B

VISUALIZATION IN COMPUTING

Influence of Visual
Technology on the
Evolution of Language
Environments

Allen L. Ambler and Margaret M. Burnett

ith the availability of graphic
workstations has come the in-
creasing influence of visual

technology on language environments. In
this article we trace an evolution that began
with the relatively straightforward transla-
tion of textual techniques into correspond-
ing visual techniques and has progressed to
uses of visual techniques that have no natu-
ral parallel using purely textual techniques.
In short, the availability of visual technol-
ogy is leading to the development of new
approaches that are inherently visual.

Terminology. In the seventies, much of
the research on software development tech-
nology concentrated on the development of
loosely integrated tools for supporting vari-
ous phases of the software development and
maintenance process. The Unix develop-
ment environment is an example of such a
software support environment.

Subsets of software support environ-
ments directly relate to the programming
process of a single programmer. These
subsets, or programming environments,
distinguish facilities for designing, coding,
editing, documenting, and debugging indi-

October 1989

University of Kansas

Since the advent of
language environments,
use of visual technology

has evolved from
visualization of existing
textual approaches to
inherently visual new
approaches. We survey
this evolution here.

vidual programming tasks from facilities
required for planning, tracking, and man-
aging entire software projects. Program-
ming environments may encourage par-
ticular programming methodologies and
particular languages. Some, referred to as

0018-9162/89/1000-0009$01.00 © 1989 IEEE

language environments, are tightly inte-
grated around a single language. Such
tightly integrated, language-specific envi-
ronments are the focus of this article.

One of the first language environments
was Interlisp.! Developed in the early
seventies, Interlisp provided the basic
functionality we associate with a language
environment: a fully integrated, language-
specific environment with its own user
interface, editor, interpreter, and symbolic
debugger. More recent language environ-
ments have adopted and further refined
many of Interlisp’s features. In some cases,
Interlisp’s original ideas still represent the
state of the art.

At the time language environments were
first developed, computer technology was
in a more primitive state. Bit-mapped
graphics and even CRTs were less com-
mon than the standard Teletype terminal.
In such an environment, the “friendliest”
user interface was the briefest user inter-
face. Therefore, language environments
for many years were strictly command-
driven. But the advent of visual technology
brought dramatic changes in language
environment user interfaces.

Layout and operation
of the Smalltalk user
interface

The Smalltalk environment assumes a
high-resolution bitmap display, a key-
board, and a mouse with three buttons.

11, 12).

We should note here that, in Smalitalk
terminology, a window is a virtual screen
large enough to contain an entire object.
To accommodate physical screens, a
window is viewed through a potentially
smaller rectangular area that can be
moved about on the surface of the win-
dow. Only this rectangular area, called a

screen. By moving the view (a process
of the window. In common usage, this

distinction between a window and a view
into it is often lost, with the term window

The three mouse buttons are indicated by
the appendage to the screen labelled (10,

view, is actually displayed on the physical

called scrolling), you can view any portion

2
/ / /
Size /]
System Transcript] Numeric-M AsY. 1N

3> 1A NumericX¢ Collection | ------- StoreOn:
2->3C llectionst Sequenceatf - -----
1->2A Collections{ - - - - - - - -
1->3B U StoreElementsFrom: t1 to: t2 on: 13
2->3A

used to refer to the physical window
rather than the virtual window. We use
“window” to refer to the physical window.

The System Browser window, identified

ANERNANAN
NN AL

by the tab (1), consists of the body (8) of
a method “StoreElementsFrom:to:on:” (5)
of object “AsYetUnclassified” (4) of object
“ArrayedCollection” (3) of object “Collec-

Visual user interfaces

Multiple windows. Smalltalk’ intro-
duced not only a new language extending
the object-oriented approach of Simula 67.
but also a new and highly visual user inter-
face. Alan Kay pioneered the research
leading to Smalltalk-76’s programming
environment. He devised a user-interface
paradigm he called overlapping windows.
Kay’s paradigm allowed for arbitrarily
large virtual windows with modeless
switching between windows and therefore
between functions. (An interface with
modes interprets commands with differing
results depending upon the current mode.
Typically, getting from one mode to an-
other requires some definitive action, such
as entering a key sequence.)

The fundamental aspects of Kay’s para-
digm were

« displays associated with several user
tasks could be viewed simultaneously;

* switching between tasks would be
done with the press of a button;

* no information would be lost in the
process of switching; and

« screen space would be used econo-
mically.

The paradigm would serve as the basis for
what Kay called an “integrated environ-

ment,” in which the distinction between

10

the operating system and an application
would fade until every capability of any
piece of software would apply to any piece
of information. His paradigm contains the
foundations for current user-interface
paradigms not only for language environ-
ments, but also for system shells, including
that of the now familiar Apple Macintosh.

See the sidebar on Smalltalk for a de-
tailed example of the Smalltalk user inter-
face.

An alternative windowing paradigm
was introduced in Cedar,” a language syn-
thesizing many of the same language envi-
ronment concepts to produce an environ-
ment for an Algol-family language. This
tiling paradigm is functionally similar to
that of Smalltalk, differing primarily in
detail and philosophy. See the sidebar on
the sample Cedar screen for a description.

Multiple views. With Smalltalk came
the concept of multiple windows: with Pe-
can* came the concept of multiple views.
The distinction is that multiple views share
a common internal data representation of
the same data. Whenever any aspect of that
data changes, then all views change simul-
taneously toreflect thatchange. The idea s
that by representing data simultaneously in
several ways, an individual user can
choose those views that are most useful at
a particular time.

In Pecan an internal abstract syntax tree
supports concurrent views. The user never

views this internal abstract syntax tree
directly, but its information is available
through various views. For example, the
editor provides a program listing view: the
declaration editor provides a separate view
of the program’s declarations; and the
structured flow graph view provides a view
of the program as a structured flow graph.
Whenever any modification is made to the
abstract syntax tree, via any view, all ac-
tive views are notified of the change. The
incremental compiler is treated as an un-
displayed view; it receives notifications of
any updates and recompiles the appropri-
ate part of the code. The same approach is
taken with the execution environment. The
sidebar on Pecan shows several sampie
views.

Software through Pictures® is another
graphically oriented language environ-
ment with a family of graphic editors and a
centralized database for information about
the system under development. Each edi-
tor supports a particular methodology of
design or analysis developed in recent
years. The major editors in Software
through Pictures are the Dataflow Diagram
Editor, which supports structured systems
analysis; the Entity-Relationship Editor,
which supports the entity-relationship data
modeling approach; the Transition Dia-
gram Editor, which supports the user soft-
ware engineering (USE) methodology; the
Data Structure Editor, which supports data
structure definition; and the Structure

COMPUTER

tions-Abstract” (2). The bold-lined boxes
in each case indicate the selected item.
To select a different item within the class
hierarchy, you would use the pointer (9) to
point to the new selection and click the left
button (10). Given the hierarchical order-
ing (from left to right), selecting a new
item in any of panes (2, 3, 4) deselects
the selections for all panes to the right of
the new selection. You can scroll each se-
lection pane should there be too many en-
tries to fit.

Whenever the pointer (9) is within the
System Browser window and within one of
the five panes (2, 3, 4, 5, 8), a scroll box
(6) appears along the left side of the con-
taining pane. The scroll box lets you scroll
the text of the corresponding pane by
moving the pointer into the scroll box and
either grabbing and dragging the gray
slider up or down within the scroll box to
indicate the relative position desired within
the corresponding pane or by moving the
pointer within the scroll box slightly to the
left or right of the slider and clicking it to

move down (left of the slider) or up (right
of the slider) one pane of information.

