
Bringing Educational Theory to End-User Programming 
Shreenivasarao Prabhakararao 

Department of Electrical Engineering and Computer Science 
Oregon State University, Corvallis, OR, 97331 

prabhash@cs.orst.edu 
 

 
INTRODUCTION 

It is estimated by 2005 that there will be 55 million 
end-user programmers compared to 2.75 million 
professional programmers. These end users are 
specifically disadvantaged compared to professional 
programmers with respect to their motivation, 
background, interests and programming experience. They 
view software applications as a tool to help them solve 
their problems and regard computers “as a means to an 
end rather than objects of intrinsic interest “ [13]. 

Recent years have seen the explosive growth of end-
user programming. End-user programmers are writing an 
unprecedented number of programs, due in large part to 
the significant effort put forth to bring programming 
power to end users. Unfortunately, this effort has not been 
supplemented by a comparable effort to help them 
increase the correctness of these often-faulty programs. 
One of the most widely used real-world end-user 
programming paradigms is the spreadsheet. Despite its 
perceived simplicity, evidence from this paradigm reveals 
that end-user programs often contain an alarming number 
of faults [9].  

To address this problem we plan to work towards 
providing the end user with just enough fine grained 
information they need to help them create correct and 
reliable spreadsheets. One means to facilitate such help is 
to develop an on-demand explanatory and advisory 
system that would encourage exploratory learning by the 
user and thus effective use of the system’s features.  

The focus of this research is to bring the principles of 
educational theory to end user programming to help end 
users build their skills that enhance their information 
seeking power and thus succeed in creating correct 
spreadsheets. We think this research would also benefit 
the educationally disadvantaged populations equally 
because the disadvantages (one specific disadvantage 
being lack of programming experience/background) faced 
by both these groups seem to overlap. 

This work is part of a vision we call “End user 
software engineering“. Our goal is to bring the benefits of 
software engineering research to end users without 
requiring them to learn the underlying software 
engineering theory and techniques. End-user software 
engineering is a highly integrated and an incremental 
concept of software engineering support for end users. 
Hence its components are not separate individual tools, 
but rather a blend of knowledge sources that come 
together seamlessly. A continually evolving prototype of 

end-user software engineering concepts exists for Forms/3 
[1], a member of the spreadsheet paradigm. It is in this 
setting that we are planning to implement the concept of 
explanatory and advisory system that would draw heavily 
from the educational theory principles. 
 
RELATED WORK 

There is considerable research done in the area of 
interactive explanatory and advisory systems.  Jussien and 
his colleagues have devised explanations to help find the 
causes of a program failing in a constraint-programming 
paradigm [2]. Our approach would differ from theirs 
based on the fact that our explanations while relevant to 
debugging has a primary goal of encouraging users to use 
the debugging features provided by our system. 

Lieberman described interfaces that give and take 
advice [3]. Our approach would also help the end users by 
offering advice to them and suggesting actions to take, but 
we do not plan to make our system learn from the users’ 
actions. 

Carroll described about intelligent advisory interfaces 
that helps in training the users [4]. Unlike their approach 
our approach is to provide the users with just enough 
information to help them succeed in their task. Further 
more we draw guidance from the Blackwell’s theory of 
Attention Investment [5]; hence we plan our system to be 
an on-demand explanatory and advisory system, which 
would offer explanation or advice when demanded but 
would not offer explanation or advice for unasked 
questions.  

We draw heavily on HCI research. In addition to 
Blackwell’s attention investment theory [5], Green et al.’s 
research on cognitive dimensions [6] and research related 
to psychology of curiosity [7] have been the major 
research that influences our work. 

For this part of the work we plan to draw from the 
Carroll’s minimalist theory of learning [8], which 
proposes a principle of encouraging users to get into 
action on meaningful tasks immediately in order to learn. 
 
SURPRISE-EXPLAIN- REWARD 

An underpinning of end-user software engineering is a 
strategy, which we refer to as surprise-explain-reward. 
The essence of this strategy is to arouse the user’s 
curiosity through an element of surprise and then 
encourage them, through explanations and rewards to get 
the user into action [10].  



The surprise-explain-reward strategy is a curiosity-
centered approach. Research in curiosity indicates that 
surprising by violating user’s assumptions can trigger a 
search for explanation [11]. The surprise element reveals 
to the users the presence of something they do not 
understand. This information-gap [7] motivates the user 
to explore in order to close the information gap. 
 
