
To appear in Computer, IEEE Computer Society Press, November 2006. 

 

 Page 1 

Gender HCI:  What About the Software?  

Laura Beckwith*, Margaret Burnett*, Susan Wiedenbeck†, Valentina Grigoreanu* 

*Oregon State University and †Drexel University 

*{beckwith, burnett, grigorev}@eecs.orst.edu, †Susan.Wiedenbeck@cis.drexel.edu 

 

 

Abstract 

Although there have been gender studies designed to understand and ameliorate the low representation of females 

in computing, there has been little emphasis on how software itself affects females’ and males’ performance in 

computing tasks. Building upon theories and research on gender differences from a number of domains, we have 

been investigating how gender differences interact with software. 

Introduction  

In high school, “Ashley’s” career plan was to become a graphic designer.  However, when attempting to tackle Flash 

programming in the graphics design course, frustration set in.  Although Flash is used by graphic designers, the 

original WYSIWYG programming style has largely given way to a Java-like language aimed at software developers 

who use Flash. Then the need to do web programming arose as well.  Ashley decided that learning Flash and web 

programming was too great a barrier, and instead majored in art.   

What were the real causes of Ashley’s difficulties?  Possibly Ashley’s problem-solving style, learning style, or level 

of confidence made learning these software tools seem more formidable than it would to someone else.  Gender 

differences in these and other domains, such as psychology, marketing, and neuroscience, strongly suggest that 

females process information and problem solve in very different ways than males do (c.f. [2, 14]).  We have been 

investigating whether these sorts of gender differences should be taken into account in the design of software.   

The possibility that software could erect barriers to females has only recently emerged [2, 12]. There is, however, 

research on other relationships between gender and computers, such as on gender differences with computer display 

hardware [21], on gender-oriented marketing strategies for web-based shopping [23], and on computer game 

software content [8, 10]. There has especially been work on factors affecting females’ interest in computer science 

as a career choice, including academic “climate”, educational strategies, human resource management, and 

social/cultural factors [9, 16, 18, 24, 25]—just about everything except the way the software works. 

Gender HCI is the term we use to refer to research into how software relates to gender differences. Our particular 

focus is on how “gender-neutral” software works, not on gender-oriented content. Specifically, we have 

concentrated on software aimed at supporting everyday users doing problem solving. Examples of this sort of 
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software include spreadsheets, CAD systems, macro builders, educational software authoring systems, and media 

authoring systems.  

There are two important reasons to care about issues in supporting both genders’ use of problem-solving software.  

First, such experiences could impact the “pipeline” of women in information technology, essentially closing off the 

pipeline’s beginning.  As with Ashley, if a female’s early experience with software that is supposed to support her 

problem-solving efforts is negative and discouraging, how likely is she to decide to eventually choose a career in 

information technology?  The second reason is the productivity of end-user problem solvers, regardless of whether 

they might someday become software developers.  Without taking relevant gender differences into account in the 

design of problem-solving software, barriers can be introduced into the software that interfere with the success of 

half the population the software is intended to support.  

Method  

Our method for conducting this investigation consists of four steps: (1) draw from theory and previous gender 

difference empirical work from other domains—such as computer confidence, perceived risk, information 

processing, computing gaming, and technology adoption models—to hypothesize gender issues and their causes that 

could arise from gender-based differences in the use of problem-solving software, (2) use empirical methods to 

investigate whether these issues do actually arise in problem-solving software, (3) use the results of the first two 

steps along with qualitative empirical work involving low-cost prototyping to derive and refine approaches to 

address the issues, and (4) use quantitative empirical methods to evaluate the effectiveness of the approaches.  

What We’ve Learned So Far: Four Experiments 

Experiments #1 and #2: Gender Differences in Feature Acceptance 

Several of the hypotheses we developed in the first step of the above method predict that in a software environment 

with problem-solving features, gender differences will have a significant impact on adoption and usage of these 

features, due at least in part to differences related to risk perception and confidence.  