The caret marker (7) indicates the cur-
rent position within the text where, if you
typed, characters would be inserted. You
can move this marker arbitrarily by point-
ing and clicking with the left button. In ad-
dition, you can select sections of text by
pointing at one end of a desired selec-
tion, depressing and holding the left but-
ton while moving the pointer to the other
end, and releasing the left button. While
you make the selection and until you de-
select it (by the next click of the left but-
ton), the selected text appears in reverse
video. You can copy or delete selected
text by choosing copy or cut from a pop-
up menu associated with the center but-
ton (11). You can subsequently paste (in-
sert) it by moving the pointer to a new lo-
cation and choosing paste from the same
pop-up menu.

A pop-up menu appears whenever you
depress the center or right buttons. It
contains a vertical list of possible opera-

tions applicable in the current context.
You select an operation by using the
pointer and clicking the left button when
the appropriate operation appears in re-
verse video. After you select an opera-
tion, the pop-up menu disappears. The
list of possible operations associated with
a pop-up menu changes from one pane
to another, making the choice of opera-
tions sensitive to context.

The right button (12) can also be used
for pop-up menus. The convention in
Smalitalk is that the center button invokes
operations appropriate to the current
pane, while the right button invokes com-
mands relating to the window in relation-
ship to all other windows. Typical right-
button commands allow closing, refram-
ing (changing a frame’s size, shape, and
screen position), or overlaying windows.
As you can see in the figure, more than
one window can be open at any time,
with the active window indicated by hav-
ing its tab (1) distinguished (by a reverse
video title).

Sample Cedar screen

In Cedar, windowing features, although
similar to those in Smalltalk, are enhanced
and have several added features, includ-
ing icons and buttons. A physical window
is called a viewer, and viewers are tiled,
rather than overlapped as in Smalltalk. Til-
ing is a method of placing viewers adja-
cent to one another to cover the entire
screen without covering any viewer, par-
tially or totally, with any other viewer.

Tiling versus overlapping has generated
considerable discussion. With tiled view-
ers the system automatically handles siz-
ing and placement of the viewers, but the
viewers are therefore not likely to conform
to their contents in a way that maximizes
the visibility of those contents. With over-
lapping viewers, the opposite is true: you
must handle sizing and placement manu-
ally. This allows you to make each viewer
conform to its contents.

An open viewer occupies screen space.
When a viewer is closed, it yields its
screen space and appears only as an icon
found at the bottom of the screen. When
you reopen the iconic representation of a
viewer by selecting and clicking its icon,
the viewer is reallocated space on the
screen. While a viewer is closed, it is sus-
pended, but not terminated. Resizing a
viewer has the effect of resizing at least
one other viewer unless it was the only
viewer, in which case it cannot be resized.

Within a viewer, other special viewers
are possible. In particular, buttons are a

UscrExecMethg
Clear R Getlmpl PrevFile Store=Save T

un
&8 run watcch
watcch -> Watch
Loaded and started;
&9 list *.press
figurel.press 105472 31-Aug-83 12:09:06 PDT
105472 31-Aug-83 12:09:29 PDT

Words 913144

Find Word/Def Position Normalize PrevPlace
FirstLeyéOnly MoreLevels FewerLevels AllLe

Fetch: PROC [base: ROPE, index: INT<-0]
RETURNS [C:CHAR];
-- fetches indexed character from given rope
-- BoundsFault occurs if index is >= the rop

Find: PROC [s1,s2: ROPE, posl: INT<-0,
case: BOOL<-TRUE] RETURNS [INT];
-- like index, returns position in s1 where s

(stants looking at pos1)
-- returns -1 if not found

CPU Load
Faults 6055

10

[Sampidinterval 2

CIFS status (inverted iff active)

1 30
requests 16218 disk 4423 gfi 104 mds 27 VM 3593 VM run 2
mmooo [Gd done. (GC#45 got 17194 words, 1305 ob

-- case => case of characters is significant

Index: PROC
{s1: ROPE, posl: INT<-0. s2: ROPE,
case: BOOL<-TRUE] RETURNS (INT];

special group of viewers used only for in-
voking procedures. Buttons are repre-
sented as text, possibly surrounded by a
small box, or as icons. Selecting a button
has the effect of invoking a procedure.
This procedure typically performs some
action on the associated viewer. Often
buttons are arranged in menus and dis-
played just below the caption bar, but
they may be placed arbitrarily within an-
other viewer.

Unique to Cedar is a guarded button,
displayed as a single line drawn through
the normal button representation. It indi-
cates a command with a potentially de-
structive effect. To invoke a guarded but-

ton, you must click it twice within a short
time interval.

The Cedar interpreter viewer shown
here shows an instance in which the
DWIM (Do What | Mean) facility has cor-
rected a command error (1). This screen
also has the performance measurement
tool active (2) and shows the on-line
documentation (3). In the documentation
viewer, the buttons Reset and Save are
examples of the guarded button feature.

We adapted this figure from informa-
tion provided in W. Teitelman's “A Tour
Through Cedar,” published in the April
1984 issue of IEEE Software.

October 1989

11

Sample views
in Pecan

The stack view (1) shows the values
of the variables defined at the current
point of execution. The two variables x
and y are part of the INITIAL block,
which includes the function gcd. The
symbol table view (2) illustrates the
scope of each symbol, including x, y,
and gcd, as well as ged's formal
parameters a and b. The editor view (3)
shows the section of code currently
being executed, namely the if b=0 state-
ment within the ged function. The inter-
preter view (4) displays the execution
status and user inputs and outputs. The
bottom portion of the interpreter view
contains the ruler bar and several com-
mand selections (Go, Break, Step, etc.)
that allow you to control the speed and
manner of execution. The flow diagram
view (5) shows the diagrammatic ver-
sion of the section of code currently
being executed (the gcd function), with

Z.

Z

k
program
X [135 /
y [3 /7
function ged /
ged <ungéfiined>
a 15

example: program

SCOPE INITIAL

x :[variable] TYPE (integer)
y :[variable] TYPE (integer)
ged : {function] TYPE (PROC)

SCOPE gcd
ged : {return] TYPE (int

b : [variable] TYPE (i

>>> Normal termination
>>> Program is ready to run
>>> Begin execution ...

135 63

>>> User halted execution

Go i1 :1:i14] Forward Monitor

Break Step Next Clear _ Reset

the current statement (if b=0) high-
lighted.

We adapted this figure from Reiss’ ar-

ticle, “Graphical Program Development
with Pecan Program Development Sys-
tems,” published in the May 1984 issue
of ACM SIGPian Notices.

Chart Editor, which supports structured
design. Each editor can automatically add
information to the centralized database as
it is generated and modified.

Beyond the visualization of textual
languages. From experience with Pecan
and generating systems to provide graphi-
cal views of otherwise textual languages,
Reiss observed that users were limited by
the inherent one-dimensionality associ-
ated with the underlying textual lan-
guages.® He concluded that effective use of
the two-dimensional capabilities of gra-
phical views required working with lan-
guages whose natural expression was gra-
phical, not textual. Reiss responded by
developing the Garden® system to accept
descriptions of visual as well as textual
programming objects. Others, making this
same observation, have worked on new ap-
proaches to visual languages (see “Visual
languages” below).

Like Pecan, Garden uses a common in-
ternal representation model, in this case an
object-oriented environment complete
with inheritance. New conceptual models
are described by defining new objects that
represent the fundamental objects of the
new conceptual model, then by defining
the interpretation of manipulations to these
new objects. Each of these new objects can
be given a visual representation as well as
atextual representation. The interpretation

12

of visual manipulations can be described
as well. To simplify the process, Garden
provides an extensive library of database,
process management, user-interface, dy-
namic display, debugging, and editing
facilities usable in defining and testing
new conceptual models.

See the sidebar on Garden for a descrip-
tion of the process of defining a new con-
ceptual model.

Visual editing

Syntax-directed editing. One of the
more prevalent visual editing techniques
to appear in language environments is
syntax-directed editing. Here, the editor is
aware of the language’s syntax and can
thus either give the programmer immedi-
ate feedback whenever a syntax error is
typed in or prevent such errors completely
by forcing the programmer to use a tem-
plate based upon the language syntax.

