

Introducing Computer Science to Educationally Disadvantaged High School
Students - The Israeli Experience

Dalit Levy
Department of Education in Science and Technology

Technion, Israel Institute of Technology, Haifa 32000 Israel
dality@tx.technion.ac.il

1. Background

The social and educational issue of making the

discipline of computer science accessible to the public,
including high school students who grow up in low socio-
economic status families and in rural areas, have been
shaping our thinking for over a decade. In the phrase “our
thinking” I refer to the Israeli community of computer
science (CS) educators, educational researchers and
curricular developers in general, and to the “Migvan”
R&D team I belong to in particular1. In what follows I
will shortly describe the current high school CS
curriculum in Israel, suggest principles for a course that is
intended to introduce basic CS concepts and ideas to
educationally disadvantaged high school students, and
reflect upon our experience with teachers and students
taking that course.

2. The CS Curriculum in Israeli Schools

Within the Israeli educational system, CS entered high

schools as a discipline in itself in the mid-1970s [2]. At
the beginning of the 1990s, a new CS and information
technology (IT) curriculum had been developed, a new
set of curricular materials (books, presentations,
educational software) had been published, and more and
more high schools opened CS classes and IT-oriented
tracks. The new curriculum that is nowadays mandatory
in all Israeli high schools emphasizes the foundation of
algorithmics [1], and integrates the ‘abstract’ introduction
to CS concepts and problem solving methods with the
implementation of these concepts and methods using a
real programming environment.

The national curriculum suggests three levels of
learning CS and five learning modules (called “units”)
from which each school can construct its unique CS
curriculum. The more prestigious CS curriculum is the
highest level, where students take all five units
throughout their three-year high school. The intermediate
level is constructed of three units over two years, and in
the lowest level students usually take only one course
(called “first unit”) during one school year at the tenth

1 “Migvan – research and development in CS education” works at the
Technion, Israel Institute of Technology and managed by Tami Lapidot
and prof. Uri Leron. ‘Migvan’ is the Hebrew term for 'variety'.

grade. While in the highest level the students usually
have more or less homogenous mathematical, scientific
and thinking skills background, the populations that learn
the intermediate and the lowest level are heterogeneous
with diverse students' background and ability. In special,
those students who take only the first unit course are
often referred to as disadvantaged – whether their
weaknesses emerge from their families socio-economic
status, their individual learning and schooling history,
behavioral factors, or some diagnosed learning
disabilities. These 'first unit' classes have been at the core
of Migvan's R&D activities for the last twelve years,
when we have strived for designing, implementing and
putting into work a curricular unit in CS that could be
disciplinary sound and meaningful for these challenging
classes at the same time. The main educational principles
for the 'first unit' of the Israeli CS curriculum are
presented below.

3. Principles of the first CS Unit

The goal of the overall CS curriculum, as has been

stated by the ministry of Education disciplinary
committee2, is to deal with basic CS concepts and with
the design of computerized systems. This goal is
supplemented with four basic principles:
1. Integrating theory and practice.
2. Adjusting the conceptual and intellectual challenge to

the ability of high school students.
3. Modularity of contents and units.
4. Balance between mandatory and optional subjects.

Both the goal and the basic principles have been
adapted in designing the first unit and in developing the
learning environment. For example of implementing the
goal, the first unit deals with basic CS concepts like
algorithmic patterns and structured programming. For
example of the last principle, teachers of the first unit can
choose between two programming environments – using
Pascal or Microworlds Project Builder3, and although the

2 The Hebrew version is available online
http://www.csit.org.il/NCCS/TestProg/Mavo.html

3 an LCSI product, See www.microworlds.com

mailto:dality@tx.technion.ac.il
http://www.csit.org.il/NCCS/TestProg/Mavo.html
http://www.microworlds.com/

first half of the first unit is mandatory (called
'introduction to programming I'), teachers can also choose
what to deal with in the second half ('introduction to
programming II' OR software tools).