Gender differences regarding computer confidence have been widely studied, revealing that females (both computer 

science majors and end users) have lower confidence than males in their computer-related abilities [2, 7, 15].  Of 

particular pertinence is the concept of self-efficacy [1]. Self-efficacy is a person’s judgment about his or her ability 

to carry out a specific course of action to achieve a goal.  According to self-efficacy theory, high self-efficacy is 

critical in problem solving because self-efficacy influences the use of cognitive strategies, the amount of effort put 

forth, the coping strategies adopted in the face of obstacles, and the final performance outcome. This, combined with 

other research finding females are more risk-averse than males, implies that females’ low self-efficacy regarding 

computing tasks will render them less willing to explore and adopt new features.   

We began our investigation into the possibility of gender and its impact on software-based problem-solving 

activities in Experiment #1, a qualitative reanalysis of feature usage from data collected in a prior experiment that 
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was not related to gender [19].  We found that differences in feature activity showed a striking tendency to align by 

gender. For example, Figure 1 shows two activity profiles of one male and one female user that were fairly 

representative of other experiment participants of their respective genders. (Our participants are all non-computer 

science students, primarily recruited from the business school.) As the figure suggests, the males’ amounts and types 

of feature usage were overall quite different from those of the females.  
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Figure 1.  Activity profiles of one male (left) and one female (right) in a problem-solving software 
environment.   

Following up on Experiment #1, Experiment #2 was a quantitative laboratory study, in which 27 male and 24 female 

end users debugged spreadsheet formulas as their problem-solving task [3].  The setting was a research spreadsheet 

system containing a variety of features that have previously been shown to help end users test and debug spreadsheet 

formulas [6]. One of the spreadsheets and the testing/debugging features are shown in Figure 2. The features were 

partitioned into three categories for analysis: familiar features (such as editing formula textboxes), features taught 

during the experiment’s tutorial (checkmarks and arrows), and unfamiliar features that were untaught (Xs). We 

wanted to find out how much males and females used these three types of features, the relationships between their 

 

Figure 2.  Three problem-solving features in the research spreadsheet system [6]:  (1) When users notice a 
correct value, they can “check it off” (cell Exam_Avg). Untested cell borders are red; they turn more blue as 

they become more tested according to a dataflow-based test adequacy criterion.  These same colors in the 
(2) arrows show dataflow relationships among the cells and how tested those relationships are.  (3) If instead 
a user notices an incorrect value (as in cell Course_Avg—the value is obviously too low) they can mark it 

with an X.  As a result of this X and the checkmark in Exam_Avg, eight cells are highlighted as being possible 
sources of the incorrect value, with some deemed more likely than others.  There are also tool-tip based 

explanations available for the features (not shown).  
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feature usage and their self-efficacy, and the implications on task success. 

Table 1 shows several statistical results from this experiment. There were indeed gender differences in self-efficacy, 

with females significantly lower.  Further, females were significantly slower to try out the new features and also 

were significantly less likely to adopt them for repeated use. For example, Figure 3 depicts the mean number of 

minutes into the task before participants first tried out features in each category.  As the figure shows, females 

gravitated toward the familiar feature of editing formulas, whereas males were more likely to try less familiar 

features early. 

Interestingly, the relationship between self-efficacy and feature usage was different for males than for females.  For 

females, low self-efficacy was predictive of low effective usage of features (Figure 4). For the males, however, self-

efficacy was not a predictor.    

An obvious question then arises: were the females simply right about their low belief in their own abilities?  The 

evidence does not suggest this; rather, it points toward females’ low self-efficacy and their low usage of the new 

problem-solving features as hindrances to their performance.  First, there was no significant difference in the males’ 

and females’ performance in fixing the bugs provided. However, females were significantly more likely to introduce 

new bugs that were never fixed. This seems tied to their heavy reliance on formula editing instead of the other 

problem-solving features: formula editing is, of course, the only way new bugs can be introduced. Second, females 

agreed significantly more than the males with this statement: “...I was afraid I would take too long to learn [untaught 

feature]”. However, despite the gender differences in expectation of their ability to learn the untaught feature, there 

were no significant gender differences in actual learning of the feature. This seems to be a case of inappropriately 

low self-efficacy of the females inhibiting their use of a new feature, which in turn prevented them from receiving 

its benefits.  In effect, their inaccurate assessment of ability became a self-fulfilling prophecy. 

