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The directness, immediacy,
and simplicity of visual
programming languages are
appealing. The question is, can
VPLs be effectively applied to
large-scale programming
problems while retaining

these characteristics?
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at, or demonstrate data relationships or transformations, rather

than translate them into sequences of commands, pointers, and
abstract symbols. These simplifications seem to promise to make pro-
gramming easier, more reliable, and more accessible. However, making
visual programming languages suitable for solving large programming
problems often seems to require the very complexities VPLs try to remove
or simplify. This is called the scaling-up problem.

Productive research that does not compromise the attractive qualities
of VPLs depends on an understanding of the problem, its components,
and their interrelationships. In this article we profile the scaling-up prob-
lem through nine of its subproblems. Some present formidable obstacles,
some have been virtually solved, but others have scarcely been recognized.
They all share two characteristics: (1) their solutions are important to
solving the scaling-up problem, and (2) their attempted solutions outside
the context of the scaling-up problem will have little impact in moving
VPLs closer to the goal of scaling up.

Visual programming languages let the programmer sketch, point

WHAT ARE VISUAL PROGRAMMING LANGUAGES?

Shu defines VPLs as languages that use “some visual representations (in
addition to or in place of words and numbers) to accomplish what
would otherwise have to be written in a traditional one-dimensional
programming language.” As Shu also states, “to be considered a visual pro-
gramming language, the language itself must employ some meaningful . . .
visual expressions as a means of programming.” (In keeping with this def-
inition, visual environments supporting textual programming languages
are outside the scope of this article.)

VPL characteristics

The goals of VPL designers are to improve the programmer’s ability to
express program logic and to understand how the program works. These
goals, however, cannot be realized just by switching from text to pictures.
Instead, newer VPLs employ visual techniques to achieve one or more of
the following characteristics:

1. Fewer concepts required to program. For example, in many VPLs the
programmer does not deal with pointers, storage allocation, declara-
tions, scope, or variables.

2. Concrete programming process. In many VPLs, the programmer can see,
explore, and change specific data values or even sample executions.

3. Explicit depiction of relationships. Constraint and dataflow diagrams
are example techniques.

4. Immediate visual feedback. After a program edit, in many VPLs, imme-
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diate display of updated results helps
the programmer find errors sooner.

Opportunities and obstacles in scaling
up are especially great in the class of VPLs
with a high degree of liveness, Tanimoto’s
term for the amount and immediacy of
visual feedback provided to the program-
mer.2 We call this class responsive VPLs. In
responsive VPLs, a programmer action—
such as an edit to the program or data—
immediately executes the change and
redisplays the affected displayed values. There is no sep-
arate compilation step or explicit “run” command by the
programmer. In this article, we emphasize the issues faced
by responsive VPLs.

The scaling-up problem

In scaling up, the problem is how to expand applicabil-
ity without sacrificing the goals of better logic expression
and understanding. From a size standpoint, scaling up
refers to the programmer’s ability to apply VPLs in larger
programs. Such programs range from those requiring sev-
eral days’ work by a single programmer to programs
requiring months of work, large programming teams, and
large data structures. From a problem-domain standpoint,
scaling up refers to suitability for many kinds of problems.
These range from visual application domains—such as
user-interface design or scientific visualization—to gen-
eral-purpose programming in such diverse areas as finan-
cial planning, simulations, and real-time applications with
explicit timing requirements.

To illustrate the scaling-up problem, we discuss nine
major subproblems and describe emerging solutions from
existing VPL systems. First, we examine representation
issues, including static representation, screen real estate,
and documentation. Next, we examine programming lan-
guage issues—procedural abstraction, interactive visual
data abstraction, type checking, persistence, and effi-
ciency. Finally, we look at issues beyond the coding
process.

REPRESENTATION ISSUES

In VPLs, visual representations offer the flexibility to
communicate more information than text alone. Despite
this advantage, numerous problems arise in devising effec-
tive visual representations for programming. Three of the
most widely-recognized representation problems are sta-
tic representation, effective use of screen real estate, and
documentation.

Static representation

The appearance of a visual program “at rest,” such as
on a screen snapshot, is called its static representation.
Static representation is the same as syntax in any language
whose syntax is static and two-dimensional (or less).
Examples of such syntaxes include text, dataflow dia-
grams, and state-transition diagrams. For VPLs without
this kind of syntax, however, static representations are dif-
ficult to devise. For these languages, lack of a complete
static representation is a barrier to program review, analy-
sis, and explanation.

