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’I‘HE GOAL OF RESEARCH IN SCIENTIFIC VISUALIZA-
tion is to give scientists and engineers productive ways to work with data.
The benefit of visual representations is that they are generally easier to
comprehend than their textual equivalents.

Two orthogonal areas of scientific visualization research have been
emerging in recent years. One group strives to increase the power of the
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The most exciting potential of visualization tools is not the still color photo-
graphs or movies a scientist can produce to portray the results of his simula-
tion or computation, but the ability to test and develop code interactively.
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The scientist should be able to spot visual anom-
alies while computing and immediately steer, or
modify the calculations, to test out new theories.
Interactivity puts the scientist back in the com-
puting loop; the scientist gets to drive the scien-
tific discovery process.

A scenario

The following scenario, based on a current sci-
entific application at the US National Aeronau-
tics and Space Administration, shows how this
kind of capability might be used. It represents a
goal, not the current state of the art.

Picture yourself studying a particular airplane
design during descent. The application runs on
a supercomputer and generates 400 gigabytes of
raw data. The supercomputer maintains a queue
of researchers’ programs, and executes them as
time and priorities permit. Your applicaton has
been running in this way for many weeks and
has not yet finished.

Whenever the data for a new time step are
calculated, they are immediately made available,
along with the data accumulated from previous
time steps, for viewing on a graphics worksta-
tion. Graphical representations are continu-
ously produced by a program you wrote—not
by writing graphics code in C, but rather by us-
ing a visual programming language.

As the results start to appear, you can also
change these representations by directly manip-
ulating parts of the program as well as the data.
Because the visual programming language is in-
terpreted and interactive, it supports both ad
hoc and permanent changes to the graphics
programming, allowing you to experiment with
the graphics and to view multiple representa-
tions of the data simultaneously with complete
flexibility. Not only can you view data from the
current or previous time frames; you can also
view an animation of data spanning any subset
of this time range. All this can occur without us-
ing traditional programming languages or turn-
ing to a professional programmer to produce or
modify the graphics.

As you interact with the emerging results, you
decide that the calculations themselves need to
be changed. With the same visual programming
language, you make the changes and add addi-
tional computations within the scientific appli-
cation (changing the wind speed parameter
value, for example). By moving the application
back in time a few steps, you can compare the
results of the calculations under this new para-
meter value with those previously obtained.

Steering can involve more than simply chang-

WiNTer 1994

What Is a Visual Programming Language?

The syntax of a visual programming language consists of combi-
nations of text, pictures, and other geometric figures, spatial rela-
tionships between these entities, and/or a sequence of direct
graphical manipulations. The programmer is largely freed from
using one-dimensional sequences of commands, pointers, and ab-
stract symbols to express relationships that can easily be expressed
spatially. Some visual programming languages concretely represent
data or logic or both, and the data and logic respond immediately
and visually to any change. This immediate visual feedback sup-
ports an exploratory style of programming, one of the most impor-
tant strengths of visual programming languages for science and
engineering research.

ing parameter values. If these experiments lead
to the conclusion that there is incorrect logic in
the application, in our scenario you can replace
the faulty section with new code, programmed
with the same language. Similarly, it is possible
to redesign portions of the model itself. For ex-
ample, after performing several experiments,
you might decide to improve the aircraft’s wing
design. By changing the relevant section of the
model using the visual programming language,
you can enter this redesign without exiting the
program to see if the airplane’s simulated be-
havior improves as a result of the change. There
is no restriction on the kinds of experiments and
changes you can make: the model’s equations,
the algorithm used, the values of variables, and
the data structures can all be modified without
having to start over.

Could this scenario really work? Some would
say no, that it is not possible to add or replace
code while a program is executing, and that
even if it were possible it would be unwise. Yet
conventional debuggers, perhaps the most use-
ful of all programming tools, have long sup-
ported exactly this kind of capability on a sim-
pler scale in the textual programming world.

Still, the current state of technology is far
more cumbersome than that depicted by our
scenario. Although much progress has been
made in many areas of scientific visualization,
the potential to provide a flexible, easy-to-use
experimentation environment has yet to be real-
ized. Barriers remain, artficially separating sim-
ulation from analysis, algorithm from result, ac-
tion from reaction.

In this article we investigate the research that
is moving current technology toward the goal of
providing the flexible, visual experimentation
environment we’ve just described. Although this
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— is not a complete survey, a few representative
systems will illustrate important points.

Steering with visual languages:
A taxonomy

We classified the two areas of research—com-
putational steering and visual programming lan-
guages—in six dimensions to provide insights
and to suggest future research directions. The
six dimensions draw in part on earlier work.?
The first four measure how thoroughly a system
fulfills significant attributes of the requirements
of our scenario (see Figure 1). The fifth and
sixth dimensions help clarify the advantages and
disadvantages of different approaches by look-
ing at the ways they use various programming
paradigms. The dimensions are

(1) the system’s steering capabilities,

(2) the power and visual extent of the interface,

(3) the level of support for preexisting scientific
application programs,

(4) system generality,

(5) the programming paradigm used for scien-
tific programming, and

(6) the programming paradigm used for visual-
ization and steering.

The first two dimensions together, shown
along the x and z axes in Figure 1, measure the
extent to which steering through visual pro-
gramming languages has been achieved. The x
axis indicates the extent to which a scientific vi-
sualization system has achieved steering capabil-
ities. If the visual representation of the data is
available only after the application has com-
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Figure 1. Four visualization systems are classified according to our tax-
onomy. Three dimensions are labeled on the axes. For the fourth di-
mension, general systems are green and domain-specific systems are
white.
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pleted (known as postprocessing), the researcher
must wait until the application finishes, and
then can only analyze the data actually pro-
duced. That analysis cannot be used to change
parameters or otherwise affect the scientific ap-
plication. If the pictorial representation is pro-
duced and updated continuously as the applica-
tion executes (termed tracking), the researcher’s
waiting time for feedback is greatly reduced.
Still, the decisions that can be made from the
data can be used only to abort the application,
starting over with new parameters if desired.
The flow of information under tracking is still
strictly in one direction.

Interactive visualization and steering involve
bidirectional exchanges of information. Unlike
postprocessing and tracking, these two terms
have not been used consistently in the litera-
ture. In this article, we use the term interactive
visualization to describe tracking with feedback,
allowing dynamic changes in the way visual rep-
resentations appear. Following the report by the
NSF Panel on Graphics, Image Processing, and
Workstations,! we use the term steering to mean
that the user may, upon seeing the graphical
representation of the data, use it to make deci-
sions and interact with the executing applica-
tion, adjusting parameters, backing up to a cer-
tain point before continuing, and even changing
the model or data structures. Key to the notion
of steering is the ability to make unanticipated
changes to the data and logic of an application,
not just changes to input parameters. Steering
then consists of three features:

(1) continuous display of data (tracking);

(2) the ability to modify a visualization interac-
tively at any time (interactive visualization);
and

(3) the ability to modify any aspect of the appli-
cation (not just input parameters) at any
time.

