
End-user software engineer-
ing does not mimic the tradi-
tional approaches of segregated
support for each element of the
software engineering life cycle,
nor does it ask the user to think
in those terms. Instead, it
employs a feedback loop sup-

ported by behind-the-scenes rea-
soning, with which the system
and user collaborate to monitor
dependability as the end user’s
program evolves. This approach
helps guard against the introduc-
tion of faults1 in the user’s pro-
gram and if faults have already

been introduced, helps the user
detect and locate them. Because
spreadsheet languages are the
most widely used end-user pro-
gramming languages to date—in
fact, they may be the most
widely used of all programming
languages—we have prototyped
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A strategy that allows end users the ability to perform
quality control methods as well as inspires them to
enhance the dependability of their software themselves. 

End-user programming has become the most common form of pro-
gramming in use today [2], but there has been little investigation into the
dependability of the programs end users create. This is problematic because the
dependability of these programs can be very important; in some cases, errors in
end-user programs, such as formula errors in spreadsheets, have cost millions of
dollars. (For example, see www.theregister.co.uk/content/67/31298.html or
panko.cba.hawaii.edu/ssr/Mypapers/whatknow.htm.) We have been investigat-
ing ways to address this problem by developing a software engineering para-
digm viable for end-user programming, an approach we call end-user software
engineering.

END-USER
SOFTWARE ENGINEERING

By Margaret Burnett, 
Curtis Cook, and 
Gregg Rothermel

1We follow the standard terminology for discussing program errors. A “failure” is an incorrect output, and a “fault” is the incorrect element(s) of source code causing
the failure. For example, an answer of “D” in a spreadsheet cell if the student’s grade should actually be a “B” is a failure; the incorrect formula, such as omission of
one of the student’s test grades in the sum upon which his/her letter grade is based, is the fault. 
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our approach in the spreadsheet paradigm. Our pro-
totype includes the following end-user software engi-
neering devices:

• An interactive testing methodology to help end-
user programmers test;

• Fault localization capabilities to help users find
the faults that testing may have revealed;

• Interactive assertions to continually monitor val-
ues the program produces, and alert users to
potential discrepancies; and

• Motivational devices that gently attempt to inter-
est end users in appropriate software engineering
behaviors at suitable moments.

In this article, we describe how these devices can be
used by end-user programmers. We also summarize
the results of our empirical investigations into the use-
fulness and effectiveness of these devices for promot-

ing dependability in end-user
programming. 

WYSIWYT Testing 
In our What You See Is What
You Test (WYSIWYT) method-
ology, a user can test a spread-
sheet incrementally as he or she
develops it by simply validating
any value as correct at any point
in the process. Behind the
scenes, these validations are used
to measure the quality of testing
in terms of a test-adequacy crite-
rion. These measurements are
then projected to the user via
several different visual devices,
to help them direct their testing
activities.

For example, suppose a
teacher is creating a student
grades spreadsheet, as in Figure 1.
During this process, whenever
the teacher notices that a value in
a cell is correct, she can check it
off (“validate” it). The checkmark
provides feedback, and later
reminds the teacher that the cell’s
value has been validated under
current inputs. (Empty boxes and
question marks in boxes are also

possible; both indicate that the cell’s value has not
been validated under the current inputs. In addition,
the question mark indicates that validating the cell
would increase testedness.)

A second, more important, result of the teacher’s
validation action is that the colors of the validated 
cell’s borders become more blue, indicating that data
dependencies between the validated cell and cells it ref-
erences have been exercised in producing the validated
values. From the border colors, the teacher is kept
informed of which areas of the spreadsheet are tested
and to what extent. Thus, in the figure, row 4’s Letter
cell’s border is partially blue (purple), because some of
the dependencies ending at that cell have now been
tested. Testing results also flow upstream against
dataflow to other cells whose formulas have been used
in producing a validated value. In our example, all
dependencies ending in row 4’s Course cell have now
been exercised, so that cell’s border is now blue.
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if (courseR4 >=90) then "A"
else (if (courseR4 >=80) then "B"
else (if (courseR4 >=70) then "C"
else (if (courseR4 >=60) then "D"
else "F")))
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Figure 1. The teacher’s sequence of 
interactions with WYSIWYT testing. 

(a)

(b)

(c)



If the teacher chooses, she can also view dependen-
cies by displaying dataflow arrows between cells or
between subexpressions in formulas. In Figure 1(b),
she has chosen to view dependencies ending at row 4’s
Letter cell. These arrows follow the same color scheme
as the cell borders. 

A third visual device, a “percent tested” bar at the
top of the spreadsheet, displays the percentage of
dependencies that have been tested, providing the
teacher with an overview of her testing progress.