As with windowing systems above,
whole papers discuss syntax-directed edi-
tors in detail. We will just touch on a few of
the more prominent features as they have
appeared in language environments. The
two syntax-directed editors discussed, the
Cornell Program Synthesizer editor and
the Aloe editor used in Gandalf, follow the
philosophy that if a portion of the program
is created based on some template, then the

structure created by that template must be
preserved during editing. This philosophy
allows the use of visual hierarchical tra-
versal techniques based on a program’s
structure. The examples shown in the ac-
companying sidebars on the Cornell Pro-
gram Synthesizer and the Aloe editor illus-
trate the visual techniques used in travers-
ing and editing programs using the two
editors.

The Cornell Program Synthesizer’ is a
language environment for a subset of PL/1
called PL/CS. PL/CS programs are con-
structed through a syntax-directed editor
that uses program-structure-based editing.
Structural aspects of PL/CS programs,
such as blocks and statements, are entered
and edited through a special set of lan-
guage-specific commands. These lan-
guage-specific commands generate tem-
plates that outline the language’s syntactic
structure and provide a preformatted, prop-
erly indented, parentheses-matched form
with place-holders to be filled in by the
programmer. Non-structure-based
phrases, such as expressions, comments,
and identifier lists, are entered using con-
ventional text-based editing commands,
which are only available for such nonstruc-
tural phrases.

The programmer is similarly restrained
from modifying a statement. Text entered
to replace a place-holder must continue to
match the syntactic part specified by the

COMPUTER

Defining a new
conceptual model
in Garden

In Garden, a new conceptual model
can be described in three steps. The
type structure is specified, the seman-
tics for each type is specified, and the
syntax (textual and/or visual) is speci-
fied. Three types are needed for the fi-
nite state automaton in the figure: one
describing a state, one describing a
transition, and one describing the com-
plete automaton. ’

The type editor window (1) shows
the type definition and visual syntax for
a state. It has no Super Types (2), in-
cludes the data fields id and accept
(3), and includes the constant field Pic-
ture (4), which maps a state to a basic
visual object (5) used to display the id
field. All fields of a data structure need
not be displayed with the visual syn-
tax. Also, a single data structure can
have mappings to more than one vis-
ual representation.

In addition to basic visual objects,
composition objects are available. For
example, a layout object can be used
to display more complex or variable
data structures than simple fieids or
records. The complete automaton has
been mapped to a layout object com-
posed of the basic object representa-
tion for states and several arc objects
visually representing the transitions.

After the types are defined, the pro-
grammer defines their semantics (not
shown in this figure) by writing func-
tions using the textual Lisp-like lan-
guage currently provided by Garden
and other graphical or textual meta-
phors that have already been defined.

In (6), the programmer is experi-

Id: String
accept: Boolean

<From Source>
<From Self>

Insert

Display

{ State
id = "S4";

AN }

accept = False;

menting with an instance of the au-
tomaton type (8). Using this editor, the
programmer has created the states us-
ing a series of selections, insert com-
mands, and dialogue boxes. Similarly,
the transitions have been created by
selecting the from and to states, using
the connect command, and filling in
the values requested in the dialogue
boxes. Finally, after several sample

evaluations (not shown), the current
state has become “S4” (7).

We adapted this figure from Reiss’
“Garden Tools: Support for Graphi-
cal Programming,” published in Ad-
vanced Programming Environments,
Lecture Notes in Computer Science
#244, from Springer-Verlag, New
York.

Syntax-directed editing using
the Cornell Program Synthesizer

In the Cornell Program Synthesizer,
you enter language-specific commands
as text, then depress a special function
key.

The editor command

Al
would produce the following template:
IF ([dondition)

THEN statement
ELSE statement

where “condition” and “statement” are
place-holders. The box around the
letter “c,”[c], shows the placement of
the cursor; it denotes that “condition”
is to be replaced by user-entered text.
When the programmer enters text to
replace “condition,” the synthesizer will
check that the entered text is a
Boolean phrase. Should the entered
text not match the syntactic part desig-
nated by the place-holder, the pro-
grammer will be so advised. Similarly,
the programmer replaces the two oc-

currences of place-holder “statement”
by further language-specific com-

mands, introducing yet more templates.

The use of language-specific com-
mands to generate the more complex
syntax of the language PL/CS and the
syntactic checking of place-holder
replacement text prevents the pro-
grammer from entering syntactically
incorrect programs. Further, some
static semantic checking prevents
errors such as referencing an
undeclared identifier.

October 1989

13

Syntax-directed
editing using the
Aloe editor

The language-specific command “wh”
might be used to cause the place-holder

to be replaced by

while[%cond |do
Y%stmt
od

This template provides the structural
parts of a while statement: the required
syntactic tokens (while, do, and od) with
proper indentation, and place-holders
for a conditional expression (%cond)
and the statement body (%stmt). The
cursor is placed automatically at the

expanding and replacing %cond. For

instance, replacing %cond with the tem-

plate for an and expression yields

while ({%expriand %expr) do
Y%stmt
od

The abstract syntax can be specified
such that all expressions are composed
entirely by using constructive com-
mands or by entering a simple variable
name or value. When specified in this
way, editing, which is required to follow
the parse tree, can become very rigid.
For instance, to edit ((a + b) + c) to be
(a + (b + ¢)) requires deleting the syn-
tactic part (a + b) and replacing it with
a, followed by replacing ¢ with the syn-
tactic part (%expr + %expr), and finally
replacing the two occurrences of %expr

by b and c¢. The alternative is an ab-
stract syntax that stops short of gener-
ating expressions, that is, there are no
syntactic parts specified as replace-
ments for the place-holder %expr. Thus,
expressions would be typed and edited
as single nodes of the parse tree. Ac-
tion routines might still be used to check
syntactic correctness.

Up and down movement (cursor-pre-
vious and cursor-next) corresponds to
lateral movement within the parse tree.
In and out movement (cursor-out and
cursor-in) corresponds to vertical move-
ment within the tree. For instance, in
the code shown here, the structural part
is shown on the left and the cursor posi-
tion is identified by a box. If the cursor
is initially positioned as (cursor), then
up, down, in, or out causes cursor
movement as shown.

first place»holder (%cond), The user if %cond then if eof(input) then iffeof(input)]then if eof(input) then if eof(input) then if eof(input) then
may then type in an appropriate Yestmt done := true; done := true; done := true; ne ;= true; done := true;
. . else else else else else else
Boolean expression, replacmg the Festmt read(ch); read(ch): read(ch): read(ch); read(ch):
%cond place-holder or, depending upon
the abstract syntax, the user might in- Structural Part [(cursor) (up) (down) (in) (out)
voke another constructive command
Graphical . e s .
representation A~ LA A
: Stool Topwood
in Use.It
Join
The binary tree depicts the decom- L
position of a process for making Stool Top Top ' M Top:
wooden stools. For each node, repre- o Legs Legs lndud wood
sented by a box (1), the input objects |
are listed on the right of the box and T I Lens Lewood
the output objects are listed on the left °p MakeToZ Topwood e makerpfl] e
side of the box. The join control struc- OF or
ture (2) decomposes MakeStool into L
. 7]
two nodes, Me.lkleParts‘and Assemble Legwood is ard — Legwood is Hard
Parts. Use of join requires that the
right node execute before the left Legs Legwood Legs Legwood
node. The right node has the same in- op or
puts as its parent, but cannot produce

any of the outputs of its parent, only
intermediate values. The left node has
as inputs only the intermediate values
of the right node and must produce as
outputs all of the outputs of the parent
node.