The z axis measures not what a user can do
with a system, but rather how that user does
it—textually or visually. If the user communi-
cates with the system via a textual command
language or a textual programming language,
we classify the system as textual. At the opposite
end of this axis, visual programming languages
provide as much expressive power as we would
expect from traditional programming lan-
guages, including conditional execution and
repetition. However, unlike textual languages,
their syntax incorporates graphics or spatial re-
lationships. For example, referencing may be
done by pointing with a mouse instead of by
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naming, and data may be passed using arcs con-
necting two functions. Examples of visual pro-
gramming language approaches include

¢ programming languages whose syntax is
dataflow diagrams,

¢ programming-by-demonstration languages in
which program logic is demonstrated by ma-
nipulating data on screen, and

¢ form-based languages in which the spatial re-
lationships of elements on a form help deter-
mine program semantics.

Between textual interfaces at one end and vi-
sual programming languages at the other lies
the graphical user interface approach. The user
manipulates visual representations to communi-
cate with the system, but the interface lacks the
power of a programming language. This cate-
gory includes everything from pop-up menus
and simple icons to graphical toolkit ap-
proaches.

The third dimension, shown on the y axis,
classifies each system as to whether it applies
only to new scientific applications written using
that particular system, or whether it functions
equally as well with existing scientific applica-
tions written in traditional textual languages
such as Fortran or C. Systems that support ex-
isting applications can exploit the fact that huge
libraries of such software exist.

The fourth dimension, indicated by color,
represents the generality of each system. To
achieve ease of use some researchers restrict the
problem domain, building in special-purpose
tools for common needs in that domain, while
others choose not to add such restrictions.

From postprocessing to steering
using visual tools

Although much scientific visualization work has
been oriented toward textual languages and
tools, many recent approaches have started us-
ing visual approaches such as visual toolkits and
environments. Although these visual approaches
are not visual programming languages, they
form the roots of a trend to provide more
power and flexibility to the researcher using in-
creasingly accessible and easy-to-use means.

AVS

The commercial system AVS (Application Vi-
sualization System)’ represents a class of sys-
tems that use graphical tools for scientific visu-
alization, primarily in the area of postprocess-
ing. IBM’s Data Explorer,* FAST (the Flow
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Analysis Software Toolkit),’ and apE® are other
examples. This type of system provides an envi-
ronment in which visualizations can be created
by combining previously written scientific ap-
plications and built-in software modules.

To date, the dataflow paradigm has been the
most widespread visual approach to scientific vi-
sualization. In this paradigm, streams of data
flow like fluids through a network of nodes,
each of which performs a computation consum-
ing the data flowing into the node, and produc-
ing new data that flow out of the node. The re-
searcher specifies only the flow of data; the
order of evaluation is implied by the routing of
data through nodes, and thus can be automati-
cally scheduled by the system.

AVS uses the dataflow paradigm to combine
software components (see the sidebar on the
next page). These components are either built
in, or written by the user in C or Fortran with
calls to the appropriate AVS routines inserted.
AVS handles the scientific visualization process
in two distinct cycles: the computational cycle
produces a set of raw data, and the analysis cycle
produces the visualization. AVS provides a
graphical, interactive approach to aid in the
analysis phase. This separation of computation
and visualization leads to AVS’s strong support
for postprocessing.

It is also possible to use AVS for tracking, in-
teractive visualization, and even a form of steer-
ing. However, doing so often requires tradi-
tional programming: using a traditional text
editor to modify or create new C or Fortran
modules, compiling them, and then adding in-
stances of them to an executing dataflow graph.
This is because AVS is not itself a programming
language, but rather an environment for com-
bining modules written in other programming
languages. AVS has an extensive library of pre-
defined modules, and new ones can be written
in C or Fortran and then added to the library.
Predefined and user-defined modules are repre-
sented by icons that can be selected from a
menu. Instances of these modules can be con-
nected as nodes in a dataflow graph; the arcs be-
tween the nodes represent the flow of data.
Each module can also have variable settings that
allow the user to control certain aspects of its
operation, such as color and scale.

It is possible to break the dataflow graph dur-
ing execution, insert instances of different mod-
ules, and then resume program execution.
However, this is strictly at the module level. To
change the algorithms within the modules, the
traditional style of textual programming in C or
Fortran is required.
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Vista

Vista’ is a system for tracking and interactive
visualization, developed at the Center for Su-
percomputing Research and Development of
the University of Illinois at Urbana-Cham-
paign. Displayed data are dynamically updated

on screen, and their appearance can be interac-
tively modified via a graphical user interface
during execution. This interactive, visual con-
trol of the visualization during execution and its
easy access to graphics capabilities are Vista’s
main contributions. Like AVS, Vista can be

Using AVS

AVS’s main contribution is the inter-
active, graphical way in which it enables
visualizations to be created and modi-
fied. The figure below shows the AVS
network editor and graphical user inter-
face, as well as a typical dataflow graph
placed in the editor’s workspace. At the
top of the editor is the AVS module li-
brary. To construct a visualization, you
simply drag the desired module icons
from the library menus to the work-
space. Each icon contains several small,
colored blocks on its upper and lower
edges representing the module’s input
and output ports, respectively. The
ports are color-coded to show the types

AVS Module Library: Supported
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of data associated with them. You con-
nect nodes by first clicking on the first
node’s output port and then moving
the mouse to the desired input port of
the second node. The system will not al-
low an output port of one type to be
connected to an input port of another.
Each icon in the library has a button
that opens the control setting interface
for that module, so you can control the
module’s operation with built-in graphi-
cal tools such as dials and file browsers.
Execution begins as soon as the
dataflow graph is complete, that is,
when it contains both a data source (a
module that reads data from some ex-
ternal source) and a data destination (a
module that generates output to the
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screen or a file). Whenever a module ex-
ecutes, its icon is highlighted, as is each
arc whenever data pass through it. This
continuously orients you as to exactly
where execution is occurring. At any
time during execution, you can remove
or add modules to the dataflow graph
or change any module’s control settings.

This example shows AVS going be-
yond postprocessing to tracking, with
the help of prior programming in C or
Fortran. The built-in Animated Integer
module has been programmed to pro-
vide continuous output; its control
panel lets you click on desired options,
such as stepping through this output or
running continuously. In the continuous
mode, data move continuously out of
the Animated Integer module, and are
automatically propagated through the
entire graph, since any module can act
on data as soon as the data arrive, re-
sulting in a continuously updated view
of the graphical representation. How-
ever, if the application generating data
has not been previously programmed to
provide continuous output, only post-
processing is possible.