Although the teacher need not realize it, the colors
that result from placing checkmarks reflect the use of
a definition-use test adequacy criterion [6] that tracks
the data dependencies between cell formulas caused
by references to other cells. Testing a program “per-
fectly” (well enough to guarantee detecting all faults)
generally requires too many inputs; a test adequacy
criterion provides a way to distribute a testing effort
across elements of the program. In the spreadsheet
paradigm, we say that a cell is fully tested if all its data
dependencies have been covered by tests; those cells
have their borders painted blue. Cells for which
dependencies have not been fully covered have bor-
ders ranging from red to various shades of purple. The
overall testing process is similar to the process used by
professional programmers in “white box” unit testing,
in which inputs are applied until some level of code
coverage has been achieved.  In the spreadsheet envi-
ronment, however, the process is truly incremental,
bearing some similarity to test-driven development
approaches. These considerations, along with the test-
ing theory underlying this methodology, are described
in detail in [9]. 

Our teacher may eventually need to try different
input values in certain cells in the spreadsheet, to
cause other dependencies between formulas to come
into play so their results can be checked. This process
of conjuring up suitable inputs can be difficult, even
for professional programmers, but help is available.

Help-Me-Test. To get help finding inputs to fur-
ther test a cell, the teacher selects that cell and pushes
the Help-Me-Test button in the spreadsheet

toolbar. The system responds by attempting to gener-
ate inputs [5]. The system first constructs representa-
tions of the chains of dependencies that control the
execution of particular data dependencies; then it iter-
atively explores portions of these chains, applying
constrained linear searches over the spreadsheet’s
input space and data gathered through iterative exe-
cutions. If the system succeeds, suitable input values
appear in the cells, providing the teacher with new
opportunities to validate. Our empirical results show
that Help-Me-Test is typically highly effective and
provides fast response [5]. 

Finding faults. Suppose in the process of testing,
the teacher notices that row 5’s Letter grade (“A”) is
incorrect. There must be some error in our teacher’s
formulas, but how shall she find it? This is a thorny
problem even for professional programmers, and var-
ious technologies have been proposed to assist them.
Some of these technologies build on information
available to the system about successful and failed tests
and about dependencies [11]. We are experimenting
with approaches that draw from these roots [10]; here,
we describe one of them.

Our teacher indicates that row 5’s Letter grade is
erroneous by placing an X mark in it. Row 5’s Course
average is obviously also erroneous, so she X’s that
one, too. As Figure 1(c) shows, both cells now contain
pink interiors, but Course is darker than Letter
because Course contributed to two incorrect values
(its own and Letter’s) whereas Letter contributed to
only its own. These colorings reflect the likelihood
that the cell formulas contain faults, with darker
shades reflecting greater likelihood. The goal is to help
the teacher prioritize which potentially suspicious for-
mula to investigate first, in terms of their likelihood of
contributing to a fault. Although this example is too
small for the shadings to contribute a great deal, users
in our empirical work who used the technique on
larger examples did tend to follow the darkest cells.
When they did so, they were automatically guided
into dataflow debugging, which paid off in their
debugging effectiveness.  
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End-user software engineering employs a feedback loop supported by 
behind-the-scenes reasoning, with which the system and user collaborate to 

monitor dependability as the end user’s program evolves.



Suppose that, with the help of the colorings, our
teacher fixes the fault in the Course cell. (The weights
in the weighted average did not add up to exactly
100%.) When she completes her edit the underlying
algorithms partner with the spreadsheet evaluation
engine in visiting affected cells in order to calculate
the dependencies between formulas that might be
affected by the changes. These dependencies are
marked untested, and the rejuvenated screen display
shows the resulting colors, directing the teacher’s
attention to portions of the
spreadsheet that should now be
retested.

Assertions 
Testing can reveal faults, but it
may not reveal them all. Recent
empirical work into human pro-
gramming errors [7] categorized
the types of errors participants
made in introducing or attempt-
ing to remove faults. In that
study, most errors were due to
poor strategies and to attention
problems such as paying atten-
tion to the wrong part of the program or working
memory overload interfering with efforts to track
down the fault. For professional programmers, asser-
tions in the form of preconditions, postconditions,
and invariants help with these issues, because these
assertions can continuously attend to the entire pro-
gram, reasoning about the properties the program-
mers expect of their program logic, and about
interactions between different sections of the pro-
gram. Our approach to assertions [3] attempts to pro-
vide these same advantages to end-user programmers
such as the teacher. 