Next, the include control structure
(4) is used to further decompose
MakeParts into MakelLegs and Make-
Top. Use of the include allows its
subnodes to execute in any order or

concurrently. The inputs and outputs of
each node are disjoint, and the union of
the inputs and outputs is exactly the
inputs and outputs of the parent node.
Finally, the or control structure (6) is
used to decompose Makelegs into
Carve and Turn. Use of the or control
structure requires that exactly one of
the subnodes be executed depending

upon the evaluation of a condition (5).
Both nodes have all inputs of the par-
ent node and produce all outputs of the
parent node.

We adapted this figure from J.
Martin's System Design from Provably
Correct Constructs, published by Pren-
tice Hall, Englewood Cliffs, N.J., 1985.

COMPUTER

place-holder. A syntactic structure entered
through language-specific commands
must be edited as a structural unit through
language-specific commands. The pro-
grammer can clip, delete, and insert entire
structural units. When a structural unit is
clipped or deleted, it is replaced by its
place-holder. Likewise, inserted structural
units must replace corresponding syntactic
parts; they will be reindented and re-
checked for syntactic correctness.

The syntactic structure affects cursor
movement as well. When the cursor is
moved, it will skip over all but text and
structural units, permitting itself to be
positioned only where modifications are
allowed.

A program can be run at any stage of
development. Each structural unit is trans-
formed into interpretable code as it is input
and checked. Execution is thus immediate.
Once begun, execution is suspended when
the interpreter encounters either an error or
an unexpanded place-holder. Upon detect-
ing an error, the interpreter indicates the
error and passes control back to the user,
who then may correct the problem or re-
start. Similarly, when the interpreter en-
counters an unexpanded place-holder, it
will stop, allow the user to insert the re-
quired code, and then continue.

The Cornell Program Synthesizer also
has a visual tracing capability, a forerunner
of program animation. (Program anima-
tion refers to the process of displaying the
operation of a program through visual
representations that dynamically change
as the program executes. Selected vari-
ables or even entire data structures are
displayed, usually graphically, with their
contents changing dynamically as the pro-
gram alters their values. For example, for a
program that maintains a binary search tree
of customers, the tree of customer names
might be displayed graphically. Whenever
a node is added or deleted, the display of
the tree would be updated on the screen.)

In the Cornell Program Synthesizer, a
cursor follows the flow of control through
the program during execution. In addition,
the synthesizer provides additional win-
dows for monitoring variables and display-
ing results. The variable monitoring fea-
ture dynamically displays variable values
using a least-recently modified approach
to displaying large numbers of variables in
limited screen space.

See the accompanying sidebar for an
example of syntax-directed editing using
the Cornell Program Synthesizer.

The Gandalf system® uses an editor
generated by Medina-Mora and Notkin’s

October 1989

Aloe editor-generator. Such an editor has a
common kernel of editing commands that
are language-independent and a set of
constructive commands that are language-
dependent. Editing commands are used for
generic operations such as manipulating
parse trees. Typical editing commands
delete a construct or move the cursor.
Constructive commands use abstract and
concrete syntax descriptions to generate
templates for each structural part. Cursor
movement in building or editing a program
parallels movement in the parse tree. In
particular, the cursor is moved up, down,
in, or out to the appropriate place-holder.

See the accompanying sidebar for an
example of syntax-directed editing using
the Aloe editor.

Specification-directed editing. The
concept of structure-based editing can be
extended further by imposing additional
rules on the structure of programs and
enforcing these rules through the editor.
These rules can be used for purposes such
as ensuring that only programs provably in
accordance with a prescribed set of speci-
fications may be entered. This section dis-
cusses two graphically oriented language
environments that use such structure-
based editors.

Higher Order Software’s Use.It’ takes a
formal graphically oriented approach to
program construction. Use.It generates
code, in a variety of languages, directly
from formal specifications, which are en-
tered and edited using a structure-based
editor that enforces decomposition based
on provably correct design axioms that
limit the interactions between modules.

Use.It applications are represented as
binary trees known as control maps. Each
node of the tree represents a function hav-
ing a number of input and output objects.
In a graphical representation, input objects
are listed to the right of the node and output
objects are listed to the left. Leaf nodes are
typically irreducible low-level primitive
functions. Non-leaf nodes are decomposed
into subfunctions using the control struc-
tures join, include, and or, each of which is
consistent with the six axioms on which
the methodology relies.

In Use.It, the decomposition of func-
tions into primitive subfunctions is for-
mally specified and rigidly enforced by the
graphical editing process. The preciseness
of this decomposition ensures the internal
consistency of the code generated by
Use.It. In particular, Use.It ensures that
any decomposition is logically consistent
with the six basic axioms describing the

structural interfaces between pieces of
code. These axioms formally define a reli-
able system for structured coding.

See the accompanying sidebar for an
example of graphical representation in
Use.It.

A similar graphical editing technique
is employed by PegaSys,'® a system that
uses graphical images to formally repre-
sent program design specifications. The
emphasis in PegaSys is on the use of for-
mal graphical specifications as docu-
mentation and as a means to verify that
(user-written) program code meets spec-
ifications.

Graphical specifications are referred to
as formal dependency diagrams. FDDs are
manipulated graphically using editing
techniques subject to system-imposed
syntactic and semantic constraints. The
constraints ensure that certain properties
are preserved during the process of design-
ing a program by successive refinement.

This concept of a rigorously controlled
decomposition based on a mathematical
logic is similar to Use.It, although the rules
used and the properties preserved differ for
each system.

Once the graphically edited design
specifications are complete, they are
manually mapped onto the implementa-
tion code, developed using PegaSys’s
structure-oriented Ada editor. Finally, the
system formally verifies that the program
is consistent with its design specifications.

The sidebar on PegaSys shows two
levels in a formal dependency diagram
hierarchy.

From visual editing to visually trans-
formed programming. Each of the above
visual editing systems is to some degree
template-oriented. That is, some portion of
a program is identified for replacement, a
desired replacement template is selected,
and then the replacement is performed as
specified by the template, possibly subject
to certain rigorously controlied rules.
Clearly, this template-oriented approach
can be carried to such an extreme that the
entire program is constructed by visual
editing techniques alone.

The earliest approaches to visual pro-
gramming consisted of visual editors for
traditional imperative textual languages.
Often the control flow was given a picto-
rial or diagrammatic representation, such
as a flowchart or Nassi-Schneiderman
diagram. Pecan included such views to
represent Pascal programs. Later ap-
proaches discarded the textual version
completely, using the diagram version as

15

Formal dependency
diagram hierarchy
using PegaSys

The accompanying figure shows two
levels in a formal dependency diagram,
or FDD, representing a networking
scheme designed using PegaSys. In
Level 2 of the figure, the processes
Source (1), Destination, H2H_Sndr,
H2H_Revr, and Data_Link_Protocol
are all denoted by ellipses. Dataflow
relations are denoted D on the labeled
arcs msg (2) and h_pkt, which denote
the types of data being passed. The
active types msg and h_pkt are also
listed at the bottom of the screen (4).

Level 3 is a refinement of Level 2,
developed by the user selecting the
entity to be refined (5), then, using the
appropriate menu commands (3), con-
structing the replacement entity (6).
Note that the dataflow relations D for
this entity have also been refined into
read relations, denoted R, and write re-
lations, denoted W.

To augment the FDD, PegaSys also
includes a facility to associate text with
any icon.

We based this figure on Moriconi
and Hare's “PegaSys: A System for
Graphical Explanation of Program De-
signs,” included in the July 1985 Pro-
ceedings of the ACM SIGPlan 85 Sym-
posium on Language Issues in Pro-
gramming Environments.