AVS’s Read Volume module reads in a set
of volumetric data. The Generate Color-
map module then creates a user-adjust-
able color map for the Colorizer module,
which allows the volumetric data to be
converted into color values. The Orthog-
onal Slicer module takes a volumetric
slice of the data and sends it to the Dis-
play Image meodule, which shows the im-
age in a window. Finally, the Animated
Integer module can provide a set of inte-
gers, one at a time, to the Orthogonal
Slicer to determine which slice of the vol-
umetric data should be shown. Each
module can also have additional user-
adjustable control settings.
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used to visualize existing scientific applications,
since little modification is needed.

Vista is divided into three logical parts: the
application executive controls the scientific appli-
cation, the visualization manager controls the vi-
sualization of data, and the data manager han-
dles data synchronization and exchange via
asynchronous message passing. The application
executive executes the application under the
constraints and requests of the visualization
manager. The application executive keeps a
symbol table of all the variables, which gives it
access to the internals of the application. The
application can be executed on a remote scien-

tific computer or on the same machine as the vi-
sualization manager.

The researcher annotates the application with
visualization breakpoints, points at which the data
are fully consistent and valid, using calls to ap-
plication executive routines. This is necessary
because during execution related data are often
unsynchronized or even temporarily corrupt.
For example, when a list of numbers is being
sorted, one value sometimes overwrites another,
and the second has not yet been replaced. If the
list were displayed at this point, it would be
wrong; one number would be duplicated and
another would be missing.

Using Vista

First you textually edit the scientific
application to insert visualization break-
points, and then you compile and fink it
with the Vista library. To start a visual-

, ization session, you type "vista, “ which

launches the visualization manager (see -

the figure on the left below). When you
begin executmg the scientific applica-
tion in ancther wmdaw, which-may or
may not be ona nemote machine, the
application execuiwe starts up and the
two processes aummaucaﬂy es&abﬁsh

~.communications. This causes autormatic
update of the cﬁsp!ayed data whenevet
the application encounters a visualiza-
tion breakpoint.
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The main window of Vista's Visualization Manager.

Across the top of the window are the
push-button controls available. In the
figure on the left, Halt at Breakpoint has
been depressed, causing the application
executive to pause at every visualization
point in the application. Pressing the
Proceed button resumes execution. The
bottom window can show messages re-
garding the status of the application ex-

,-ecutive and its communications with
the visualization manager.

The middle sections of the window
contain the heart of the graphical visual-
ization process. The center rectangle
contains the names of symbols (vari-
ables) that are visible to the visualization

'manager. You make a variable visible by

pressing the Add button below the sym-

bols list, or by optional annotations pre-
viously placed in the application. You
may display these variables at any time
with an appropriate built-in display
method (eight methods, including dials,
line plots, and tables, are represented by
icons on the right side of the window)
by clicking on the variable and then on a
method. Or, you can first transform the
data either by using the provided filters
(listed on the left) or by creating new fil-
ters via simple dataflow graphs chaining
built-in primitives together, as shown in
the figure on the right. If you associate
the variable with the filter (by pointing),
the display method associated with that
variable uses the filtered data rather than
the original data.

Constructing a data filter in Vista.
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For distributed scientific visualization systems
like Vista that are interactive while still support-
ing existing scientific applications, approaches
to communications become an issue: the greater
the degree of interactivity supported, the finer
the granularity requiring communications sup-
port. Yet this fine granularity needs to be
achieved with minimal modification to the ex-
isting application. Physically, the data manager
in Vista is actually two modules—one on the su-
percomputer, and another handling communi-
cations on the graphics workstation. The data
manager on the workstation accepts connec-
tions from the host(s), sends messages as needed
to the application, and receives data from the
application. The data manager on the super-
computer keeps a list of things to do at each vi-
sualization breakpoint, and stores prioritized
new messages that have arrived since the last
breakpoint, interrupting the application execu-
tive as needed to deal with these messages.

The visualization manager consists of a
graphical user interface as well as various
prepackaged data conversion routines, widgets,
and user-selected display methods. The re-
searcher’s manipulations cause the visualization
manager and the application executive to ex-
change such internal messages as “quit,” “send
value (for some particular variable),” “send
value continuously (for some particular vari-
able),” “stop for awhile,” and so on.

VASE

The Visualization and Application Steering
Environment,® or VASE, also from CSRD, is a
collection of tools and software to support in-
teractive visualization and steering in a distrib-
uted environment (see the sidebar on the next
page). In VASE, not only can you as the re-
searcher control the appearance of data during
execution, you can also interactively control
data values, add new data to the application, and
interactively define new calculations. There are
graphical methods for parts of this task, and
strictly textual methods for others.

The user model in VASE assumes there are
three classes of people who might work with
these processes (although one individual might
fulfill more than one role), and different kinds
of tools are needed by each:

¢ The application developer writes the scientific
application using a standard programming
language such as C or Fortran.

¢ The configurer configures the different
processes over the network and specifies the
communications between them. The config-

urer is not familiar with the source code at
the lowest level of detail, but has a high-level
understanding of all the functions performed
and computational resource requirements of
all the processes.

¢ The end user (a researcher) uses and steers
these processes.

VASE's steerable locations are a generalization
of the visualization breakpoints introduced in
Vista. After writing and debugging the program,
the application developer adds textual annota-
tions (nonexecutable Start and Stop directives)
to the sections of the program(s) that might in-
terest the researcher, specifying which data ob-
jects may be accessed and modified at runtime at
each breakpoint. A graph builder tool uses this
annotated source code to produce a collection of
control flow graphs (such as the two shown in the
figure on the right). Each node represents a log-
ical group of statements defined by the applica-
tion developer; the arcs represent the places
where steering can occur. The resulting hierar-
chical graph serves as an abstraction of the pro-
gram with which configurers and researchers
can work, eliminating the need for them to deal
directly with source code. The system then pro-
duces a modified version of the source code,
ready for compilation into a steerable executable
file. The modified source code’s structure allows
full use of optimizing compilers.

The configurer then assigns the application
and visnalization processes to computers and es-
tablishes communications among them using a
graphical user interface. (Most distributed scien-
tific visualization systems use one computer for
the application and a second for visualization.
VASE is more general, allowing any configura-
tion of computers.) The configurer models the
assignment of processes to computers, and the
asynchronous communications among them, in
a dataflow graph superimposed over the control
graph structures (again, see the figure). Each
node of the dataflow graph is the entire control
graph of a process, and the arcs show the flow of
communications. Although neither the control
graph nor the location of the breakpoints can be
changed at runtime, it is possible to modify the
configuration interactively at any time before or
during execution. Examples include adding or
removing processes to or from the configura-
tion, and adding, changing, or deleting commu-
nications between processes.