Computer

Problematic VPLs in this area include
those with dynamic syntax, such as pro-
gramming-by-demonstration languages.
For example, to create a program that left-
aligns any two rectangles, the programmer
might insert a line along the left edge of a
sample rectangle, drag a second rectangle
against the line, and finally delete the
line. In this example, the programmer’s
dynamic manipulations are the syntactic
tokens for the program’s operations.

Even when language syntax is entirely
static, some VPL attributes can be difficult to represent sta-
tically. VPLs that require nontextual references to data—
by pointing at unlabeled data or icons, for example—are
often difficult to represent in a way that is static, precise,
and two-dimensional. Values that involve a time dimen-
sion or more than two spatial dimensions, such as anima-
tions and multidimensional data structures, are also dif-
ficult to represent statically.

For a VPLs static representation to be useful, it must be
consistent with the VPLs goals. For example, although we
can imagine the programmer painstakingly creating pro-
gram screen dumps in various states and manually pasting
them together to obtain a complete printout, such a cum-
bersome approach is hardly consistent with the goal of
making programming easier. For the same reason, trans-
lation to a standard textual language such as C for static
representation purposes is unsuitable for VPLs that are
intended to allow programming without reverting to tra-
ditional languages.

One measure of a static representation’s usefulness is
editability. To edit a static representation (if editing is sup-
ported), the programmer must use two syntaxes—dynamic
and static—which can increase programming difficuity.
One solution is to devise a static syntax with strong simi-
larities to the dynamic syntax. The sidebar “Static repre-
sentation in Chimera” presents such an approach.

Another measure of a static representation’s usefulness
is the capability to hide excessive visual details with levels
of abstraction. For abstraction over time, the goal is to
avoid lengthy screen sequences that differ from one to the
next by a single pixel. The sidebar shows how Chimera
employs context-sensitive evaluation of multiple actions to
hide excessive spatial and temporal details.

Effective use of screen real estate

Visual interaction is the VPLs primary means of com-
munication, but adequate, timely display of screen infor-
mation is difficult for large programs. The problem is lim-
ited screen size and effective use of the available space.
Techniques are needed to organize and access large,
diverse quantities of program information. The capabili-
ties of the menus, icons, and scrollable windows com-
monly found in user interfaces are not powerful enough
to fill this need.

Although most work relating to screen real estate has
been done independent of the scaling-up problem, screen
real estate is closely tied to other scaling-up subproblems.
For example, screen real estate strategies can have a strong
impact on overall system efficiency. If display and naviga-
tion techniques are inefficient, the impact on a responsive




VPL could require a retreat to a lower level of liveness.
Screen real estate also has close ties to static representa-
tion. For example, if improved static representation leads
to effective VPL printing capabilities, the static printed page
could supplement screen real estate. But the shortage of
screen real estate makes it more difficult to devise a static
representation usable for on-screen display. The Chimera
system integrates work on VPL static representation with
work on effective use of screen real estate. It incorporates
rule-based techniques to ascertain the elements of current
interest, eliminating extraneous details. The programmer
has navigation options, such as exploding one panel into a
strip of panels to show more details and coalescing a strip

into a panel to show fewer details.

Some relevant work has not yet been applied to VPL
screen real estate. Data display and navigation research
from the human/computer interaction and graphics com-
munities might be adaptable to VPLs (see the sidebar
“Displaying more in less space”). Also, VPLresearch related
to graphical reasoning might eventually offer navigation
power comparable to that now provided by search capa-
bilities for word patterns in textual language editors. In
addition, VPL documentation research shows that, because
many VPLs’ environments intimately understand language
syntax and semantics, semantic information can control the
way program information is mapped to screen space.

Static representation in Chimera

Chimera' is a system for creating and editing user inter-
faces, graphics, and text, whereby macros are programmed
by demonstration. The programmer demonstrates the
desired operations, then the system statically represents the
operations using a comic-strip metaphor. Figure A shows a
statically represented sequence that results in one box
pointing (with an arrow) to another. The programmer
selects part of the sequence, identifies its parameters, and
instructs the system to convert the selected sequence into a
reusable macro.