Protocol: Level2

Edit Text.
Edit Picture
Hierarchy
Program
Clear
Resize
Clock
Alarm

Lisp

Protocol: Level3

Exit msg | D
Logout @
h_pkt |R
Edit -Pr
Verify
Refine Level I DL_OuQ]
Delete Level
Save h_pkt {W
Edit Pict
1! 1cture DLARcvr
Draw Wi
Refine mse pkt
Abort Refine ack_pkt £-P
End Refine A
View .
Scratch Line
I EdixTexl-
Delete
Insert
Replace
Convert
Type(msg) Type(h_pkt) Type(msg) Type(h_pkt) Typetmsg gkt)
Type(ack_pkt)
Window Ico
P t Window Command Input Window
N N
4 5 6

the only representation of the program and
graphical editing of the diagram for con-
struction and editing of the program.

A good example of such a system, Pict/
D," uses a conventional imperative lan-
guage paradigm that replaces all keywords
with iconic representations. The resulting
language creates and manipulates flow-
charts with the added ability to create new
icons to represent subcharts. Thus, the
language semantics are conventional, pro-
gramming requires conventional concepts
and thought processes, and the resulting
programs are of equivalent complexity to
the corresponding textual programs. Pict/
D concentrates on using visual images to
improve our ability to comprehend and
edit programs.

Reiss’s observation about editable
views (see “Beyond the visualization of
textual languages” above) applies to visual
editing as well. Visual editing of an other-
wise textual language can severely limit
the power and usefulness of visual technol-

16

ogy. Clearly, enforcing structural decom-
position rules still has value, as in Use.It
and PegaSys. However, some of the early
approaches to visual programming that
used graphical technology merely to re-
place corresponding typing have drawn the
criticism that they do little more than force
a programmer to use menus and other
graphical techniques for operations that
can often be typed textually faster. Unfor-
tunately, this criticism has unjustifiably
been extended to visual programming in
general.

Visual languages

Visual programming uses visual, rather
than textual, technology. The develop-
ment of visual programming languages
represents a further step in the evolution
toward more visual language environ-
ments. Visual languages are generally
subdivided into two categories. The first

category, visually transformed languages,
includes those visual languages that are
inherently nonvisual but have superim-
posed visual representations. These are the
visually edited traditional languages dis-
cussed in the prior section. They empha-
size facilitating our ability to specify and
comprehend programs using existing lan-
guage paradigms.

The second category, naturally visual
languages, attempts to develop new pro-
gramming paradigms whose inherent natu-
ral expression is visual and for which there
may be no strictly textual equivalent. In
this section, we survey several divergent
naturally visual languages and language
environments.

By the very nature of the concept of
visual programming, it is often difficult to
separate a visual language from its lan-
guage environment. It is this high degree of
integration between the language and its
environment that makes naturally visual
language technology such an influential

COMPUTER

Inserting several instances of previ-
ously defined classes into the window
(Constant (2), Times (3), and Plus) and
entering the constants’ values of 1.8
and 32.0 creates the prototype of the
TempConverter (4). Connecting two in-
stances of NumberPrinters (1,5) to dis-
play the Celsius and Fahrenheit tem-
peratures results in the PrintingCon-
verter as shown in the figure. It works
because the constraints placed on Plus
and Times force adjustment of one of

Whenever the Celsius temperature (1)
is edited, the Fahrenheit temperature
(5) will be adjusted. Also, because of
the multi-way nature of the constraints,
editing of the Fahrenheit temperature
will result in adjustment of the Celsius
temperature.

We based this figure on Borning's
“The Programming Language Aspects
of ThingLab,” published in the October
1981 issue of ACM Transactions on
Programming Languages and Systems.

the Celsius or Fahrenheit temperatures.

A Celsius-to-Fahrenheit temperature
converter constructed in ThingLab

Plus structure insert NumberNode
Point | prototype’s picture delete NumberOperator
| Prin(inéConvener | protype’s values constrain NumberPrinter
Quaditateral as save file merge Plus
TemperatureConverter| syubclass template move Point
Thermometer edit text TextThing

area in language environment research.

Dataflow paradigm. Visual languages
based on the dataflow paradigm might be
considered visually transformed lan-
guages. However, it can be argued that the
dataflow paradigm is based on dataflow
diagrams, in which a program is composed
of functional modules, with connecting
paths between inputs and outputs. In tex-
tual languages based upon this paradigm,
dataflow diagrams are normally drawn
first as part of the program design process
and then translated into textual syntax.
Visual languages based on this paradigm
simply omit the translation to text.

Constraint-based paradigms. Many
constraint-based programming languages
are well suited to a visual representation.
The advantage of a visual representation
for this paradigm lies in the multi-way
nature of constraints. A constraint may
affect many variables, which in turn may
affect many more; such complicated inter-
relationships are often easier to see in a
diagrammatic representation than in a tex-
tual representation.

ThingLab'? is an experiment in con-
straint-based programming. Given a set of
constraints (rules) describing the invariant
properties and relationships of all objects

October 1989

in a particular problem space, then the set
of solutions is the set of values that simul-
taneously satisfy all constraints. With suf-
ficient constraints, the set of solutions can
be made arbitrarily small, thus effecting a
solution.

This approach in many respects re-
sembles logic programming, where con-
straints are analogous torules and relations
and finding a set of values that satisfies all
given constraints is analogous to resolving
a query. ThingLab is a constraint-oriented
simulation language environment that
supports the construction of simulation
environments using constraints and con-
straint-inheritance mechanisms. It incor-
porates inheritance (from the object-ori-
ented paradigm of its underlying implem-
entation language) and allows inheritance
of the constraints themselves. This ap-
proach has the disadvantage that the inher-
ited constraints may conflict when mul-
tiple inheritance is allowed. Still, many
recent constraint languages incorporate
various forms of inheritance.

Based on Smalltalk and heavily influ-
enced by Sutherland’s SketchPad, an early
constraint-based graphical communica-
tion system that allows the user to directly
draw and edit pictures on the screen using
a light pen, ThingLab incorporates ele-
ments of graphical programming-by-dem-

onstration. Its influence shows in later
visual language environments, most nota-
bly ThinkPad and Rehearsal World, both
described below.

See the sidebar for an example of a
Celsius-to-Fahrenheit temperature con-
verter constructed in ThingLab.

Programming-by-demonstration.
This is a naturally visual process for which
there is no textual equivalent. Program-
ming is done by graphically manipulating
the data on the screen, demonstrating to the
computer what the program should do. The
advantage to this approach is obvious — it
is easier for a programmer to perform a
process than to describe textually how to
perform the process.

ThinkPad is a declarative, graphical,
programming-by-demonstration language
and environment.'* To perform program-
ming-by-demonstration, the user graphi-
cally manipulates a diagrammatic repre-
sentation of a data structure to demonstrate
the operations on the data. An automatic
mapping of the user’s manipulations to
Prolog code implements the program.

In ThinkPad, the user defines a data
structure by drawing its graphical proper-
ties. In fact, a single data type can have
multiple diagrammatic representations
(“forms™), all specified graphically. The

17

Defining an operation
in ThinkPad

A simple example will illustrate the
use of ThinkPad. The problem is the in-
sertion of nodes into a binary tree. The
first step (not shown) is to define a bi-
nary tree, using ThinkPad'’s data editor.
This is done by selecting a shape from
the Shapes menu to represent a node
(in this example, a rectangle) and re-
sizing and repositioning it to suit. The
fields within the node are similarly
selected, resized, and repositioned.

The user began by naming the opera-
tion INSERT and specifying the type of
all parameters and results (1). The sys-
tem knows from the parameters that two
graphical forms, an integer and a tree
node, will be needed for the operation,
which it automatically displays (3,4).

Next, the function is described by
identifying a series of cases and for
each case demonstrating the corre-
sponding operation. Each case is distin-
guished by a unique condition (11). In
this case the condition, int 0 < node 1 ->
val (10), is entered by sequentially se-
lecting int 0 (3), the less-than symbol
(12), and val of node 1 (5).