Result Type Outcome 
Self-efficacy Mann Whitney: p<.018 (Males higher) 
Self-efficacy predicts effective feature usage Linear regression (Males no, females yes):  

 Males: p<.551, F(1,25)=.365, R2=.015 
 Females: p<.046, F(1,22)=4.52,  R2=.177 

Likelihood of initially trying new features:  
 Type Taught  
 Type Untaught 

ANOVA (Males used earlier): 
 Taught:  p<.005, F(1,49)=8.69 
 Untaught: p<.073, F(1,40)=3.40 

Likelihood of adopting new features for repeated use:  
 Type Taught 
 Type Untaught  

Various methods (Males more): 
 ANOVA:  p<.03, F(1,49)=4.971 
 Fisher’s Exact Test: p<.01 

Bugs fixed Mann Whitney: p<.651 (No difference) 
Bugs introduced Fishers Exact Test: p<.015 (Females more) 
Thought features would take too long to learn Mann Whitney:  p<.017 (Females more) 

Table 1. Statistical results of Experiment #2.  Bold values are statistically significant at p<.05. 
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Experiment #3: Attitudes toward New Features   

We have conducted several other experiments, both qualitative and quantitative.  In all of them, some form of 

gender difference in self-efficacy is present.  The qualitative experiments consistently illustrate a common attitude in 

the females in which low self-efficacy seems to hinder their ability to cope with new, unfamiliar features.   

For example, Experiment #3 was a qualitative think-aloud study that added a “guards” feature to the research 

environment, with red circles akin to those of Excel’s “data validation” feature which circles out-of-range values.  

Female participant F1 exemplifies the attitude that has consistently emerged from low self-efficacy females in these 

experiments: 

F1: “What’s this little arrow doing? They’re everywhere! So, I need to take this—oh, my goodness.  
Now what’s happening? … too much happening.”   

Experiment #3 also revealed an interesting difference in the ways features were perceived by males and females.  

For example, female F3, in using the new guards feature, said: 

F3: “I don’t think that you can get a -5 on the homework. No, it can’t be. So 0 to 100 [is the guard I’m 
entering], ok. Ok, hmm… So, it doesn’t like the -5 [...]. They can get a 0, which gets rid of the angry 
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Figure 3.  Males (dark bars) first used new (taught and untaught) features significantly earlier than females 
(light bars).  

0

20

40

60

80

100

25 30 35 40 45 50 55

Self-Efficacy

O
v

e
ra

ll
 P

e
rc

e
n

t 
T

e
s

te
d

n
e

s
s

Males

Females

 

Figure 4. Females’ self-efficacy was a significant predictor of their effective use of the “check-off” feature, as 
the positively sloping line shows. For the males, however, this was not the case; note how most of the males 

clustered in the upper half, regardless of their self-efficacy.  
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red circle.”  

In contrast to F3’s focus on the guard feature as a way to get her spreadsheet to work correctly, the following male’s 

initial focus was on the feature itself: 

M4: “The first thing I’m going to do is go through and check the guards for everything, just to make 
sure none of the entered values are above or below any of the ranges specified.  So, homework 1—
actually, I’m going to put guards on everything because I feel like it. I don’t even know if this is really 
necessary, but it’s fun.” 

Despite his initial interest in the feature for the fun of it, the male soon transitioned to its problem-solving 

advantages to the task at hand: 

M4 (continuing): “...It looks like the guard on the sum of the first two homeworks is wrong, isn’t it? Is 
this even necessary, should I even be doing this? Alright, what are you doing now?” [A red circle 
appeared because his guard did not agree with the computer generated guard.] “Ok, so it doesn’t like 
my guard apparently. Ok, ah ha! The reason I couldn’t get the guard for the sum to be correct is because 
the sum formula is wrong.” 

In fact, the above gender differences in views toward the same feature are consistent with reports of gender 

differences regarding motivation for using technology, for majoring in computer science, and how children talk 

about the use of technology [5, 11, 15].  In particular, the male participant’s use of the guards “because I feel like it” 

is similar to oft-reported reasons males give for majoring in computer science: technology for the fun of it.   