Consider the control-flow abstraction versus
the dataflow abstraction in this system. The
control-flow abstraction is used to model the
functions of the underlying application program
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Using VASE for Interactive Visualization and Steering

In this example, the scientific applica-
tion (called Topopt) is supposed to find a
density function describing the distribu-
tion of a fixed amount of material that
generates the stiffest possible structure
under the conditions specified by the pa-
rameters. The figure below shows the

erations desired as the experiment pro-
gresses. To perform the first function, you
create a textual script to be executed
whenever breakpoint BP1 is encountered
in Topopt. The script is written in a sub-
set of C, and maps density to color, pro-
ducing a two-dimensional display of the

structure via calls to a library of visualiza-
tion functions. You can modify the script
at any point during execution to guide
the visualization or change the mapping
of data to a graphical representation.

To steer the scientific calculations
themselves, you incorporate scripts or ad
hoc programming statements at any
time during execution, thereby guiding

control graphs for Topopt and
Xviewer, the visualization pro-
gram. Xviewer uses a series of
polygon data sets to produce
animated displays, and provides
interactive rotation and zoom-
ing capabilities through its user
interface. The application devel-
oper has already inserted the
breakpoints shown. The config-
urer has assigned these
processes to two computers in
the network, and has set up
communications such that
whenever Topopt writes any-
thing to output Port A, Xviewer
can read that data at BP1 via in-
put Port B.

Your tasks here are to cause
the desired data to be written to
Port A so that it can be tracked,
and to perform any steering op-

Configuration and Execution Tool
show breakpoint names EJ show port names

Host: YMP
Process : topopt

Routine : main m

=
Routine : main

Read input
Initialize design »

Host : GT10
Process : xviewer

. [ Initialize displacements | L User
¥ L interface 3
7~

Update
view
(ae o]

Stiffness analysis

the computations in new direc-
tions as the intermediate results
begin to appear. For example, at
BP2 in Topopt, you can at any
time change the values of variables
and parameters in calculations, en-
ter new calls to existing routines,
or enter new code to be executed.

Here two VASE control flow
graphs describe the logic of
the two processes involved. A
dataflow abstraction of how
the processes communicate is
also shown: each process is a
node with input and/or output
ports, and an arc between the
nodes describes the flow of
communications. (Adapted
from Haber et al.8)

(written in C or Fortran, control-flow—oriented
languages). In contrast, the dataflow abstraction
is not used to model programs written in an-
other language, but rather to support specifica-
tion of communications. The use of control-
flow graphs is necessary for consistency; it
would be unreasonable to ask users to mentally
“translate” back and forth between dataflow and
control-flow ways of describing a single pro-
gram. But when no underlying program exists,
dataflow graphs support straightforward specifi-
cation of desired logic (for communications in
this case).

At this point you, the researcher, take over.
When the system encounters a breakpoint, you
may choose a course of action via menu selec-
tion. One option is to disable a particular break-
point, causing it to be completely ignored until
it is later reenabled. Or, you might specify that
whenever a particular breakpoint is executed the
system should pause, allowing imperative tex-
tual program statements to be entered ad hoc
and executed in immediate mode using the
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command interpreter, until you tell the system
to resume execution. Programming statements
do not, however, always have to be entered at
the keyboard on an ad hoc basis: you can enter a
script of programming statements, specifying
automatic execution whenever a particular
breakpoint is encountered.

A wide variety of steering actions is possible.
For example, in the scientific application the re-
searcher can modify the values of variables, add
new variables, call existing routines, or even
write and execute new routines. The researcher
can also add or change scripts at any point. The
only limitations are that the structure or type of
an existing variable cannot be redefined, and ex-
isting calculations in the original application
cannot be modified.

SCENE

The Scientific Computation Environment for
Numerical Experimentation,” or SCENE, is an
evolving scientific visualization environment
for Smalltalk, an object-oriented language and
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Steering with SCENE Tools

The SCENE environment includes a num-
ber of visual tools. For example, if you en-
ter an equation in the differential equation
solver tool, the output is parsed and en-
coded, and then delegated to a remote
computer with algebraic software. You may
intervene with the computation at any
point where Smalltalk is in control. If any
part of the problem is altered (including
the equation itself), the result is recom-
puted and reflected in a solution window.

This figure depicts the output
of the equation solver tool. The

resetSolution cPrimSolve

changeBCs cPrimSolveWithSteps setLogXaxis addXgrid
keepLastSoiution setLogYaxis addXiitle

Equation string

(0.01*uxx) — (U*ux) + x

1.2

0.91
0.61
0.3

1.2e-10 —

)

0.0

T 1
0.25 0.5 0.75 1.0

solutions to the problem were returned from the back end to the Smalltalk interface for
graphical display. Here the user has selected “changeEquation” from the menu to experi-
ment further with the equation. (Adapted from Peskin, Walther, and Boubez.'%)
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Here SCENE's vector tool is illustrating vector flow with path interpolation. The user can zoom in
for an expanded view of any region or subregion as many times as desired, as shown in the upper
right. In the box in the middle of the screen, the original data value corresponding to one of the
vectors on the screen has been retrieved.? (Copyright 1991 by International Business Machines

Corp.; reprinted with permission.)
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environment. The advantages of a Smalltalk-
based approach are significant, because
Smalltalk’s features inherently provide a foun-
dation on which complex steering capabilities
can be developed.

In Smalitalk, a class defines an abstract data
type, and objects are instances of that type.
Classes are arranged in a hierarchy, and each
class can inherit or override code (methods) de-
fined for the classes above it. Such code is in-
voked by dynamic message-passing, so termed
because it is done entirely at runtime. When an
object is sent a message during execution, its
class definition is checked to see if a corre-
sponding method definition exists. If not, its
ancestors in the hierarchy are searched untl an
appropriate method is found (or until there are
no more to check).

The applicability of dynamic message-passing
to steering lies in its ability to support runtime
access to the symbol table. Smalltalk capitalizes
on this. Since the environment contains an in-
tegrated editor, incremental compiler, and run-
time system, it is possible to incrementally de-
velop and test code even without the SCENE
enhancements. You can define a method and
then immediately test it by sending a message
to an applicable object. Since code can be
changed interactively, breakpoints can be in-
serted or deleted at will. You can run a simula-
tion for a period of time, interrupt it via the
keyboard or a breakpoint to send an object ad
hoc messages, make changes and additions to
the code, and then continue the simulation
without losing the previous state information.
This support for many of the characteristics
needed for steering is available without the
scaffolding needed in procedural approaches.

SCENE is a collection of Smalltalk classes for
scientific visualization in fluid dynamics. Some of
the classes are implementations of visual tools for
steering Smalltalk programs (a few are described
in the sidebar on the left). SCENE was designed
(1) to demonstrate the applicability of Smalltalk’s
integrated object-oriented environment to steer-
ing scientific simulations, and (2) to add more
powerful capabilities for steering computation-
ally intensive applications. The researcher incor-
porates instances of these classes into an applica-
tion by programming in Smalltalk. Since some of
these classes are visual tools, a number of steer-
ing tasks can be performed using graphical
mechanisms; others are done textually.