These assertions are composed of Boolean expres-
sions about cells’ values. They look like enumerations
of values and/or ranges of valid values, and these enu-
merations and ranges can also be composed (“and”ed
and “or”ed together). For example, suppose the
teacher had not noticed the fault in row 5’s Course
cell after all; we will show how assertions can be used
to detect that fault. Suppose she creates assertions to
continually monitor whether all numeric cells on row
5 will be between 0 and 100. To do so, she can either
type ranges, as in Figure 2, or use a graphical syntax.

The assertions she enters (next to the stick figures)
provide a cross-check that can automatically alert the
teacher to even subtle faults such as getting the
weights slightly wrong in the Course grade calcula-
tion. That power goes far beyond simply checking cell
values against the user-entered assertions, and derives

mainly from two sources: from aggressive participa-
tion by Help-Me-Test, and from propagation of some
of the user-entered assertions to new system-gener-
ated assertions on downstream cells. 

When assertions are present, Help-Me-Test’s
behavior is slightly different than we’ve described. For
cells with only constants for formulas, it politely stays
within the ranges specified by the assertions. But
when cells with non-constant formulas have asser-
tions, Help-Me-Test aggressively tries to derive input

cell values that will violate
those assertions on the
downstream cells. Thus, the
presence of assertions turns
Help-Me-Test into an
aggressive seeker of faults.

The propagation to system-generated assertions
(for example, “0.0 to 105.0” next to the computer
icon in Figure 2) produces three other ways assertions
can semiautomatically identify faults. First, the sys-
tem automatically monitors all values as they change,
to see if they violate any of the assertions. Whenever
a cell’s value does violate an assertion, the system cir-
cles the value in red. For example, whenever the stu-
dent’s Course does not fall between 0 and 100, the
system will circle it. Second, assertions might conflict
with each other, as in Figure 2, in which case the sys-
tem will circle the conflict in red. Conflicts indicate
that either there is a fault in the cell’s formula, or there
are erroneous user-entered assertions. Third, the sys-
tem-generated assertions might look wrong to the
user, again indicating the presence of formula faults or
user-entered assertion errors. All three ways to iden-
tify faults have been used successfully by end users.
For example, in an empirical study [3], the partici-
pants using assertions were significantly more effec-
tive at debugging spreadsheet formulas than were
participants without access to assertions.
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Figure 2. When the teacher
enters assertions, the system

propagates them to deduce
more assertions. In 

this case, a conflict was
detected (circled in red),

revealing a fault.
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The Surprise-Explain-Reward Strategy 
A key to the power of assertions is the propagation
aspect, which can happen only if there is an initial
source of assertions from which to propagate. In
some cases, initial sources of assertions might them-

selves be derivable (such as through
statistical monitoring of input data
[8] or based on
nearby labels
and annotations
[4]). However,
in other cases,
the only possi-

ble source is the teacher herself.
Still, it does not seem reason-
able to expect the teacher to
seek out an assertions feature in
a spreadsheet environment.
Given end users’ unfamiliarity
with quality control methods
for software, strategies must be
devised by which end-user soft-
ware engineering approaches
capture the interest of end-user
programmers and motivate
them to take appropriate steps
that will enhance their soft-
ware’s correctness. 

We have devised a strategy
that aims to motivate end users
to make use of software engi-
neering devices, and to provide
the just-in-time support needed
to effectively follow up on this
interest. Our strategy is termed
Surprise-Explain-Reward [12]. It
aims to choose timely moments
to inform end users of the bene-
fits, costs, and risks [1] of the
software engineering devices
available and of potential faults in

the spreadsheet, so they can make informed choices
about what actions to take next. It uses the element of
surprise to attempt to arouse the curiosity of the end
users, and if they become interested, the system fol-
lows up with explanations and, potentially, rewards. 

For example, Help-Me-Test
uses the element of surprise as a
springboard in the Surprise-
Explain-Reward strategy to intro-
duce users to assertions.
Whenever our teacher invokes
Help-Me-Test, the system not
only generates values for input
cells, but also creates (usually bla-
tantly incorrect, so as to surprise)
“guessed” assertions to place on
these cells. For example, in Figure
3, when the teacher selected row

5’s Letter cell and pushed Help-Me-Test, while gener-
ating new values (indicated by thickened borders),

Help-Me-Test also guessed some assertions. These
guessed assertions, which we’ll refer to as HMT asser-
tions (because they are generated by Help-Me-Test),
are intended to surprise the teacher into becoming
curious about assertions. She can satisfy her curiosity
using tool tips, as in Figure 3, which explain to her the
meaning and rewards of assertions. If she follows up
by accepting an HMT assertion (either as guessed or
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Figure 3. While
generating new 
values that will
help increase 
testedness of row
5’s Letter cell,
Help-Me-Test also
guessed some
assertions. 
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The computer's testing caused it to wonder if this
would be a good guard. Fix the guard to protect
against bad values, by typing a range or
double-clicking.