Chimera coalesces physical operations into logical ones. In
Figure A, the name of each logical operation appears, with
the number of physical operations it represents, above each
panel. A box is created, and its attributes are set in four logi-
cal operations (panels two through five); the line, arrowhead,
and second box are created in the next three logical opera-
tions; and the arrow is aligned between the two boxes in the
last three logical operations. (The programmer can interac-
tively expand any panel into a more detailed sequence.)

A given panel shows only those objects that participate in
the logical operation, plus some landmark objects for screen

context (landmark objects have a faded appearance). Panels
can be edited using the same “by-demonstration” style with
which they were created.

The example shown demonstrates Chimera‘s key strate-
gies for static representation, which are to

¢ display logical rather than physical operations;

* permit interactive expansion of high-level panels into
low-level ones and coalescence of low-level panels into
high-level ones;

* show, in each panel, only those objects that participate
in the panel’s logical operations (with landmark objects
also shown for context);

 render objects in a style according to their role in the log-
ical operation; and

« let the programmer edit the static representation.

Reference
1. D. Kurlander, “Chimera: Example-Based Graphical Editing,”
in Watch What | Do—Programming by Demonstration, A.
Cyper, ed., MIT Press, Cambridge, Mass, 1993, pp. 271-290.
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Figure A. Static representation of Chimera operations. (Reprinted with permission from Watch What |
Do—Programming by Demonstration, A. Cyper, ed., MIT Press, Cambridge, Mass. © 1993
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Documentation

Code-level documentation lets the programmer supply
additional information that cannot be conveyed in the
source code. Although VPL documentation is not well
developed, the work to date demonstrates that it is more
an opportunity than a problem because of its potential—
through VPLs’ visual and dynamic characteristics—to
move beyond textual-language documentation.

DYNAMIC TEXTUAL DOCUMENTATION. Many VPLSs sup-
port textual documentation, functionally equivalent to the
in-line comments found in textual languages, by means of

textual comments that can be placed in the program. For
example, the object-oriented dataflow language Prograph®
allows the programmer to annotate the dataflow graphs.

The documentation takes space, which exacerbates the
problem of screen real estate. Prograph addresses this con-
flict by allowing the user to control when documentation
is displayed. Fabrik*extends the Prograph approach with
selectable levels of displayed documentation detail and
by displaying the documentation of whatever is under the
mouse pointer in a reserved documentation box, thus con-
serving space while providing easily accessible, on-
demand information. The drag-and-drop mechanism in
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Many visual representations of programs-take a great deal
of space. Examples include diagrams representing large pro-
cedures or data structures. There are two traditional solu-
tions: make the drawing smaller and look at the whole, or
partition the drawing into pieces and look at each piece sep-
arately. While a smaller drawing preserves the context, the
reduction may make the details unrecognizable. Partitioning
a drawing yields the opposite effect: details at the expense
of context. The challenge is to develop display techniques
that provide both detail and context, in conjunction with
navigation techniques that let the programmer access infor-
mation without being distracted by the task of navigating.

Recent approaches developed for data display allow view-
ing and navigating through detailed information, using
contextual cues. These approaches may be extensible for
program display. Cone trees,' perspective walls,? and fish-
eye views’ demonstrate some of the possibilities in Figure
B. Cone trees employ 3D techniques to fit more information

from 2D hierarchies on the screen. A perspective wall br
a 2D linear structure that would not completely fit or
screen with traditional methods, using 3D'depth cue
fisheye views, information is selected for display base
its relevance. A numeric threshold function determr
whether an item will be displayed based on how clo:
the area of interest the piece of information is, and its gl
(contextual) importance.
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“VPL"s provides similar documentation support. In this
approach, objects can be selected and dragged to other
windows with different capabilities, one of which displays
the documentation for dropped-in objects.

STATIC GRAPHICS AND AD HOC ANIMATIONS. VPLs can
support documentation in media other than text. For
example, Forms/3¢ supports graphical documentation.
The programmer can incorporate color, boxes and lines,
sketches of data structures, and even programmed com-
binations of these items predicated on the program’s data
values.

Because the primary reason for program documenta-
tion is to describe program operation, inaccurate docu-
mentation is worse than none at all. Inaccuracies—a per-
vasive problem, historically—tend to arise in any
documentation that is independent of the program itself.