One of the problems that has been addressed
experimentally in SCENE is performance.
Smalltalk isn’t known for speed, and this is true
of most other object-oriented languages as well,
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although there has been recent progress in this
area. In SCENE, Smalltalk classes have been
implemented on a front-end graphics worksta-
tion, with C versions existing on the back-end
support systems (such as a supercomputer) to
provide high performance. These modules op-
erate cooperatively and transparently between
platforms. In early experiments, identical
Smalltalk and C versions had to be created
manually, but more recently automatic genera-
tion of back-end C code during interactive visu-
alization has been reported.

SCENE uses an object-oriented data man-
agement approach to support exploration of an
object’s computational behavior through time.
This approach has been prototyped for applica-
tions based on collections of numeric data. Us-
ing a hashing scheme, data are stored in a data-
base according to their spatial and temporal
positions. To make use of these data, a tool that
creates a visual representation from data must
also be able to compute the inverse, that is, to
determine the corresponding data object(s)
from a point on the screen. For example, in the
box on the left in the bottom figure on page 52,
SCENEs vector tool displays detailed informa-
tion about an object that has been clicked on.

The use of this spatio-temporal approach to
data management not only provides access to
any object at any time, but also allows objects to
be changed incrementally. This is facilitated by
the fact that the components of an object are
not stored together. Thus you can add a new
numeric field to an object that already has sev-
eral fields by allocating space for it and entering
appropriate keys and pointers into the hash
table. For example, suppose a large computa-
tional fluid dynamics application producing ba-
sic velocity-field vectors has been completed. If,
upon examining the output, you decide that
vorticity information would also be helpful, you
describe the new field to the SCENE tool (by
naming it and identifying it as a scalar or vec-
tor), and enter a mathematical expression defin-
ing its contents. SCENE then computes the
new values based on the other information al-
ready in the database, and stores them without
restarting the application; hence, the other
components do not have to be recomputed.

Visual programming languages in
scientific visualization

As we have already seen, visual approaches are
increasingly used as a way of making advanced
capabilities more accessible. But in the systems
just described, there is a barrier beyond which
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visual interaction is no longer possible, forcing
the scientist to revert to traditonal textual pro-
gramming methods. Visual programming lan-
guages strive to remove this barrier, allowing
the scientist to perform the entire
process—programming, visualization, and
steering—interactively and visually. This area
of research has as its primary emphasis im-
proving how steering is done. Here we present a
few representative systems to suggest how vi-
sual programming languages might help us
achieve flexible steering in scientific applica-
tions. Figure 2 presents similarities and differ-
ences among these systems.

Visual dataflow programming: VPL and Khoros
VPL! is a visual dataflow programming lan-
guage and environment. It was designed initially
for interactive image processing but is not re-
stricted to this domain. It provides general pro-
gramming capabilities, including conditionals,
loops, recursion, and higher-order functions.
Because it is a programming language, you can
create a complete scientific application in it
without having to use one language or tool to
create visualization code and another to write
the scientific application. VPL does not follow
the conventional programming process of edit-
ing, debugging, linking, loading, and executing.
Rather, you can add, view, modify, or remove
program fragments interactively and visually at
any time during execution, with results shown
immediately and dynamically. This is perhaps
the most important contribution that visual
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Figure 2. Similarities and differences among four systems. Comparing
Figures 1 and 2 shows the chief differences between current scientific
visualization and steering research versus visual programming language
approaches applicable to visualization and steering. As in Figure 1, the
first three dimensions of the taxonomy are labeled on the axes, and for
the fourth dimension, general systems are green and domain-specific

systems are white.
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programming languages, and VPL in particular,
can make in steering: distinctions among such
operations as programming, tracking, and steer-
ing can be eliminated.

A VPL dataflow graph is created in much the
same way as an AVS dataflow graph, with icons
being dragged from a library to a workspace and
then connected as nodes in the graph. However,
there is a fundamental difference between the
two approaches. In AVS, you use the visual en-
vironment to manage textually-created program
modules; in VPL, manipulating the dataflow
graph is the only way to program.

The use of dataflow nodes to perform even
the simplest operations is termed fine-grained
dataflow, an example of which was seen in Vista.
In contrast, AVS uses coarse-grained dataflow,
meaning that each node is defined to be some
collection of calculations, which in the case of
AVS are defined in C or Fortran. VPL supports
both fine-grained and coarse-grained dataflow.
The use of fine-grained dataflow provides con-
sistency in the language, since there is only one
way to program and it is completely visual. But
you would quickly be overwhelmed with low-
level details if VPL did not also support coarser
granularity. To create a complex node, you con-
nect nodes that have previously been defined
(by the system or by you). This collection can
then be added as a single node to the toolkit of
available nodes and used in the usual way. Be-
cause the programming process is the same
whether you use the primitive or the complex
nodes, you can abstract away any combination
of nodes, building abstractions out of other ab-
stractions. This provides procedural abstraction,
a necessary feature for any programming lan-
guage intended to be used in creating sizable
programs. The sidebar on the next page shows
an example of programming in VPL.

It is possible to program solely by connecting
nodes because these nodes are functional opera-
tions into which and out of which data flows;
there are no hidden states and no possible side-
effects in VPL. Execution is automatically se-
quenced by the system according to the depen-
dencies inherent in the routing of data. To
preserve a high degree of interactivity and re-
sponsiveness, VPL prioritizes and distributes the
computational tasks. The front end, which sup-
ports tasks related to user interaction, runs on a
color workstation, and the other parts of the sys-
tem, including the computationally demanding
image-processing functions, can run on the
workstation or elsewhere on the network.

VPL’s use of polymorphism reduces the
amount of mechanistic programming needed.
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For example, you can program an operation
that displays a value with a textual description
centered below it without worrying about
whether that value is an integer, image, or
string. Polymorphic operations like this can be
created because a number of the built-in primi-
tives (out of which user-defined operations are
defined) are themselves polymorphic. The ad-
vantage to this is that you do not have to create
numerous similar operations whose only differ-
ences are that they work on different types; a
potential disadvantage is that the system might
not be able to inform you of type-related pro-
gramming errors. In VPL, however, this prob-
lem is largely solved through a type-inference
system that automatically tries to infer what
types will flow through the dataflow graph, in-
forming you if incompatibilities arise.

Like VPL, the visual programming language
used in the Khoros system!? is based on the
dataflow model. They both use nodes to repre-
sent routines that have been written in other
languages. But unlike VPL, Khoros uses the
dataflow metaphor primarily at a coarse-
grained level.

