ marking censored observations. For
example, 10+ means that the patient did not die from melanoma within
10 days and was then unavailable for further study (in fact, he died from
other causes), whereas 185 means that the patient died from the disease a
little over half a year after his operation.

Notice that the second argument to Surv is a logical vector; status==1
is TRUE for those who died of malignant melanoma and FALSE otherwise.

14.3 Kaplan–Meier estimates

The Kaplan–Meier estimator allows the computation of an estimated sur-
vival function in the presence of right-censoring. It is also called the
product-limit estimator because one way of describing the procedure is
that it multiplies together conditional survival curves for intervals in
which there are either no censored observations or no deaths. This be-
comes a step function where the estimated survival is reduced by a factor
(1− 1/Rt) if there is a death at time t and a population of Rt is still alive
and uncensored at that time.

Computing the Kaplan–Meier estimator for the survival function is done
with a function called survfit. In its simplest form, it takes just a single
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argument, namely a Surv object. It returns a survfit object. As de-
scribed above, we consider “dead from other causes” a kind of censoring
and do as follows:

> survfit(Surv(days,status==1))
Call: survfit(formula = Surv(days, status == 1))

n events median 0.95LCL 0.95UCL
205 57 Inf Inf Inf

As is seen, using survfit by itself is not very informative (just as the
printed output of a “bare” lm is not). You get a couple of summary statis-
tics and an estimate of the median survival, and in this case the latter is
not even interesting because the estimate is infinite. The survival curve
does not cross the 50% mark before all patients are censored.

To see the actual Kaplan–Meier estimate, use summary on the survfit
object. We first save the survfit object into a variable, here named
surv.all because it contains the raw survival function for all patients
without regard to patient characteristics.

> surv.all <- survfit(Surv(days,status==1))
> summary(surv.all)
Call: survfit(formula = Surv(days, status == 1))

time n.risk n.event survival std.err lower 95% CI upper 95% CI
185 201 1 0.995 0.00496 0.985 1.000
204 200 1 0.990 0.00700 0.976 1.000
210 199 1 0.985 0.00855 0.968 1.000
232 198 1 0.980 0.00985 0.961 1.000
279 196 1 0.975 0.01100 0.954 0.997
295 195 1 0.970 0.01202 0.947 0.994

...
2565 63 1 0.689 0.03729 0.620 0.766
2782 57 1 0.677 0.03854 0.605 0.757
3042 52 1 0.664 0.03994 0.590 0.747
3338 35 1 0.645 0.04307 0.566 0.735

This contains the values of the survival function at the event times. The
censoring times are not displayed but are contained in the survfit object
and can be obtained by passing censored=T to summary (see the help
page for summary.survfit for such details).

The Kaplan–Meier estimate is the step function whose jump points are
given in time and whose values right after a jump are given in survival.
Additionally, both an estimate of the standard error of the curve and a
(pointwise) confidence interval for the true curve are given.
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Figure 14.1. Kaplan–Meier plot for melanoma data (all observations).

Normally, you would be more interested in showing the Kaplan–Meier
estimate graphically than numerically. To do this (Figure 14.1), you simply
write

> plot(surv.all)

The markings on the curve indicate censoring times, and the bands give
approximate confidence intervals. If you look closely, you will see that the
bands are not symmetrical around the estimate. They are constructed as a
symmetric interval on the log scale and transformed back to the original
scale.

It is often useful to plot two or more survival functions on the same plot
so that they can be directly compared (Figure 14.2). To obtain survival
functions split by gender, do the following:

> surv.bysex <- survfit(Surv(days,status==1)~sex)
> plot(surv.bysex)

That is, you use a model formula as in lm and glm, specifying that the
survival object generated from day and status should be described by
sex. Notice that there are no confidence intervals on the curves. These are
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Figure 14.2. Kaplan–Meier plots for melanoma data, grouped by gender.

turned off when there are two or more curves because the display easily
becomes confusing. They can be turned on again by passing conf.int=T
to plot, in which case it can be recommended to use separate colours for
the curves, as in

> plot(surv.bysex, conf.int=T, col=c("black","gray"))

Similarly, you can avoid plotting the confidence bands in the single-
sample case by setting conf.int=F. If you want the bands but at a 99%
confidence level, you should pass conf.int=0.99 to survfit. Notice
that the level of confidence is an argument to the fitting function (which
needs it to compute the confidence limits), whereas the decision to plot
the bands is controlled by a similarly named argument to plot.

14.4 The log-rank test

The log-rank test is used to test whether two or more survival curves are
identical. It is based on looking at the population at each death time and
computing the expected number of deaths in proportion to the number of
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individuals at risk in each group. This is then summed over all death times
and compared with the observed number of deaths by a procedure similar
(but not identical) to the χ2 test. Notice that the interpretation of “ex-
pected” and “observed” is slightly peculiar: If the difference in mortality
is sufficiently large, then you can easily “expect” the same individuals to
die several times over the course of the trial. If the population is observed
to extinction with no censoring, then the observed number of deaths will
equal the group size by definition and the expected values will contain all
the random variation.

The log-rank test is formally nonparametric since the distribution of the
test statistic depends only on the assumption that the groups have the
same survival function. However, it can also be viewed as a model-based
test under the assumption of proportional hazards (see Section 14.1). You can
set up a semiparametric model in which the hazard itself is unspecified
but it is assumed that the hazards are proportional between groups. Test-
ing that the proportionality factors are all unity then leads to a log-rank
test. The log-rank test will work best against this class of alternatives.

Computation of the log-rank test is done by the function survdiff.
This actually implements a whole family of tests specified by a param-
eter ρ, allowing various nonproportional hazards alternatives to the null
hypothesis, but the default value of ρ = 0 gives the log-rank test.