Table 1. Empirical work
to date into end-user
software engineering

devices. (More details
about the studies are

in [3, 5, 9, 10, 12] and
at www.engr.oregon-

state.edu/~burnett/ITR2
000/empirical.html). 

Number 
and types 
of studies

WYSIWYT 
testing

Help-Me-
Test

Fault 
Localization

Assertions

Surprise-
Explain-
Reward

5 summative 

2 formative, 
2 summative 

3 formative

2 formative, 
1 summative

2 formative, 
1 summative

Populations 
studied

End users,
computer 
science 
students, 
spreadsheets

End users,
spreadsheets

End users

End users

End users

Main results

WYSIWYT was associated with more effective and efficient testing and debugging. 
End users with WYSIWYT tested more than those without WYSIWYT. 
WYSIWYT helped reduce overconfidence in spreadsheet correctness, but did 
    not completely resolve this issue.

End users tended to test as much as they could without help initially, but when they
    eventually turned to Help-Me-Test, they commented favorably about it,  and
    continued to use it.
Users were willing to wait a long time for Help-Me-Test to try to find a value, and in the
    circumstances when it could not, they did not tend to lose confidence in the system. 
Users did not always make correct decisions about which values were right and which
    were wrong.
Help-Me-Test algorithms were usually able to generate new test values quickly enough
    to maintain responsiveness.

Different fault localization heuristics had very different advantages early in users’ 
    testing processes. Although some of the techniques tended to converge given a lot of
    tests, users did not tend to run enough tests to reach this point. 
When users made mistaken decisions about value correctness, their mistakes almost 
    always assumed too much correctness (not too little correctness).
Early computations, before the system has much information collected, may be the most
important for shaping users’ attitudes about the usefulness of fault localization devices.
Those who used the technique tended to follow dataflow strategies about twice as 
    much as the other participants, and the dataflow strategy was the only one tied to 
    identification of “non-local” faults.

End users using assertions were more effective and faster at debugging. 
Assertions were usable by end users.

Comfort level and experience with the spreadsheet paradigm were important factors 
    in determining whether “surprises” were motivating (interesting, arousing curiosity) 
    or demotivating (perceived as too costly or risky). 
Surprise-Explain-Reward was effective in encouraging end users to use assertions, 
    without forcing use of assertions before the users were ready.
The type of communication used to communicate “surprises” may critically affect 
    users’ problem-solving strategies and productivity.



after editing it), the resulting assertion will be propa-
gated as seen earlier in Figure 2. As a result, the sys-
tem may detect some problems; if so, red circles will
appear as in Figure 2. If the red circles identify faults,
the circles (and assertions) also serve as rewards.

It is important to note that, although our strategy
rests on surprise, it does not attempt to rearrange the
teacher’s work priorities by requiring her to do any-
thing about the surprises. No dialog boxes pop up
and there are no modes. HMT assertions are a pas-
sive feedback system; they try to win user attention
but do not require it. If the teacher chooses to follow
up, she can mouse over the assertions to receive an
explanation, which explicitly mentions the rewards
for pursuing assertions. In a behavior study [12],
users did not always attend to HMT assertions for
the first several minutes of their task; thus it appears
that the amount of visual activity is reasonable for
requesting but not demanding attention. However,
almost all of them did eventually turn their attention
to assertions, and when they did, they used them
effectively. 

We have conducted more than a dozen empirical
studies related to end-user software engineering
research. Some of the results of these studies have
been discussed here; all main results are summarized
in Table 1. Some of our studies were conducted early
in the development of our end-user software engi-
neering devices, so as to influence their design at
early stages; these are labeled “formative.” Other
studies evaluated the effectiveness devices at much
later stages; these are labeled “summative.”

Conclusion 
Giving end-user programmers ways to easily create
their own programs is important, but it is not
enough. Like their counterparts in the world of pro-
fessional software development, end-user program-
mers need support for other aspects of the software
life cycle. However, because end users are different
from professional programmers in background,
motivation, and interest, the end-user community
cannot be served by simply repackaging techniques
and tools developed for professional software engi-
neers. Directly supporting these users in software
development activities beyond the programming
stage—while at the same time taking their differ-
ences in background, motivation, and interests into
account—is the essence of the end-user software
engineering vision. As our empirical results show, an
end-user programming environment that employs
the approaches we describe here can significantly
improve the ability of end-user programmers to safe-
guard the dependability of their software.
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