Accurate documentation is an area in which responsive
VPLs can excel. Whenever the programmer enters or
changes a responsive VPL program, the VPL computes new
answers, often displaying a rudimentary animation of the
computation and all intermediate values. To learn how a
particular program segment works, a programmer can
provide values and watch an instant animation. This capa-
bility is exploited further in VPLs—such as Forms/3 and
Garnet’s C327—that support preexisting sample values,
enabling the programmer to see an ad hoc animation with-
out having to think of sample values to start the anima-
tion.

The ability to watch any portion of the program on
demand fulfills the documentation goals of helping the
programmer understand the program, while guaranteeing
consistency between this information and the actual work-
ings of the code. Thus, because programs with test values
can provide responsive documentation and because doc-
umentation can include programming, the separation
between source code and documentation begins to disap-
pear.

PROGRAMMING LANGUAGE ISSUES

The general programming-language community has
long had successful approaches for handling data abstrac-
tion, types, and other issues. Simple visual implementa-
tion of traditional approaches, however, is seldom suit-
able for VPLs. Adding functionality is not enough; the
solutions must also be consistent with characteristics that
are used to achieve VPL design goals such as simplicity,
concreteness, explicitness, or responsiveness.

Procedural abstraction

An important advance in the early days of programming
was procedural abstraction, the ability to create proce-
dures or subroutines that encapsulate subtask details.
Procedural abstraction is such an important building block
in today’s programming projects that it’s hard to imagine
programming without it. Unlike the other issues discussed,
procedural abstraction has been solved in today’s VPLs.
The most important attribute in the solutions is consis-
tency with other programming in the same VPL. Represen-
tative solutions include

* allowing the programmer to select and iconify a section

of a dataflow graph, which adds a node (representing
the subgraph) to a library of function nodes;

* using a form as a grouping mechanism for calculations;
and

* recording and generalizing a sequence of manipulations
(as in the Chimera sidebar).

Studying earlier VPL procedural abstraction solutions
is instructive in understanding how subproblem solutions,
when formulated in isolation, can actually detract from a
VPLs scalability. Some early solutions required procedures
to be created in traditional programming languages such
as C. These solutions did not contribute to the scalability
of visual programming languages because the program-
mer had to program in a traditional textual language to
achieve scalability. This cast VPLs in the role of support-
ing textual programming languages, rather than being
scalable programming languages themselves. Other early
solutions restricted the use of procedures to prepackaged
library functions—an approach that was at odds with the
generality needed for scalability. Thus, while these early
solutions provided procedural abstraction, they did so at
the expense of attributes needed for scaling up VPLs.

Interactive visual data abstraction

The encapsulation of details that follows from proce-
dural abstraction is equally important in the realm of data
types. Data abstraction encapsulates user-defined abstract
data types by allowing access only through programmer-
defined operations.

For VPLs, data abstraction raises issues such as main-
taining concreteness, visibility, and interactivity in the pres-
ence of abstract types and information hiding. Such issues
have prevented many VPLs from supporting data abstrac-
tion, particularly in responsive VPLs. Recently, however,
approaches have been developed that address the issues.

INTERACTIVE + VISUAL + DATA ABSTRACTION. By def-
inition, a VPL that supports data abstraction supports a
visual process to define a new data type, and it also results
in a visual program. A responsive VPL adds interactivity
to the process. We use the term interactive visual data
abstraction to emphasize these aspects. The earliest
attempts at data abstraction in VPLs did not actually sup-
port visual programming; they either did not support a
visual process or did not result in visual programs. Visual
code generators, for example, produced textual—not
visual—programs. The opposite approach, textual cre-
ation of data types that could later be used visually, did
not support visual programming because programming
was done textually. These approaches could not support
responsiveness, since the programming process was sep-
arated from the code-evaluation process.

Many applications today are graphical and interactive.
So that a VPL can provide these characteristics in a man-
ner consistent with data abstraction, support is needed for
user-defined visual appearance and user-defined interac-
tive behavior. ObjectWorld® and Forms/3¢ are two VPLs
that incorporate a type’s appearance into its definition.
Forms/3 also supports specifications about a type’s behav-
ior under user interaction (see the sidebar “Interactive
yisual data abstraction”).
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Interactive visual data abstraction in Forms/3

Forms/3 is a VPL based on the spreadsheet-like
notion of cells with formulas. As soon as a formula
is provided for a cell on the screen, the system cal-
culates and displays its value, providing immediate
feedback. The programmer groups related cells on
forms, which provides the basic mechanism for
abstraction.