The user now specifies the results (7)
of the INSERT operation by manipulat-
ing the forms on the screen to demon-
strate the operation for this case. First,
the tree node is copied, by depressing
the copy button (9) and then selecting

1 2 3 4 5 6 7 8 9
| Operanopfaugl” 4
v 2 y a—

[e /| wvald) | ok | Pevsien /|

Z Z Z

I lNSERT[){eger.lree) -> (ree, / /]

int0

node 1
<Opy
replace
select
deselect
expand

copy of node 1
>
INSERT
copy of int O
Conditions \
< ==] < \l >]\ <= I >= = I Prev Menu
i 13\ node [M\
r\\ AN —
NN N
10 1 12 13 14 15 16

node 1 (4) to create a new node (8).

Next, the function button (6) is
pressed and INSERT is selected (15) to
indicate a function recursive call. Then,
the arguments are indicated by copying
int 0 (13) and expanding (9) | (16) of the
copy of node 1 (8), giving the structure
of the left node (14).

The user has now completely defined

operation INSERT for one case and can
continue in the same way for each re-
maining case (2).

We adapted this figure from
“ThinkPad: A Graphical System for Pro-
gramming by Demonstration,” by Rubin,
Golin, and Reiss in the March 1985 is-
sue of IEEE Software.

multiple forms capability allows ThinkPad
to support multiple views of a single data
type. The user can define operations on the
data structure by manipulating the repre-
sentation on the screen. In addition, the
user may specify type constraints that the
operations must preserve. Pointing and
clicking selects the desired conditions,
provided by the condition editor.
Internally, the data structure is repre-
sented by a set of Prolog assertions about
the data. Relationships in the data structure
are also mapped into Prolog assertions,
and type constraints are implemented as
predicates. All the assertions pertaining to
one data structure are grouped into a sepa-
rate set of Prolog clauses. Graphical speci-
fications are stored in another library, with
cross links to the set of Prolog assertions.
Because ThinkPad internally defines
operations as transformations from one
arrangement of the data structure to an-
other, manipulating the data structures
graphically is the equivalent of program-
ming. However, while there is a direct

18

mapping from the graphical manipulation
of the data structures to a program (in this
case implemented in Prolog), there is no
mapping from the program to the graphical
representation of the data structures. Exe-
cution and debugging revert to the text-
based Prolog code, rather than to the visual
interface that exists during the creation of
the code.

See the accompanying sidebar for an
example of defining an operation in
ThinkPad.

Rehearsal World," a visual program-
ming language environment devised for
nonprogrammers, is one of the earliest
environments to fully support visual pro-
gramming. Rehearsal World uses a theater
metaphor. The basic components, called
performers, interact with each other on a
stage (the screen) by sending cues. The
screen is the stage upon which performers
(objects) perform the actions the user has
taught them for a particular production
(program).

Rehearsal World includes several pre-

defined primitive performers, each of
which understands a large predefined set
of cues. Any existing performer can be
copied: thus, each performer acts as a
prototype from which other performers can
be generated. The use of predefined per-
formers and cues is, in essence, the integra-
tion of predefined code segments into the
language environment itself.

The actual code generated by Rehearsal
World is Smalltalk, but the programming
process normally occurs strictly through
graphical or visually oriented manipula-
tion; hence, the user does not have to
know Smalltalk to program in Rehearsal
World. Likewise, code is normally de-
bugged visually, by observing the perform-
ers’ behavior during rehearsals, although
additional lower-level debugging facili-
ties are available.

For a closer look, see the sidebar “The
Rehearsal World theater.”

In PT, or Pictorial Transformations,'®
programming takes the form of first de-
scribing visual data representations, then

COMPUTER

The Rehearsal World
theater

The user starts by selecting from the
menus of available stages (1) and
troupes (2). Each troupe contains a set
of performers represented as icons. For
example, the BasicTroupe consists of a
Text performer (3), a Counter performer
(4), and a Number performer (5). For
each performer, a category menu (7) is
available as a pop-up display via a
mouse button. This category menu con-
tains certain commonly used cues (in
lowercase) and categories of other cues
(in uppercase). Most categories are
common to all performers; a few (in
bold) are unigue to an individual per-
former. Selecting a category gets a cue
sheet (6), which lists the cues available
and related to the selected category.

The user can audition a performer by
selecting a cue and observing its action.
For example, a Text performer offers a
variety of functions associated with a
text editor. The Text performer performs
these various operations when sent ap-
propriate cues (by the user or another
performer). For example, setText ‘good -
bye’ will cause ‘goodbye’ to be dis-
played by the Text performer.

A performer learns by demonstration
to send another performer a particular
cue. The user initiates this by sending a
performer a cue indicating that an ac-

AnEmptyStage

BasicTroupe

ControlTroupe
DebugTroupe

GraphicsTroupe
TimeTroupe
PreviousWork1
PreviousWork2

PreviousWorkN

1 + setTextFromKeyboard
* setReverse
* seJumbled

tion is to be defined and telling the sys-
tem to “watch” the demonstration. A tiny
“eye” icon, such as the one in window
(6), opens to indicate the system is
watching. The user then demonstrates
the cues to be sent to other performers

ACTION

BUTTON
SET

ADD
REMOVE
REPLACE

by simply selecting those cues from their
cue sheets.

We based this figure on Finzer and
Gould’s “Programming by Rehearsal,” in
the June 1984 issue of Byte.

graphically manipulating them to develop
program algorithms. Objects in PT, also
called dynamic icons, consist of tuples of
attribute-value pairs (much like associa-
tion lists in Lisp) and an iconic display
function that creates an object’s display
image as a function of its attribute-value
pairs. For instance, its attributes may de-
termine whether or not an object is shaded,
where it is located, or how big it is. The
value of an attribute may be another object,
and thus objects can be hierarchically
structured. A graphical object editor al-
lows construction of new object types.

A procedural language, PT uses a film-
making metaphor. Programming requires
designing graphical objects and using such
objects to demonstrate the workings of
algorithms. A picture is a collection of
graphical objects; a film (analogous to a
procedure or program) is a sequence of
manipulations performed on a picture. A
programmer first selects a starting picture,
then works through pictorial transforma-
tions on that picture. The process is re-

October 1989

corded as one or more films.

By collecting object icons into a picture
and filming a sequence of manipulations
on objects of this picture, the programmer
obtains a visual representation of a pro-
gram’s execution that results from defin-
ing the program itself. Thus, the way the
programmer selects and modifies objects,
plus the dynamic representation of an ob-
ject based on its attribute values, aids the
programmer in designing a program’s ani-
mation simultaneously with its algorithms.

See the sidebar “Filming in PT.”

Form-based paradigms. You can think
of form-based programming as a generali-
zation of spreadsheet programming. Even
though it uses text, in a spreadsheet the
relationships between the data and the
expression of the computations are repre-
sented as part of the form itself, not de-
scribed textually. Hence, the spreadsheet
is naturally visual. It would be hard to
imagine a purely textual version of a
spreadsheet as natural to use, partly be-

cause the visual and interactive aspects of
spreadsheets play an important role in al-
lowing nonprocedural programming.

The visual representation of a cell ma-
trix allows the omission of the concepts of
variables, declarations, and output format-
ting. In addition, it contributes to the visual
image of a large cell matrix wherein each
value is normally computed just once per
evaluation, with the order of evaluation
derived, not specified. The visual interface
with its various operational areas allows a
modeless operation. Hence, being visual
contributes significantly to the success of
spreadsheet languages.

Forms'® extends the spreadsheet para-
digm over a larger problem domain. It
relies on a visual representation general-
ized from the spreadsheet representation to
minimize required language concepts. The
basic “sheet” in Forms is a form, corre-
sponding to a piece of paper on which you
can place cell matrices, called objects. A
cell expression can reference any cell (or
cells) in any object within the containing

19

form or within other forms, subject only to
the restriction that the resulting derived
evaluation must not be made to be circular.