The four general educational principles hold for all the
modules of the CS curriculum, including the first module.
In addition, three unique principles seem appropriate
when designing a CS unit for the specific population of
learners that take the 'first unit' course and the special
community of teachers who teach that course.
1. Decomposition: organizing the learning material in

small and focused units of contents.
2. Experience-oriented learning environment: using

students’ activities in the computers laboratory as the
ground from which conceptual understanding can emerge
(as opposed to using computers for exercising per-se).

3. Project-based learning: the learning is accompanied by
the need to design, implement and present some 'mini'
programming projects.
These specific principles were implemented in two

variants of the first unit, both developed in the mid-1990s
in Migvan – one using the Pascal programming language
and the other using the Hebrew version of Logo
programming language. Lately, the learning environment
has been updated and new learning material have been
developed using the above principles. Examples of
implementing these principles in the new learning
environment are presented in the next section.

4. TEVEL - the Israeli experience

As an example of implementing the above three

principle let me take the TEVEL learning environment
for the first CS unit4. The development of TEVEL (the
Hebrew word for 'universe') has been recently completed
and the first year of using the learning environment in high
schools has almost finished. The first unit course is one
school year long, ninety class hours, three hours per week.

Using the first principle of decomposition, we selected
five main subjects for the year long unit and designed the
curriculum accordingly in five modular periods, 5-6
weeks each. The first period is fully devoted to ‘setting a
shared base-line’ taking into account the diverse
background students might have both in computer
literacy and in their practices of learning. Thereafter, each
period is devoted to one main CS concept – constructing
programs using modular procedures (2nd period);
structured programming (3rd period); global variables and
interactive programming using variables (4th period); and
basic algorithmic patterns, including basic conditional
algorithms (5th period). We implemented the
decomposition one step further, by dividing each period
to sub-concepts and by designing a focused set of
learning activities for each sub-concept. For example,
during the forth period dealing with global variables,

4 TEVEL project began on December 2001, as a curricular project with
the support of MALAM – the Israeli Center for Science Education. The
author is the project leader and the project team includes Tami Lapidot,
Yosefa Har-Zion and Shai Israeli.

students first engage with activities focusing at the meaning
of variables (using the box metaphor); then they focus on
tracing programs with assignments instructions; and then
they focus on interactive programming using variables.

The second principle of experience-oriented learning
environment has been already clued above, when
describing the students as “engaged with activities”. But
TEVEL is not only an experience-oriented learning
environment; it is designed in such a way that students
could begin their learning in each period, in each sub-
concept and in each lesson with inquiry activities, using
the computer as a tool and the programming language as
a medium for these inquiries. TEVEL is not only an
experience-oriented, but also an experience-first
environment. All class discussions are based upon and
derived from students’ personal experiences and
experiments in the computers lab. It should be noted here
that in some classes with educationally disadvantaged
students, the notion of class discussion is meaningless – a
single teacher can rarely manage a real discussion with
most or even some students while the others are just
listening. But even in such cases, students might still
experience the learning environment and individually
discuss their experiences with the teacher afterwards.

The third principle calls for integrating software
design processes into the learning environment. There
seems to be an overall agreement concerning the profits
of engaging students in software projects. The issue we
have faced with was what software project can we
expected from novices in general, and from educationally
disadvantaged high school students in particular. The
programming environment we use in TEVEL,
MicroWorlds Project Builder, has been chose for the first
unit especially because of its advantages in the area of
simple project building. MicroWorlds allows students to
create dynamic and interactive programming projects
even in their first steps in the world of CS, and thus lets
students become active designers and active learners.
Those students who still has no computer at home; those
who are still unconfident in their ability to deal with
technology; those who experience major difficulties in
‘regular’ schooling practices like writing, reading, math –
can still design a simple project as early as the first period
(with no programming at all but with a variety of media),
then design a simple programming project using few
procedures upon the middle of the learning unit, and then
program a ‘real’ project with graphics and multimedia,
present it to her or his friends and family, and touch the
power of programmability.

5. References

[1] Y. Gal-Ezer, K. Beeri, D. Harel, and A. Yehudai, “A High
school program in computer science”, Computer 28(10), 1995,
pp. 73-80.

[2] B. Haberman, “Frames and boxes: a pattern-based method
for manipulating binary trees”, SIGCSE Bulletin Inroads 34 (4),
2002, pp. 60-64.