Suppose the programmer wishes to create an
abstract data type ImageMover, a new event-sensi-
tive type that an application end-user can move
around a window. First, the programmer clicks on a
palette to instantiate a new form and names the new

imageMover
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Figure C. This form defines the data type
imageMover. Since it includes an event receptor,
it is an interactive type. Information about events
is available in the cells on the same copy of the
EventReceptor form that is referenced by cell
EventReceptor, shown in Figure D.
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Figure D. A portion of the form defining the event

receptor built-in data type.
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form ImageMover. Next, the programmer places cells
on the form that specify the components of the new
data type. As the section marked “composition” of
Figure C shows, an ImageMover will be composed
of a width, height, shape (the person eating ice
cream), and an event receptor. An event receptor is
a primitive type that detects interactive events.

Each cell has a formula. The formula (not shown)
for EventReceptor is simply a reference to cell
EventReceptor on the built-in form shown in Figure D.
The visual appearance of allimageMovers is calculated
using the formula in the cell image (bottom of Figure
Q). The programmer defines some formulas as (sam-
ple) data values, such as “200" for cell width, to obtain
concrete feedback during development.

Logical information-hiding is accomplished
through physical information-hiding. For example,
the cells with dotted borders on the middle right of
Figure C have been marked “hidden” by the pro-
grammer. All cells that define the composition of a
type are automatically marked hidden by the system.
Hidden cells are usually visible only when the pro-
grammer is defining a formula for a cell on the same
form. Accessibility of a hidden cell is determined by
visibility: If it isn't visible, it cannot be referenced in a
formula.

Figure D shows the instance of the built-in data type
EventReceptor that was referenced in one of the
components of the ImageMover. In Forms/3, the cell
formula actually defines a sequence of values along
a logical time dimension rather than an atomic
value, and this provides the foundation of the
approach to events. For example, the displayed
value for cell whatEvent? reflects the most recent
event in the sequence. Any cell whose formula refers
to this cell will, by its definition, incorporate the
newest value in its own newest value. This is the
functional equivalent of the traditional notion of
events from imperative programming, which says,
“whenever an event of interest occurs, the parts of
the program interested in that event take the
appropriate actions.”

This example shows some of Forms/3's strategies
for interactive visual data abstraction:

« programming of interactive abstract data types is

in the same style as other programming;

information hiding is controlled and communi-

cated through physical visibility;

every data type is visual, and its appearance is

included in its definition;

« interactivity is supported for user-defined data
types; and

» sample values are incorporated throughout the
programming process, allowing immediate con-
crete feedback.



EVENT-HANDLING TO SUPPORT INTERACTIVE DATA
TYPES. Adding interactivity to visual data types requires
detection and handling of interactive events such as
mouse movements. Surprisingly, generalized event-han-
dling has been slow in coming to VPLs. Early VPLs sup-
ported event-handling only through application-specific
built-in buttons and windows. Progress in this area may
have been delayed by adherence to the traditional view
of event-handling, which separates events from data and
thus discourages incorporating event detection into types.

For VPLs that are declarative, one way to achieve com-
patibility between events and declarativeness is to view
events as a vector of values along a time dimension.
Forms/3 uses this approach. To enhance scalability,
Forms/3 also supports combining events and data into
new, higher level events. This event abstraction—the abil-
ity to define and respond to higher level, user-defined
events—avoids over-proliferation of low-level event details.

Type checking

Type checking is used in all modern programming lan-
guages, including VPLs, to detect errors that arise from
operation/operand incompatibility. There are three ways
to perform type checking in any programming language:
statically with types explicitly declared by the program-
mer, dynamically, or statically without explicit declara-
tions. VPLs can use these traditional approaches in non-
traditional ways. For some VPLs, this is in fact necessary to
achieve goals such as simplicity and feedback.

STATIC TYPE CHECKING WITH EXPLICIT TYPES. Static
typing with explicit type declarations has three advan-
tages: (1) detection of type-incorrect programs at program
translation time allows early feedback to the programmer;
(2) use of type information by the translator improves exe-
cutable code efficiency; and (3) explicit type declarations
serve as helpful documentation.