Khoros’s language-based approach to adding
visualization capabilities to externally written
applications differs subtly from the toolkit ap-
proach represented by AVS, and from the ap-
proach represented by VPL, which does not in-
corporate arbitrary, externally-written code.
Using built-in facilitdes, you convert C or For-
tran routines used in other scientific applica-
tions into Khoros nodes and then connect
them, along with mathematical and image-pro-
cessing library routines, into a dataflow graph
similar to those described earlier. In Khoros,
programming is possible at the connection level
via programming constructs that can be placed
in the dataflow graph like any other node. In
this way an existing scientific application, origi-
nally written in C or Fortran, can be rebuilt as a
Khoros program with the routines brought to-
gether with iteration and conditional-execution
nodes (see the sidebar on page 56). This ability
to combine existing textual code with new code
created via a visual programming language dis-
tinguishes Khoros from all the other dataflow
approaches described in this article.

Visual programming with forms and formulas:
Forms/3+

Forms/3+ is a proposal’® to extend the visual
form-based programming language!* Forms/3
to support interactive visualization and steering
in a distributed environment. Forms/3+ sup-
ports steering by building on two characteristics
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Programming with VPL

In the figure below, the VPL user is defining a
new Repeat operation. (VPL actually has a built-
in Repeat operation, but for the purposes of this
example, we will pretend it does not exist.)
While the user is building the graph using direct
manipulation, the workspace is completely ac-
tive, so the user can try to run sections of the
code simply by feeding a source of data into
them and triggering execution (by connecting
Probe nodes or other display operations). As
soon as a name for the new operation has been
established it is added to the Components
Browser; at this point it can also be incorporated
into a program, even if its definition is not yet
complete. This is the feature that enables the use
of recursion.

The Repeat operation is being defined visu-
ally. Note the use of recursion within the defi-
nition. (Adapted from Lau-Kee et al.’")

of Forms/3. First, you program by entering or-
dinary mathematical formulas. Second, Forms/3
emphasizes abstraction using visual, interactive
mechanisms, thereby helping researchers write
complex applications without calling on a pro-
fessional programmer.

To program in Forms/3, you place cells on
forms and provide formulas to define desired
calculations. The formulas are entered using a
combination of typing and direct manipulation,
and are represented by a visual mixture of text
and graphics. Forms/3+ identifies some of the
formulas as being computationally intensive, au-
tomatically designating them for distribution to
a remote supercomputer. Forms/3+ extends
Forms/3 through this automatic distribution
and through other mechanisms aimed at high
performance. The system continuously evalu-
ates (solves) formulas as needed to keep the
displayed cells up to date. Because the pro-
gramming process is visual and highly interac-
tive, and because it employs immediate and
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continuous visual feedback, steering is just the
process of temporarily interrupting evaluation
in order to add or change formulas.

Formulas in Forms/3 do not have to be
strictly numeric; they can also include textual
and even graphics operations and primitives.
But no matter what type of data is employed in
a formula, it is still simply an expression; for ex-
ample, the formula for a cell C could be A+B,
and no side effects are possible. Thus the sys-
tem can automatically sequence the evaluation
of formulas according to their dependencies.

Since every cell has a formula, every cell has a
defined value (if no formula has yet been en-
tered, the cell’s default is the (constant) formula
NoValue). Each formula can produce an answer
as soon as it is defined, because the cells to
which it refers also have values defined. This
continuous evaluation provides an immediate
source of error feedback, so you can notice and
correct many logic errors as soon as they are en-
tered, rather than discovering and trying to

track them down later. Using automatic type in-
ference, an incremental type-checking system
immediately checks each new formula entered
to decide if it contains a type incompatibility.

A goal in many visual programming languages
is conceptual simplicity. A simple, small lan-
guage can be more accessible to a researcher
than traditional programming languages. The
goal is to eliminate concepts without eliminat-
ing the expressive power they provide. Forms/3
is an example of the active work in this area.

For example, unlike traditional textual lan-
guages, the Forms/3 approach to procedural ab-
straction does not require a special process of
declarations and definitions. Rather, it uses the
form as a grouping and encapsulation mecha-
nism. To encapsulate a reusable group of formu-
las, you place cells with these formulas on a new
form and name it something mnemonic such as
GroundWaterSimulation (see the sidebar,
right). Some of these cells can be hidden
through the menu-based formatting mechanisms

Khoros Example

Like other dataflow environments
we've described, Khoros uses nodes
connected by arcs to represent a pro-
gram. In Khoros, these nodes represent
routines that have either been provided

CANTATR Visual Programming Ervironment for the KHORD: ysten

in the Khoros library, or have been pre-
viously written in C or Fortran and con-
verted into Khoros nodes.

The application below is averaging
10 noisy images together to form a
clean image. The nodes are the routines
that act upon the images. Notice the
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use of count_loop; it is an example of a
construct allowing program-controlled
repetition. This and the if_then_else (not
shown here) are examples of the kinds
of programming constructs that make
Khoros a visual programming language
rather than simply a visual toolkit. Be-
cause of such constructs, not all the
power of a program has to be located
inside the modules. This allows textually-
programmed modules to be incorpo-
rated into a dataflow graph with more
flexibility than is true of tool-oriented
approaches, and also encourages
smaller, reusable modules that can pro-
duce the intermediate results necessary
for tracking.

The Khoros environment includes
a visual programming language
known as Cantata, which can be
used with library routines or with
routines written in other lan-
guages. In this example, Cantata
is averaging 10 noisy images to-
gether to form a clean image.
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that are used to control a cell’s appearance
(fonts, colors, and so on). After the cells on the
new form have been defined, it is available for
use. You can create and modify copies of the

Steering with Forms/3+

In this example, you (the researcher) are model-
ing groundwater flow in an unconfined aquifer us-
ing numerical methods. Part of this model is exe-
cuting on a remote supercomputer and part on a
local workstation, but you control and steer the
simulation as though the program resided entirely
on the workstation. The water elevations appear
continuously on screen as they are calculated (see
the top figure on the right).

If you open up a well form via a menu and click
on the displayed well, the form will show details
that can be modified at any time during execution
(see the middie figure on the right). This is be-
cause the well details, like all data, are specified by
entering a formula, such as the constant formula
“20” for the cell “Pumping rate.” The well’s
graphical appearance on screen is also controlled
by a formula that can be changed at any time.
Formula changes are immediately reflected in the
displayed cells they affect.

The model itself can also be changed the same
way as the visualization—by entering and chang-
ing formulas. Such formulas may be numerous
and mathematically complex, and for this reason
are usually grouped in one or more forms in-
tended to perform a particular group of related
calculations. This is an example of the Forms/3 ap-
proach to abstraction. In the bottom figure, a form
entitled Direct Solution performs the calculations
needed to determine the water table elevation,
given the parameters shown at the top of the
form. The system automatically creates as mary
copies of the form as are needed to calculate over
different sets of parameter values. Many cells on
the form are not shown because you have chosen
to hide them to avoid unnecessary visual clutter. If
desired, you may choose to make the cells visible,
thus removing a layer of abstraction to reveal the
underlying details.

