
Towards Programming for the Non-Technical

SuTe Lei
Department of Computer Science

University of Texas at Dallas
sxl015120@utdallas.edu

The tasks of software development have traditionally been
done by highly-skilled and well-trained computer
programmers. A solid educational background is often
required to understand programming languages used in
the development. For people who are educationally
disadvantaged, the task of computer programming seems
remote. It might appear that there is no strong reason for
those people to partake programming activities. However,
in today’s volatile business environment, giving
programming capabilities to the educationally
disadvantaged might be an economically viable way to
upgrade the competitiveness of a business entity. To
achieve this, there is a need for an easy-to-use
programming environment that has the following
assumptions for its users:

 no formal trainings in computer programming.
 minimum educational backgrounds
 of different ethnicity and are unable to

communicate using the commonly spoken
language

Essentially the desired programming environment should
enable non-technical people to perform programming
tasks. The main challenge for developing such a system is
making the system assessable to anyone regardless his/her
technical background as well as educational background.
One natural way to fulfill this need is providing an easy-
to-understand user interface and capability of illustrating
programming logic in a plain and simple way. A computer
software program for young children will be a perfect
example. This type of program offers children at very
young age interesting ways of learning how to match
shapes, mix colours, build and rebuild blocks. Through
such a software system, children learn the concept of
cause and effect relationships. For example, erasing words
entered is done by clicking on an ‘electric fan’ which
blows all letters away with sound once it is clicked.

A highly intuitive visual approach offers an effective way
for educating novice users of a system. The visual
language, Vedo-Vedi [3], is one example of visual
approach being used for children's multilingual
communication in the Internet. The focus of our work,
however, is to develop a visual programming environment
for commercial applications. The work is motivated by
our experience in developing software systems for the
lumber industry. Most of the front line lumber workers
have minimum education in computer technology.
However, they are sometimes given programming tasks
on rearranging label printing or sorting sequence.
Customized reports might also need to be generated. Our

idea is developing a GUI-based programming system that
allows users to build a software program simply by
creating user interfaces and defining navigation flows.
Figure 1 shows the organization of the proposed
programming environment.

Figure 1 Organization of Visual Programming

Environment.

The process of building a program involves four main
steps:

1. Defining data in data definer.
2. Building UI forms and defining navigation

graphs, using UI builder.
3. Parsing navigation graphs via program generator.
4. Generating an executable program.

The user participates only in Steps 1 and 2 while the
system takes care of all the later steps. Data definer serves
as a data entry program for inputting all possible data to
be collected into a data store. The process typically starts
with checking through user’s existing system either
electronically or on paper and inputting them into the data
definer. Once the required data are defined, they will be
stored into the Data Store which is a repository of all
objects and fields for the system. Basic data accessing
routines such as create, delete, and open are also
automatically generated.

UI builder is a tool for building user interfaces. Its usages
are:

Operations done by the system

Tasks done by users

UI Builder

Data Definer

Navigation Graphs

Program Generator

UI Forms

Executable Program

Data
Store

Graph Grammars
Parser

Graph Editor

 to define UI forms and set properties for each
visual component.

 to define navigation graphs through visual
programming and syntax-directed editing.

Figure 2 shows a prototype of the UI builder. Users can
design an UI form by clicking and dropping visual
components onto the form. The properties of a visual
component can also be defined in the property editor. We
make the interface of UI builder as close to the resulting
program as possible in order to facilitate the concept of
“what you see is what you get (WYSIWYG)” [2]. We
believe that WYSIWYG is an appropriate paradigm for
designing a programming system for novice users. Users
can define exactly what they want through direct
manipulation in the UI builder.

Figure 2 Front-end of UI builder.

In addition to building UI forms, users can define the
execution flows of a program by drawing navigation flows
in the graph editor. Figure 3 shows a prototype of the
graph editor. All visual components used in the UI forms
are displayed in a tree list on the top left side of the editor.
System actions for data are listed in the bottom left. The
system actions are the data accessing routines
automatically generated during data definition process. To
specify an action for a visual component, such as ‘Create
new ticket’ button, users simply drag and drop the
selected visual component onto the drawing area located
on the right side of the editor, then select an action and
drop it into the drawing area. The final step is making a
link between these two boxes by pointing/clicking and
dragging. The navigation graph in Figure 3 indicates that a
ticket will be crated when CreateNewTicket button is
clicked. Although we simplify the drawing process of
navigation graphs, the syntax of navigation graphs is
actually defined in a graph grammar formalism [4] and the
drawing process is syntax-directed editing as in visual
programming [1]. The advantages of using graph
grammars to define the syntax of navigation graphs
include the following.

● Any user-entered navigation graph can be
formally verified.

● The parsing process may perform semantic
execution so that the activities in a navigation

graph may be simulated and/or animated as
desired.

It means that the front-end tool is supported by a
theoretically sound graph grammar formalism [4] and at
the same time the users of the tool do not need to know
how programs are generated.

Once all forms and navigation graphs are defined, basic
program codes can be automatically generated by parsing
navigation graphs and combining the textual format of UI
forms. Basic program codes can be written in C++, Java
or Delphi program languages. They are complied by a 3rd
party compiler via the program generator. The entire
program generating process is transparent to users. The
only thing users need to do is clicking on a button to
generate an executable program.

Figure 3 Graph editor for visually programming

navigation graphs

The overall approach we propose in this research will
provide the non-technical people to produce a structurally
sound program. We believe that the proposed
programming environment will benefit the educationally
disadvantaged people not only in understanding the
programming logics but also in creating real commercial
software programs.

Reference

1. M. M. Burnett, Visual Language Research

Bibliography,
http://www.cs.orst.edu/~burnett/vpl.html, 2003.

2. M.M. Burnett and S.K. Chekka, FAR: An End-User
WYSIWYG Programming Language for E-speak:
Interim Report, TR 00-60-10, October 2, 2000.

3. S.L. Tanimoto and C.E. Bernardelli, “Introducing
New Nouns in a Children’s Visual Language”, IEEE
Symposium on Visual Languages, September 1998,
Nova Scotia, Canada, pp 74-75.

4. D. Q. Zhang, K. Zhang, and J. Cao, A Context-
sensitive Graph Grammar Formalism for the
Specification of Visual Languages, The Computer
Journal, Vol.44, No.3, 2001, pp. 186-200