Few VPLs use this approach, however, because it
requires dedicating significant programmer time and pro-
gram space to type declarations. It also presupposes an
understanding of types. Further, this approach is not very
amenable to polymorphism (although a few explicitly
typed languages such as C+ + and Ada partially deal with
this problem). Without polymorphism, the programmer
may need to create several nearly identical versions of the
same code to accommodate the type system’s inflexibility.

DYNAMIC TYPE CHECKING. Most VPLs use dynamic typ-
ing (without explicit type declarations) to achieve sim-
plicity and flexibility. Traditionally, dynamic typing’s
biggest disadvantage is lack of feedback—runtime type
errors may not be discovered until months after the pro-
gram was entered, perhaps by someone other than the
original programmer. This lack of timely feedback is espe-
cially at odds with responsive VPLs, whose objective is to
provide immediate feedback.

Fortunately, however, some evaluation strategies for
responsive VPLs bring runtime so close to translation time
and program-entry time that dynamic type checking can
produce feedback as soon as a type error is introduced.
For example, in spreadsheets, concrete, immediate feed-
back about type errors is provided by evaluating a formula

as soon as it is entered and displaying a special value if
errors occur. This approach features simplicity and imme-
diate visual feedback, although it cannot detect all type
errors. For example, if cell A had the value “true,” the error
in the formula “if cell A then 3+4 else cell A+4” would not
be detected.

STATIC TYPE CHECKING WITH IMPLICIT TYPES. Some
VPLs are starting to use static type checking with implicit
types, an approach borrowed from modern functional lan-
guages. The idea is for the system to make inferences from
the type information implicit in a program. For example,
if the programmer defines X to be 3, the system infers that
X is an integer. If the programmer later defines Y to be
equal to X, then the system infers that Y must also be an
integer.

This approach can improve VPL simplicity and feedback
capabilities. Ideally, it supports simplicity because a pro-
grammer does not enter type declarations and can pro-
gram in a seemingly type-free environment, just as with
dynamic type checking. Yet, because the approach is sta-
tic, it produces immediate feedback about type errors at
program entry time. The dataflow language Fabrik* was
the first VPL to incorporate this approach. In Fabrik, each
node contains input and output “pins” for attaching con-
necting wires to other nodes. Types are checked whenever
the programmer attempts to connect two pins. A type mis-
match displays a message and prevents connection. The
type system fits seamlessly into Fabrik’s programming
environment—the programmer does not need to think
abstractly about types, learn new concepts, or use new
constructs.

There are obstacles to seamlessly incorporating implicit
types into VPLs. Good error reporting requires display of
the error-causing types; however, these types can be so
complex that the error messages become incomprehensi-
ble. Also, most implicit typing approaches impose type-
related language restrictions and thus miss the complete
flexibility of dynamic type checking. Forms/3’s implicit
type system?® partially addresses these obstacles by simpli-
fying the types and eliminating some language restrictions.

Persistence

Data persistence—extending data lifetime beyond a sin-
gle program execution—is vital to scaling up. Without it,
many applications are impossible. A VPL can obtain data
persistence in at least four ways:

1. provide a way for the programmer to explicitly han-
dle file I/0O;

2. incorporate database language capabilities into the
VPL;

3. use a semitransparent approach, in which the pro-
grammer explicitly identifies instances of persistent
data types but does not explicitly save or retrieve the
data from the external store; or

4. use an entirely transparent approach, in which all data
is persistent and is automatically saved and retrieved
as needed.

Of these four possibilities, the first is rarely used with
VPLs. Perhaps the reason is that burdening the program-
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mer with explicit I/0 responsibilities is inconsistent with
making programming easier and clearer.

The second possibility is to draw on the extensive work
for visual database access. However, few reports of this
work extend its application to VPLs.

Semitransparent approaches to data persistence can
enhance VPL simplicity by eliminating mechanisms like
files and accesses. For example, in the Prograph inter-
preter, the values of data objects declared as persistent are
automatically saved whenever the program file is saved;
they are then available during subsequent executions.

Commercial spreadsheets use a fully transparent
approach to persistent data. In a spreadsheet, all data is
persistent—the programmer doesn’t even have to think
about it. In this simple approach, data can be changed in
place by modifying the “program” (spreadsheet).
Although the notion of total data persistence may seem
inefficient, storage optimizations are possible since val-
ues based entirely on other values can always be recom-
puted instead of stored.