Cell matrices are bounded or un-
bounded. A bounded cell matrix is one of
fixed, known dimensions, whereas an
unbounded cell matrix has at least one
dimension that is unknown during the
specification of the form. However, all
objects must have their dimensions fixed

prior to evaluation. Values for unbounded
objects are specified by generic cell speci-
fications stated in terms of the ijth cell,
combined with specific cell specifications
for specific fixed cells. A subform is simi-
lar in content to a form, but certain objects
will inherit their values as parameters.
These objects map onto other objects dur-
ing evaluation. In addition, the value of
one or more objects may be returned.

Forms is a declarative language. in that
there is no concept of “state.”” For each
evaluation of a form or subform, each cell
is evaluated only once. Cyclic evaluation
is not allowed. However, iteration and
recursion can be accomplished via re-
peated invocations of a subform, each
creating 2 new instance of the subform.
Hence, the set of all forms and subforms
used for a given computation provides a

Filming in PT
(Pictorial
Transformations)

The screen here shows the Pictorial
Transformations programming environ-
ment during the process of program-
ming a solution to the stable marriage
problem. (This problem attempts to
match men and women in marriage
based on their stated preferences for
each other.) In PT, an object is a tuple
of attribute-value pairs together with an
iconic display function that describes
how to display an object based on its
attribute-value pairs.

The collection of objects available for
use in constructing new objects is dis-
played in the window at the upper left
(1). In this example, several structured
objects have already been built. The
6x5 matrix in the center window (2) is
a construction of a column of objects,
each a row of objects, each a text ob-
ject. The attribute-value tuple associ-
ated with the selected subobject at
(3) is displayed in the Attributes win-
dow (6).

In this example, an oval shape indi-
cates a female, and a thin contour indi-
cates unmarried. In PT, attributes like
contour and shape not only convey in-
formation about the visual representa-
tion of the algorithm, but also can be
tested and used directly in the program
solution. Alternatively, these attributes
could be named sex or married and
might have values such as female and
single. An icon has both a logical part
and a physical part; hence, the logical
values need not be the same as the
physical shape.

The iconic display function (not
shown) then uses the current set of at-
tribute values to display the object. For
instance, the object at (3) is shown to
be an unmarried female. When the at-
tribute values of an object change, the
object is redisplayed. This has the ef-

tion of a program.

fect of dynamically animating the execu-

/1 /2 /3 /4
File Edit Deje Selection View Control Window / / /
Objects 7 Forront Suation 7
-—)QK 0n stable marriage e
Tl—p m;?::imonves G
+ |
N
= ‘ marryfne-at-a-time]
‘)
£ DfofoycYele):
OJOXC)
OO0
Films\'. E@@@
el OO0
0\ EI
Selections
pra—— N\ 1
theMale CIHAN »
Attri;:utes:To N N\
text | framedQ | sPpe [contooN]shaded?| x [y | xscale | ysca
b | yes Noval\] thin N\no 2 [1 | 1:1] 1:
oE NN AN 103
G G &5
NN Y
5

To develop a program, you draw a
picture by selecting and placing all ob-
jects required in the solution. Series of
manipulations to the objects are then
recorded as films (analagous to proce-
dures). Current films are listed in the
Films window (7). Once initiated, filming
proceeds by recording a sequence of
selections and actions until terminated.

A selection is an expression that dis-
criminates one or more objects or
subobjects of the picture. When com-
pleted (fixed), selections can be named
for subsequent reuse. The Selection
window (5) lists current selections.

Actions transform the values of se-
lected objects. When an action is condi-
tional on the value of a selection, one or

7

more new situations result. During film-
ing, situations are recorded one at a
time. Stacked situations are displayed
in the Current situation window (4).
Since actions may modify an object’s
attributes, potentially actions might re-
quire one or more objects to be redis-
played, thus altering the visual image
of the picture. In this way, the picture
is animated to follow the execution of
the film.

We based this screen on Hsia and
Ambler's “Programming through Picto-
rial Transformations,” published in
Proceedings of the 1988 IEEE Interna-
tional Conference on Computer Lan-
guages.

20

COMPUTER

Construction of a
subform in Forms

This subform calculates the binomial
coefficients for an order N-1 equation.
Starting from an initially blank form, two
objects Coeffs and N are created by se-
lecting icons from the Objects menu (7)
dragging them into place, and resizing
them as desired. The main cell matrix,
named Coeffs, is an unbounded matrix.
Both dimensions are unknown and are
specified (5) to take the value of the
single-cell matrix named N (6) at run-
time. Thus, the evaluation of Coeffs will
depend on the evaluation of N. This will
force N to be evaluated prior to any
evaluation of Coeffs.

In this example, the value of N is a
parameter, supplied whenever BiCoeffi-
cient is instantiated. The computation of
BiCoefficient is specified by four ex-
pressions (1, 2, 3, 4) that cover the four
regions R1C1, R1Cj, RiC1, and RiCjf
(for i,j > 1). Once the bounds of the ma-
trix are fixed, each cell in each region
will be computed using the expression
for that region. Cell dependencies will
ensure that the matrix will compute cor-
rectly starting from R1C1.

When BiCoefficient is to be invoked

BiCoefficient{N) - >Coeffs

Coeffs :

Objects

BEIE
N

N\
6

from some other form, a new instance
of BiCoefficient is created when you se-
lect it from a list of subforms. For this
new instance, the object N, which is ex-
pected to inherit its value and was pre-
viously blank, is now specified to be the
value of a cell in the “calling” form from
which we are to get the value of N, the
matrix order. This has the effect of fix-
ing the dimensions of BiCoefficient.
The result values are bound similarly

AN
7

by selecting the matrix within the “call-
ing” form that is to receive the result
values and specifying that their values
are to be the contents of the BiCoeffi-
cient matrix.

We based this figure on Ambler's
“Forms: Expanding the Visualness of
Sheet Languages,” published in Pro-
ceedings of the 1987 IEEE Workshop
on Visual Languages.

complete history of the computation.
Consequently, it provides a complete trace
of the computation and a naturally visual
means of debugging.

The sidebar on Forms shows the con-
struction of a subform.

Trend toward naturally visual. Itis too
early to say which of these visual language
approaches will succeed, but clearly they
are moving away from the idea of applying
visual transformations to textual ap-
proaches and toward the idea of naturally
visual approaches. This trend shows gen-
eral agreement with the observation dis-
cussed earlier that visual techniques ap-
plied to otherwise textual approaches are
limited.

velopment of Interlisp, the virtues of a

visual, highly integrated language en-
vironment have become well accepted. In
this article we have looked specifically at
the influence of visual technology on three
elements of language environments: user
interfaces, editors, and programming lan-

In the nearly twenty years since the de-

October 1989

guages. Foreach element, we have seen the
transition from a strictly textual represen-
tation, through relatively straightforward
visual representations of otherwise textual
technology, and toward new investigations
into more naturally visual uses of visual
technology. We assert that this trend is also
true of other elements associated with
language environments, such as debug-
gers, interpreters, and on-line documenta-
tion tools. Perhaps most significantly, vis-
ual technology seems to be moving to a
convergence between the language itself
and the language environment, a conver-
gence that goes beyond the visualization of
existing textual approaches, a convergence
that is naturally visual.[]

Acknowledgments

The authors would like to acknowledge the
important contributions made by Phillip G.
Bradford, Yen-Teh Hsia, Mike Robinson, and
James A. Shelton in the research that led to this
article.

References

1. W. Teitelman and L. Masinter, “The Inter-

lisp Programming Environment,” Com-
puter,Vol. 14, No. 4, Apr. 1981, pp. 25-33.

2. A. Goldberg, Smalitalk-80: The Interactive

Programming Environment, Addison-
Wesley, Reading, Mass., 1984,

3. D.C.Swinehartet al., “A Structural View of

the Cedar Programming Environment,”
ACM Trans. Programming Languages and
Systems, Vol. 8, No. 4, Oct. 1986, pp. 419-
490.