EMPHASIS ON “EXPLANATION” 

The implementation of the surprise element in our 
system is grounded in the research findings about the 
psychology of curiosity. In our strategy a feature that 
surprises the user must also inform the user. This is made 
possible by a low cost explanation system via tool tips. 
This present implementation of the explanation system is 
limited. 

The focus of this work is to bring the principles of 
educational theory to end user programming. Faced with 
incomplete and conflicting information, users make 
assumptions and take actions on as-if basis [4]. Users 
form sub-goals using clues in the environment [12]. 
Guiding the actions of users with a built in explanatory 
and advisory system is intended to ameliorate their 
problems of maintaining correctness of their programs. 
Our goal is to span our explanation system over all the 
end-user software engineering devices; so as to further 
guide the user actions increase the correctness of their 
programs.  
 
FUTURE DIRECTIONS 

Presently, we are collecting data about what 
educational theories and what principles of these theories 
could be brought into end-user programming. We are also 
investigating the behaviors of population with varied 
backgrounds and varied levels of knowledge and 
experience working with end-user applications. 

We plan to conduct some formative studies to direct 
our efforts in bringing educational theory to end-user 
programming. We also plan to conduct some experiments 
in future, to investigate the effectiveness of such an 
explanation and advisory system. It is our hope that this 
research will contribute to the integration of principles of 
educational theory into end-user programming.  
 
REFERENCES 
[1] M. Burnett, J. Atwood, R. Djang, H. Gottfried, J. 

Reichwein, and S. Yang, “Forms/3: A First-order Visual 
Language to Explore the Boundaries of the Spreadsheet 
Paradigm”, J. Func. Prog. 11, 2, Mar. 2001, 155-206. 

 
[2] Jussien, N. and Ouis, S., “User-friendly explanations for 

constraint programming”, Proc. ICLP’01 11th 
Wkshp.Logic Programming Environments (Paphos 
,Cyprus,Dec 2001). 

[3] Lieberman, H. “Interfaces that give and take advice”, 
Human-Computer Interaction for the New Millenium, 
J.Carroll, ed., ACM Press/Addison-Wesley, 475-485,2001. 

  
[4] Carroll, J.M and Aaronson, A.P., "Learning by doing with 

simulated intelligent help." Communications of the ACM 
31.9(1988): 1064-1079. 

 
[5] Blackwell, A. and Green, T. R. G., “Investment of attention 

as an analytic approach to cognitive dimensions”. In T. 
Green, R. Abdullah & P. Brna (Eds.) Collected Papers 
Wkshp.Psych. Of ProgrammingInterest Grp, 1999, 24-35  

 
[6] Green, T.R.G and Petre,M., “Usability analysis of visual 

programming environments: a ‘cognitive dimensions’ 
framework”,  J. Visual Languages and computing 7, 2(June 
1996) 131-174.  

 
[7] Lowenstein, G., “The psychology of curiosity”, 

Psychological Bulletin 116, 1 (1994), 75-98. 
 
[8] John M. Carroll, “The Nurnberg Funnel: Designing 

minimalist instruction for practical computer skill”, 
Cambridge, MA: MIT Press. Carroll, J.M. 1991. 

 
[9] R. Panko, “What We Know about Spreadsheet Errors”, J. 

End User Computing, spring 1998. 
 
[10] Wilson, A., M. Burnett, L. Beckwith, O. Granatir, L. 

Casburn, C. Cook, M. Durham, G. Rothermel, “Harnessing 
Curiosity to Increase Correctness in End-User 
Programming," in Proc. CHI ’03 (Ft. Lauderdale, FL, April 
5-10 2003) 

 
[11] Hastie, R., “Causes and effects of causal attribution”, 

J.Personality and Social Psychology, 46, (1984), 44-56. 
 
[12] Reimann, P. and Neubert, C., “The role of self explanation 

in learning to use a spreadsheet through examples“,  J. 
Computer Assisted Learning 16, (Dec.2000), 316-325. 

 
[13] Nardi, B. and J. Miller, "Twinkling Lights and Nested 

Loops: Distributed Problem Solving and Spreadsheet 
Development," Int. J. Man-Machine Studies, 34 (1991), 
pp.161-184. 

 
 


	EMPHASIS ON “EXPLANATION”