For the VPLs that are declarative, the extent to which
data persistence support requires state modification is
unresolved. Data persistence tends to go hand-in-hand
with the notion of state change over time, a concept that
can create problems with declarative languages’ side
effect-free nature. The spreadsheet approach addresses

this issue in a declarative way by encouraging the pro-
grammer to build data histories through formulas in new
columns that depend on earlier columns. Other possibili-
ties lie in explicit approaches to time or change, such as
those now being developed in the functional program-
ming community.

Efficiency

Any programming language would like to claim effi-
ciency as one of its attributes, and VPLs are no exception.
However, the importance of immediate feedback makes
efficiency critical when scaling up VPLs that are respon-
sive. To maintain responsiveness, these VPLs need lan-
guage translation and program execution efficient enough
to provide immediate feedback onthe validity and results
of newly edited program fragments. They also need graph-
ical display capabilities efficient enough to support direct
manipulation. The challenge lies in developing techniques
that can maintain these efficiencies regardless of program
size.

EFFICIENT LANGUAGE TRANSLATION AND PROGRAM
EXECUTION IN RESPONSIVE VPLS. To provide immediate
feedback, responsive VPLs use an interpreter or incremen-
tal compiler for language translation. Efficient incre-
mental translation techniques, long actively researched

' Coding and beyond in Vista

Vista' is a responsive VPL for software engineers. It promotes
evolutionary prototypical development of object-oriented
software systems, seamlessly integrating design and imple-
mentation capabilities in a single visual programming system.

Akey element of Vista's strategy in supporting design as well
as programming is its multiparadigm approach, providing nota-
tions and models that follow basic software engineering prin-
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Figure E. Design reuse in Vista. (Reprinted with
permission from Visual Object-Oriented Programming:
‘Concepts and Environments, Prentice Hall, Englewood
Cliffs, N.J. © 1995.)

ciples. Object orientation supports reuse through inheritance,
information hiding, modularity, and weak coupling. Dataflow
is used to model data transformation and has an established
visual representation. Control flow, represented in Vista by
IS ) . 7 L

event passing, models sequences of events and actions.

A design component in Vista is a set of subcomponents
that are wired together to specify dataflow and/or control
flow. Top-down design is supported—the programmer can
create and interconnect design components using only
interface descriptions. As implementations of the design
components are provided, the program comes alive incre-
mentally. In addition to the input and output ports, the pro-
grammer can specify replaceable subcomponents as part of
the component's interface. The replaceable subcomponents
abstract the component’s implementation into a design that
can be customized by substituting new subcomponents.

Figure E shows a portion of a temperature-monitoring
program. The component aThermoAlarm has input and
output event ports (used for control fiow via events) above
and below its frame to receive and send events. Within its
frame are the replaceable subcomponents: min, max, and
alarmDev. When using aThermoAlarm, the programmer
specifies the desired subcomponents. For example,
alarmDev might be FlashwarningtLight in one case and
TurnOffPower in another. The tempCheck component
shows a customized implementation of aThermoAlarm
whose replaceable components have been instantiated
with alarmDevice and same-named functions max and min.

Reference
1. S. Schiffer and J. Frahlich, in *Visual Programming and Soft-
ware Engineering with Vista,”: Visual:Object-Oriented Pro-
gramming: Concepts and Environments, M:Burnett, A. Gold-
berg, and T. Lewis, eds., Prentice Hall, Englewood Cliffs, N.J.,
1995.
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in the wider programming-language community, are
about the same for VPLs as for other programming lan-
guages. VPLs that require parsing, however, are exceptions
because parsing multidimensional combinations of graph-
ical and textual tokens is not well matched with traditional
grammars and techniques. Efficiently parsing programs
entered through incremental freehand sketching and ges-
tures is a growing research area, especially since the
advent of pen-based interfaces.?

VPL researchers have developed several techniques to
improve incremental execution efficiency. Prioritizing exe-
cution tasks is one such technique. The language “VPL™
is a dataflow VPL designed specifically for the computa-
tionally intensive domain of image processing in an inter-
active environment. It accords user interface performance
the highest priority, handling it separately from the rest
of the system, to obtain responsiveness even when inten-
sive image-related computations are also in progress.
“VPL” also improves responsiveness by distributing the
workload to multiple computers, if available, and by can-
celing scheduled computations that have since become
unnecessary.