4. S.P. Reiss, “Pecan: Program Development

Systems that Support Multiple Views,”
IEEE Trans. Software Engineering, Vol.
SE-11, No. 3, Mar. 1985, pp. 276-285.

5. A. Wasserman and P. Pircher, “A Graphi-

cal, Extensible Integrated Environment for
Software Development,” SIGPlan Notices,
Vol. 22, No. 1, Jan. 1987, pp. 131-142.

6. S.P. Reiss, “Garden Tools: Support for

Graphical Programming,” in Advanced
Programming Environments, Lecture
Notes in Computer Science #244, R.
Conradi, T. Didriksen, and D. Wanvik, eds.,
Springer-Verlag, N.Y., 1986, pp. 59-72.

21

7. T. Teitelbaum and T. Reps, “The Cornell
Program Synthesizer: A Syntax-Directed
Programming Environment,” Comm. ACM,
Vol. 24, No. 9, Sept. 1981, pp. 563-573.

8. A.N. Habermann and D. Notkin, “Gandalf:
Software Development Environment,”
IEEE Trans. Software Engineering, Vol.
SE-12, No. 12, Dec. 1986, pp. 1,117-1,127.

9. M. Hamilton and 8. Zeldin, “Higher Order
Software Methodology for Defining
Software,” IEEE Trans. Software Engi-
neering, Vol. SE-2, No. 1, Mar. 1976, pp.
9-32.

10. M. Moriconi and D.F. Hare, “The PegaSys
System: Pictures as Formal Documentation
of Large Programs,” ACM Trans. Program-
ming Languages and Systems, Vol. 8, No. 4,
Oct. 1986, pp. 524-546.

11. E.P. Glinert and S.L. Tanimoto, “Pict: An
Interactive Graphical Programming
Environment,” Computer, Vol. 17, No. 11,
Nov. 1984, pp. 7-25.

12. A. Borning, “Defining Constraints
Graphically,” Proc. CHI 86, Conf. Human
Factors in Computing Systems, Apr. 1986,
ACM, pp. 137-143.

13. R.V. Rubin, EJ. Golin, and S.P. Reiss,
“ThinkPad: A Graphical System for Pro-
gramming by Demonstration,” IEEE Soft-
ware, Vol. 2, No. 2, Mar. 19885, pp. 73-79.

14. W. Finzer and L. Gould, “Programming by
Rehearsal,” Byte, Vol. 9, No. 6, June 1984,
pp. 187-210.

15. Y.-T. Hsia and A. Ambler, “Programming
through Pictorial Transformations,” Proc.
1988 IEEE Int’l Conf. Computer Lan-
guages, Oct. 1988, CS Press, Los Alamitos,
Calif., Order No. FI874, pp. 10-16.

16. A.L. Ambler, “Forms: Expanding the Visu-
alness of Sheet Languages,” Proc. 1987
Workshop on Visual Languages, Tryck-
Center, Linkoping, Sweden, Aug. 1987, pp.
105-117.

Supplemental
readings on visual
programming

Due to space limitations, we could not dis-
cuss many important visual languages. The

following reading list provides sources for
additional information.

General surveys
Ambler, A.L., et al., “Integrated Programming
Environments: A Survey of Milestones,” Univ.

of Kansas Computer Science Tech. Report 88-
6, Lawrence, Kan., 1988.

22

Raeder, G., “A Survey of Current Graphical
Programming Techniques,” Computer, Vol. 18,
No. 8, Aug. 1985, pp. 11-25.

Shu, N.C., Visual Programming, Van Nostrand
Reinhold Co., N.Y., 1988.

Visual environments and languages

Halbert, D.C., Programming by Example, PhD
thesis, Computer Science Div., Dept. of EE and
CS, University of California at Berkeley, 1984.

Hirakawa, M., et al., “A Framework for Con-
struction of Icon Systems,” Proc. 1988 IEEE
Workshop on Visual Languages, Oct. 1988, CS
Press, Los Alamitos, Calif., Order No. FX876,
pp. 70-77.

Kimura, T.D.,J.W. Choi, and }.M. Mack, “Show
and Tell: A Visual Programming Language,” to
appear in Visual Computing Environments, E.P.
Glinert, ed., CS Press, Washington, D.C., 1989.

Kozen, D., et al., “Alex — An Alexical Pro-
gramming Language,” Proc. 1987 Workshop on
Visual Languages, Tryck-Center, Linkoping,
Sweden, Aug. 1987, pp. 315-329.

Ludolph, F., et al., “The Fabrick Programming
Environment,” Proc. 1988 IEEE Workshop on
Visual Languages, CS Press, Los Alamitos,
Calif., Order No. FX876, Oct. 1988, pp. 222-
230.

Moshell, J., et al., “A Spreadsheet-Based Visual
Language for Freehand Sketching of Complex
Motions,” Proc. 1987 Workshop on Visual Lan-
guages, Tryck-Center, Linkoping, Sweden,
Aug. 1987, pp. 94-104.

Pong, M.C., and N. Ng, “PIGS — A System for
Programming with Interactive Graphical
Support,” Software — Practice and Experience,
Vol. 13, No. 9, Sept. 1983, pp. 847-855.

Smith, D.C., “Pygmalion: A Computer Program
to Model and Stimulate Creative Thought,” PhD
dissertation, Stanford University, Stanford,
Calif., 1975.

Smith, D.N., “Visual Programming in the Inter-
face Construction Set,” Proc. 1988 IEEE Work-
shop on Visual Languages, CS Press, Los
Alamitos, Calif., Order No. FX876, Oct. 1988,
pp. 109-120.

Smith, R.B., “The Alternate Reality Kit: An
Environment for Creating Interactive Simula-
tions,” Proc. 1986 IEEE Workshop on Visual
Languages, CS Press, Los Alamitos, Calif.,
Order No. FX722, June 1986, pp. 99-106.

Zloof, MM, “QBE/OBE: A Language for Of-
fice and Business Automation,” Computer, Vol.
14, No. 5, May 1981, pp. 13-22.

Program animation
Brown, G., et al., “Program Visualization: Gra-

phical Support for Software Development,”
Computer,Vol. 18, No. 8, Aug. 1985, pp. 27-35.

Brown, M., Algorithm Animation, published as
an ACM distinguished dissertation, MIT Press,
Cambridge, Mass., 1987.

Hyrskykari, A., and K. Raiha, “Animation of
Algorithms without Programming,” Proc. 1987
Workshop on Visual Languages, Tryck-Center,
Linkoping, Sweden, Aug. 1987, pp. 40-54.

Allen L. Ambler is an associate professor in the
Department of Computer Science at the Univer-
sity of Kansas. His research interests include
visual programming languages, programming
language design, software development envi-
ronments, and functionally distributed software
architectures. He has been a senior architect for
Amdahl Corp. and vice president of software
development for Dialogic Systems Corp.

Ambler is a reviewer for /EEE Software and
has served as Executive Committee member-at-
large of ACM SIGPlan and as a reviewer for
ACM Computing Reviews. He is a member of
IEEE and ACM.

Ambler received his undergraduate degree in
mathematics from the University of Kansas and
his MA and PhD in computer science from the
University of Wisconsin at Madison.

Margaret M. Burnett is a PhD candidate in
computer science at the University of Kansas.
Her research interests include visual program-
ming, software development environments, and
computer-human interaction. She has been a
lecturer for the University of Kansas, a consult-
ant and systems analyst, and a systems engineer
for Procter and Gamble.

Burnett holds an MS in computer science
from the University of Kansas and a BA in
mathematics from Miami University of Ohio.

Readers may contact the authors at 110
Strong Hall, University of Kansas, Lawrence,
KS 66045.

COMPUTER