Similarly, the researcher can view the
numeric data showing groundwater
levels, and steer the model and/or

form by direct manipulation, or the system can
do it automatically. This provides the same
functionality as parameterized procedures in
traditional programming languages, but does so

Legend:
0-10 ft.
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20-30 ft.

[]
]

30-40 ft.

40-50 ft.

In this Forms/3+ groundwater simulation, a pumping well affects the
water elevation of the surrounding area.

i
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The researcher can view and change the well’s characteristics at
any time.
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the visualization by entering new or changed formulas or values. The formula for each element of the Water-
Level matrix is a reference to cell Elevation (indicated by the arrow) on the relevant copy of the Direct Solu-
tion form, which contains the calculations needed to determine elevation given the parameters shown.
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without introducing the concepts of formal pa-
rameters, actual parameters, and methods of pa-
rameter passing. Data abstraction is supported
using the same mechanism: new abstract data
types are defined via forms, cells, and formulas.
Forms/3 includes an explicit time dimension.
The formula for a cell actually defines a vector
of values along a time dimension, rather than an
atomic value. The position of the workspace
along the time axis determines which value in a
cell’s time-indexed vector will be displayed,

Using ThingLab

To create a Fahrenheit/Celsius converter, you start the definition by
choosing “Times” from the class menu list. A blinking instance of the
Times class appears in the display window. You position the instance,
as well as the two input and one output connectors attached to the
instance. The Plus operator is inserted similarly, and one of its input
connectors is attached to the output of the Times instance. The an-
chors below the constants indicate that the constraint solver cannot
change these values in the process of satisfying the constraints. This
specification defines a TemperatureConverter class which can be used
with a variety of objects representing numeric values.

You continue the session by attaching temperature values (in this
example, represented by instances of a Thermometer) to each side of
the constraint network. Whenever you modify the value of the
Fahrenheit thermometer (using the mouse to move the slider), the
constraint solver automatically adjusts the Celsius display to reflect the
new value. Also, because of the multi-way nature of the constraints,
you can move the Celsius slider up and down and watch the result on
the Fahrenheit thermometer.

Point ] NumberNode
PrintingConverter structure insert NumberOperator
Quadrilateral ' delete NumberPrinter
Rectangle prototype’s values conslrain Plus
TemperatureConverter | as save file merge
TextThing subclass template Rectangle
Thermometer edit text TemperatureConvert
S I [ LT Ta0]
Times Thermometer
Triangle Times
VariableHeightTest

A temperature converter in ThingLab. (Adapted from Borning."?)

namely the most recent value that occurs on or
before the position of the workspace in time. In
Forms/3+, this allows you to interactively con-
trol the tracking of data values, regardless of
which machine they reside on. You can view
new values as they appear, and interactively
move backward and forward in time to review
the evolution of values.

Visual constraint programming: ThingLab

ThingLab®® is an object-oriented constraint-
based visual programming language originally
designed for constructing interactive physics
simulation environments. (In describing
ThingLab, we will also include features con-
tributed by the later ThingLab IL'¢ which was
designed specifically for constructing user inter-
faces. While this later system is not intended for
simulations, we include it in the description be-
cause of its advances in the use of constraints in
a visual programming language. For the pur-
poses of this article, we will not distinguish be-
tween the two systems.) Using ThingLab, you
program and steer simulations by interactively
specifying and manipulating constraints on the
data. The system’s constraint satisfaction mech-
anism continuously tries to keep all constraints
satisfied, which enables changes to be made to a
program during execution, with the changes im-
mediately incorporated into new results.
ThingLab programs can be run on a single
computer or in a distributed environment.

The basic idea behind constraint-based pro-
gramming is that given a set of constraints
(rules) describing the invariant properties and
relationships of all values in a particular prob-
lem space, the set of solutions is the set of val-
ues that simultaneously satisfy all constraints.
To illustrate constraint programming, consider
the familiar task of unit conversion (see the
sidebar to the left). For example, the equation
F =32 + 9/5 x C converts Celsius temperatures
into Fahrenheit units. At first glance, this small
constraint program looks the same as a program
written in any number of languages. But in
most languages, such a program can only be
used to produce Fahrenheit values from Celsius
values. In constraint programming, if C’s value
is known, it can be used to compute F; likewise,
if F’s value is known, it can be used to compute
C. Thus this program is not a statement of some
computation to be performed, but a true equa-
tion expressing a relationship between F and C.
Furthermore it is entirely equivalent to the pro-
gram C = 5/9 x (F - 32).

In constraint languages in general, a program
is a collection of constraining equations such as
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Table 1. Classification by paradigm.

System Scientific application paradigm Visualization or steering paradigm
AVS Textual imperative (C and Fortran) Visual dataflow (coarse-grained only)
Vista Textual imperative (C and Fortran) Visual dataflow (fine-grained only)
‘ Also imperative breakpoints textually
inserted into scientific application
VASE Textual imperative (C and Fortran) Textual imperative
Also visual coarse-grained dataflow
to configure communications
SCENE Textual object-oriented (Smalltalk) Textual object-oriented
VPL Visual dataflow Visual dataflow (fine-grained and
coarse-grained)
Khoros Textual imperative (C and Fortran) Visual dataflow (primarily coarse-grained)

Also visual dataflow programming
to link imperative code
Forms/3+ Visual form-based
ThingLab Visual constraint-based

Visual form-based
Visual constraint-based

the Fahrenheit/Celsius example. It is up to the
underlying system to find a solution that satisfies
the equations. In general, constraint satisfaction
techniques are limited, and can be applied only
to specific problem domains. Improving these
mechanisms is an active area of research.

In ThingLab, programming is done interac-
tively and visually. The language incorporates
many object-oriented features, including inheri-
tance and abstraction. An object consists of its
component objects and the constraints among
its parts. Objects are defined and instantiated
via menu selection and direct manipulation of
components and constraints on the screen.
Constraints consist of a predicate, which is used
to test whether the constraint is satisfied, and
methods which tell the system how to alter val-
ues so that the constraint might be satisfied.
You specify only the predicate, by selecting
needed operations and connecting them graphi-
cally. From this predicate, the system automati-
cally derives methods that can be used by the
constraint satisfier to arrive at the solution.
Constraints are used not only for conventional
calculations, but also to constrain such matters
as the appearance of an object on screen.