ThingLab IL" a constraint-based VPL, gains efficiency
through an incremental constraint-satisfaction algorithm.
The approach exploits the fact that many VPL constraints
evolve gradually, one interaction at a time. The idea is to
maintain sufficient information at each variable to inex-
pensively predict the cost of satisfying each constraint by
examining only the immediate neighbors in the constraint
graph. The cost information is then used to decide which
constraint to satisfy next.

Several responsive VPLs use lazy evaluation to improve
efficiency. In lazy evaluation, no expression is evaluated
until its value is needed. Lazy evaluation also avoids dupli-
cating some computations, and this duplication avoidance
can be extended by saving prior results in a table or cache.
(This is called memoization). In VPLs, some prior results
are already saved for display purposes, which means they
can be easily reused for computational purposes. Lazy
evaluation and memoization are widely used in VPLs.
Examples of VPLs that use one or both of these techniques
include the Garnet, “VPL,” and Forms/3 systems described
in this article.

EFFICIENCY OF GRAPHICAL DISPLAY. Responsive VPLs
must redisplay whenever computational events or user
interactions affect objects on the screen. Possibilities for
improving graphical display efficiency include displaying
fewer items, displaying them less often, or displaying them
less thoroughly. Some of the earlier described display
approaches take the first option by displaying fewer
details.

Garnet,” a constraint-based system for user interface
development that incorporates many aspects of visual pro-
gramming, avoids redisplaying objects. It incorporates a
number of optimizations to minimize erasing and redraw-
ing objects, particularly objects being changed. Garnet
also uses one-way constraint satisfaction for greater effi-
ciency, instead of full two-way constraint satisfaction.

Viva,? a responsive dataflow system for image process-
ing, improves efficiency through a technique involving
both spatial resolution of images and update rate. The spa-

tial resolution is automati-
cally adjusted according to
the original image quality,
and the update rate is auto-
matically adjusted accord-
ing to the rate at which
data arrives from the cam-
era; both can be adjusted
downward by the pro-
grammer. These factors
affect both display effi-
ciency and execution efficiency for calculations that use
the stored image data such as edge detection.

Viva also incorporates an approximate approach for
some displays. Tonouchi et al.? extend this approach as
an optimization technique. For example, approximations
of display algorithms are used when the programmer is
interacting with the system, then the accurate algorithm
completes the display during a break in user interaction.

BEYOND CODING

Most VPL research has been concentrated on the cod-
ing process. However, solving real programming problems
also requires support for noncoding programming tasks
such as design, testing, and debugging. In devising solu-
tions for these noncoding tasks, VPL researchers have the
opportunity to seamlessly integrate support for noncod-
ing aspects into the coding environment (see the sidebar
“Coding and beyond in Vista”).

Through immediate visual feedback, many responsive
VPLs inherently support testing and debugging, resulting
in uniformity with the programming process for these
tasks. The dataflow language “VPL"S is a prime example:
The “VPL” programmer does not differentiate among pro-
gramming, testing, and debugging. For example, instead
of setting breakpoints before executing, the programmer
might watch data flow through the “probe” nodes in a
dataflow graph. Based on this observation, the program-
mer may notice an error and temporarily disconnect an
arc to halt execution at the erroneous node. When the pro-
grammer fixes the bug by connecting new or changed
nodes, execution continues in the changed dataflow
graph.

Many noncoding aspects are needed to bring a program
to production status. Version control, separate compila-
tion, conditional compilation, library generation, porta-
bility, extensibility, cross-language interoperability, name-
space partitioning, and delivery tools form a partial list.
Such pragmatic features are necessary for realistic VPL
software development but, since most VPLs are still in the
research stage, few have been implemented.

THE ESSENCE OF THE SCALING-UP PROBLEM is that simplicity,
concreteness, explicitness, and feedback—the character-
istics commonly used to achieve VPL design goals—are not
normally associated with scalability. Yet, the examples pre-
sented show that they can be compatible. These examples
demonstrate that static representations are possible for
dynamic languages and that concrete sample values can
be used with abstraction mechanisms. They illustrate ways
to maintain the efficiency needed for immediate feedback
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and to combine explicit details with context and in limited
screen space. And they show emerging techniques to seam-
lessly integrate support for documentation, type checking,
persistence, and noncoding aspects of software develop-
ment. As these advances show, solutions to the scaling-up
problem lie not in compromising the distinctive qualities
of VPLs, but in devising ways to capitalize on them. 1
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