> survdiff(Surv(days,status==1)~sex)
Call:
survdiff(formula = Surv(days, status == 1) ~ sex)

N Observed Expected (O-E)^2/E (O-E)^2/V
sex=1 126 28 37.1 2.25 6.47
sex=2 79 29 19.9 4.21 6.47

Chisq= 6.5 on 1 degrees of freedom, p= 0.011

The specification is using a model formula as for linear and generalized
linear models. However, the test can deal only with grouped data, so if
you specify multiple variables on the right-hand side it will work on the
grouping of data generated by all combinations of predictor variables. It
also makes no distinction between factors and numerical codes. The same
is true of survfit.

It is also possible to specify stratified analyses, in which the observed and
expected value calculations are carried out separately within a stratifica-
tion of the data set. For instance, you can compute the log-rank test for a
gender effect stratified by ulceration as follows:

> survdiff(Surv(days,status==1)~sex+strata(ulc))
Call:
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survdiff(formula = Surv(days, status == 1) ~ sex + strata(ulc))

N Observed Expected (O-E)^2/E (O-E)^2/V
sex=1 126 28 34.7 1.28 3.31
sex=2 79 29 22.3 1.99 3.31

Chisq= 3.3 on 1 degrees of freedom, p= 0.0687

Notice that this makes the effect of sex appear less significant. A possible
explanation might be that males seek treatment when the disease is in
a more advanced state than women do, so that the gender difference is
reduced when adjusted for a measure of disease progression.

14.5 The Cox proportional hazards model

The proportional hazards model allows the analysis of survival data by
regression models similar to those of lm and glm. The scale on which
linearity is assumed is the log-hazard scale. Models can be fitted via the
maximization of Cox’s likelihood, which is not a true likelihood but it can
be shown that it may be used as one. It is calculated in a manner similar
to that of the log-rank test, as the product of conditional likelihoods of the
observed death at each death time.

As a first example, consider a model with the single regressor sex:

> summary(coxph(Surv(days,status==1)~sex))
Call:
coxph(formula = Surv(days, status == 1) ~ sex)

n= 205
coef exp(coef) se(coef) z p

sex 0.662 1.94 0.265 2.5 0.013

exp(coef) exp(-coef) lower .95 upper .95
sex 1.94 0.516 1.15 3.26

Rsquare= 0.03 (max possible= 0.937 )
Likelihood ratio test= 6.15 on 1 df, p=0.0131
Wald test = 6.24 on 1 df, p=0.0125
Score (logrank) test = 6.47 on 1 df, p=0.0110

The coef is the estimated logarithm of the hazard ratio between the two
groups, which for convenience is also given as the actual hazard ratio
exp(coef). The line following that also gives the inverted ratio (swap-
ping the groups) and confidence intervals for the hazard ratio. Finally,
three overall tests for significant effects in the model are given. These are
all equivalent in large samples but may differ somewhat in small-sample
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cases. Notice that the Wald test is identical to the z test based on the es-
timated coefficient divided by its standard error, whereas the score test is
equivalent to the log-rank test (as long as the model involves only a simple
grouping).

A more elaborate example, involving a continuous covariate and a
stratification variable, is

> summary(coxph(Surv(days,status==1)~sex+log(thick)+strata(ulc)))
Call:
coxph(formula = Surv(days, status == 1) ~ sex + log(thick) +

strata(ulc))

n= 205

coef exp(coef) se(coef) z p
sex 0.36 1.43 0.270 1.33 0.1800
log(thick) 0.56 1.75 0.178 3.14 0.0017

exp(coef) exp(-coef) lower .95 upper .95
sex 1.43 0.698 0.844 2.43
log(thick) 1.75 0.571 1.234 2.48

Rsquare= 0.063 (max possible= 0.9 )
Likelihood ratio test= 13.3 on 2 df, p=0.00130
Wald test = 12.9 on 2 df, p=0.00160
Score (logrank) test = 13.0 on 2 df, p=0.00152

It is seen that the significance of the sex variable has been further reduced.

The Cox model assumes an underlying baseline hazard function with a
corresponding survival curve. In a stratified analysis, there will be one
such curve for each stratum. They can be extracted by using survfit on
the output of coxph and of course be plotted using the plot method for
survfit objects (Figure 14.3):

> plot(survfit(coxph(Surv(days,status==1)~
+ log(thick)+sex+strata(ulc))))

Be aware that the default for survfit is to generate curves for a pseudo-
individual for which the covariates are at their mean values. In the present
case, that would correspond to a tumor thickness of 1.86 mm and a gen-
der of 1.39 (!). Notice that we have been sloppy in not defining sex as a
factor variable, but that would not actually give a different result (coxph
subtracts the means of the regressors before fitting, so a 1/2 coding is the
same as 0/1, which is what a factor with treatment contrasts gives you).
However, you can use the newdata argument of survfit to specify a
data frame for which you want to calculate survival curves.
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Figure 14.3. Baseline survival curves (ulcerated and nonulcerated tumors) in
stratified Cox regression.

14.6 Exercises

14.1 In the graft.vs.host data set, estimate the survival function for
patients with or without GVHD. Test the hypothesis that the survival
is the same in both groups. Extend the analysis by including the other
explanatory variables.

14.2 With the Cox model in the last section of the text, generate a plot
with estimated survival curves for men with nonulcerated tumors of
thicknesses 0.1, 0.2, and 0.5 mm (three curves in one plot). Hint: survfit
objects can be indexed with [] to extract individual strata.

14.3 Fit Cox models to the stroke data with age and sex as predictors
and with sex alone. Explain the difference.

14.4 With the split data from Exercise 10.4, you can fit a Cox model with
delayed entry to the stroke data; help(Surv) shows how to set up the
Surv object in that case. Refit the model(s) from the previous exercise.
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