For its limited problem domain, in which ob-
jects are concrete and can be specified graphi-
cally, ThingLab provides interactive, visual sup-
port for scientific simulation programming,
including steering capabilities. Further, due in
part to its object-oriented philosophy,
ThingLab offers many features needed for siz-
able programs. Considerable work has also been
done on the speed and flexibility of its con-
straint satisfaction algorithms, and a compiler
provides added speed.
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Classification by paradigm

The last two dimensions of our taxonomy clas-
sify each system by the programming paradigm
it supports for scientific applications, compared
with the paradigm it uses for visualization pro-
gramming (see Table 1). By considering the sys-
tems from this view, we can better understand
the advantages and disadvantages of the different
approaches, because these two dimensions re-
flect the ways researchers must think in order to
specify and interact with scientific computations.
One trend that stands out in the table is that
for many of the systems supporting preexisting
scientific applications, the researcher is forced
to continually switch from an imperative pro-
gramming paradigm for scientific programming
to a declarative paradigm (usually dataflow) for
visualizing or steering. Conversely, systems that
support a single, consistent paradigm for the
entire process do not usually support C or For-
tran, and therefore do not support preexisting
scientific applications. VASE is the exception to
this: it has achieved consistency by working
within a single paradigm while stll supporting
preexisting applications, but so far it has incor-
porated only primarily textual means to do so.
The most prevalent approach used by visual
programming languages for scientific program-
ming as well as for visualization and steering is
the dataflow paradigm.'® Perhaps this is due to
its emphasis on computation, and to its natu-
rally visual representation of the relationships
among data. This combination seems well
suited to the expression of scientific calcula-
tions, both ad hoc and permanent, and to the
calculations required to convert one group of
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representations, such as a group of integers,
into another, such as a contour map. Ap-
proaches based on fine-grained dataflow also
carry the advantage that the sequencing of com-
putation is no longer a task of the program-
mer/researcher; rather, the system can automat-
ically take care of all scheduling based on data
dependencies. Automatic scheduling is also pos-
sible in coarse-grained dataflow systems that
represent modules written in C or other imper-
ative languages, but programmers must exercise
more care with this class of systems because im-
perative languages allow side effects in calcula-
tions, which makes the sequence in which each
node is executed more of an issue.

Like the dataflow paradigm, the form-based
and constraint-based approaches focus on the
computations needed to arrive at the desired
answers. The form-based paradigm has the ad-
vantage that it allows the researcher to write a
program by simply providing appropriate math-
ematical formulas. This feature capitalizes on
the fact that experimental scientists and engi-
neers are accustomed to thinking and working
in precisely this way. Because changing a for-
mula on screen provides immediate visual feed-
back, programming and steering resemble ex-
perimenting more closely than they resemble
traditional programming. This notion of experi-
menting is also well supported by the con-
straint-based paradigm when used with physical
simulations of multiple objects, all of which may
have complex and even circular effects on each
other. Like the dataflow paradigm, form-based
and constraint-based systems can generally se-
quence calculations automatically.

Future directions and open problems

Research contributing toward visual steering ca-
oy g g
pabilities is still very young, and many research

questions remain.

Scaling up

Despite recent progress,'” most visual pro-
gramming languages are still inadequate to the
task of large-scale programs such as those
needed for scientific applications. To solve this
scaling-up problem in the context of steering, it
is necessary to devise solutions that do not un-
dermine the characteristics that make visual
programming languages conducive to experi-
mentation, such as immediate visual feedback,
direct manipulation, and concrete representa-
tion. The difficulty is that these characteristics
contribute to a proliferation of details and per-
formance penalties that can severely hamper a

researcher’s productivity in working with a
large application.

Metacomputing

In much of the current work in scientific visu-
alization, researchers must be aware of each
separate computer’s function: which computer
is running which program, where each relevant
variable is located, and how to converse with
each machine involved (such as through Unix
commands). Often the researcher must have so
much knowledge about programming, operat-
ing systems, and networks that the help of a
computing professional is required. Smarr and
Catlett’s notion of metacomputing®® is useful
here: Tomorrow’s computer users will use only
the machine on their desks; if additional re-
sources are nceded, the system will automati-
cally reach out across a network to accomplish
the task. Most scientific visualization systems
are still not addressing this notion of the re-
searcher doing the complete task, without de-
pending on computing professionals for any
portion of the task.

Visual programming for steering existing
scientific applications

Users are loath to discard existing scientific
programs, which can be complex, large, and ex-
pensive to recreate. But there are difficult tech-
nical problems in devising a visual program-
ming language for steering scientific
applications written in another language. Users
need ways to easily and clearly communicate
with the system using a visual language about
changes to logic and data in a program written
in another (textual) language. The matter of in-
terprocess communications in general becomes
more difficult. Because of this, although several
systems support various kinds of visualizations
for scientific programs written in C or Fortran,
most of these cannot be used for steering.

Yet, despite substantial problems, evidence
suggests that doing so is possible. VASE has
managed to achieve steering of existing applica-
tions, although not through the use of a visual
programming language, and visual debuggers
already support limited forms of steering textual
programs visually. Further, the success of visual
systems in postprocessing, tracking, and interac-
tive visualization of existing applications, as well
as for steering programs written in visual pro-
gramming languages, demonstrates their poten-
tial in this area. However, extension of these ap-
proaches to allow fine-grained additions,
changes, and deletions to preexisting applica-
tions will be difficult: application code will need
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to be represented using a visual programming
language so that the researcher can not only vi-
sualize and steer but also change the program,
temporarily or permanently, using that same
language. The blurring of distinctions among
programming, visualization, and steering—to
which visual programming languages have con-
tributed—should be maintained.

Virtual reality

Work on interactive scientific visualization in
a virtnal reality environment is emerging. In
virtual reality environments, a researcher can
experience a simulation rather than watch it
passively. Klaus Schulten and his colleagues at
the Beckman Institute Center for Concurrent
Biological Computing have developed a system
for simulating molecular dynamics which incor-
porates virtual reality technology, offering very
advanced user interfaces for interacting with the
model.20 Via devices such as head-mounted spe-
cial glasses and a data glove, the user can inter-
actively control objects in the model, not only
seeing the molecule’s structure in 3D but also
manipulating its molecular structure. Within
that system only the objects themselves may be
modified; the visualization code, model code,
and other supporting objects are not accessible.

Can virtual reality technology be extended to
enable full steering of scientific applications?
To do this, it is necessary to harness the tech-
nology in a way that provides not only a user in-
terface with vivid visualization capabilities, but
also true programming capabilities.

Researchers in interactive scientific visual-

ization systems and in visual programming lan-
guages have been making contributions toward
combining the two areas, but have approached
the problem by separate paths. Recent research
shows that steering capabilities can eliminate
the artificial separation between simulation and
data analysis, allowing insights through interac-
tive experimentation that were not possible be-
fore. Visual programming languages make this
power accessible to the researcher because they
do not require traditional programming skills,
and because they eliminate the distinctions
among programming, visualizing, and steering.
By combining emerging research in these two
areas, perhaps the prediction of the Panel on
Graphics, Image Processing, and Workstations
will finally be fulfilled:! “Visualization will put
the scientist into the computing loop and
change the way science is done.” ®

WinTER 1994
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