Experiment #4: How the Tinkering Factor Fits In 

Such playful experimentation as male M4’s, or tinkering, is often encouraged in educational settings because of its 

expected educational benefits [20]. It is possible that tinkering in problem-solving software may yield similar 

positive benefits, if tinkering encourages users to incidentally and iteratively gain knowledge of the software 

features, as M4 did. But education literature reports that tinkering is a strategy more often adopted by males than 

females [13, 17, 22], possibly leaving females without the advantages that can be gained from this strategy.   

An exploratory analysis of Experiment #2’s data showed that males did significantly more tinkering with the 

untaught feature than females did, which may explain the males’ greater interest in this feature. Given the strongly 

suggestive evidence from Experiments #2 and #3 of tinkering differences by gender, we embarked on Experiment 

#4 to investigate whether the self-efficacy factor would discourage females from tinkering, and whether this would 

be tied to negative outcomes for them.  Experiment #4’s design [4] was similar to Experiment #2’s but added a 

comparison with a second software environment, which added features designed to provide greater support (see 

Table 2). We term the second software environment high-support, and the original software environment low-cost.  

For both genders, we measured participants’ tinkering, self-efficacy, and effectiveness in the high-support and low-

cost environments.  
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The results revealed several differences between the genders in their tinkering practices and how these related to 

self-efficacy and to effectiveness.  Males tended to be comfortable with tinkering.  It seems to have been a match to 

many of their problem-solving styles. But this was not wholly a good thing for the males: males also had a tendency 

to tinker to excess.   

Figure 5 depicts these tinkering tendencies and their relationships to effective outcomes, and Table 3 shows some of 

the statistical results. On the female side of Figure 5 (left), starting at bottom, the rectangle depicts amount of 

tinkering. Regardless of software environment, increased tinkering was significantly predictive of females’ testing 

effectiveness, as the red arrow pointing up shows. Following the next red arrow up shows that, just as in the 

previous study, increasing testing effectiveness was significantly predictive of increased bugs fixed for the females.  

Moving across to the male side of Figure 5 (right), the predictive relationship between effective testing and bugs 

fixed was also true for the males, but unlike the females, the tie between males’ tinkering and testing effectiveness 

was not significant.  Further, males’ tinkering was inversely predictive of bugs fixed.  

Environment Example 

Low-Cost Environment: as in 
Experiment #2. This environment was 
expected to be more encouraging of 
tinkering.  

 

High-Support Environment: included 
additional explanations, tentative 
(“maybe”) check-offs and X-outs, and a 
“help me test” scaffolding feature. 
These support features were expected to 
bolster low self-efficacy participants, 
but the additional richness of the 
features also added to the cost and 
complexity, requiring extra clicks to 
access the additional support features 
and producing more feedback for the 
users to interpret.  

 

Table 2.  In Experiment #4, participants were assigned to one of two environments. 
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Figure 5: Males’ and females’ tinkering affected their debugging effectiveness in unexpectedly opposite ways. 
Direction of stylized arrows depicts increase/decrease in a measure, and red arrows show significance of the 

regression relationships between measures. 

 

Result Type Outcome 
Tinkering. Unpaired t-test p<.054, t= -1.96, df = 74 (Males more) 
Tinkering as a predictor of effective feature usage 
(measured as final percent testedness) in testing 

Linear regression (Males: predicts less effectiveness, 
females: more effectiveness):  

 Males: p<.05, F(1,34)=8.04, R2=.19 
 Females: p<.05, F(1,38)=4.63, R2=.11 

Effective feature usage in testing predicts effective bug 
fixing 

Linear regression (Males yes, females yes):  
 Males: p<.01, F(1,34)=27.16, R2=.44 
 Females: p<.01, F(1,38)=10.51, R2=.22 

Pausing:  
 Pauses 
 Predictor of effective feature usage in testing 
 Predictor of understanding the features 

 
ANOVA: p<.05, F(1,74)=4.22  (Females higher) 
Linear regression: p<.01, F(1,74)=31.3, R2=.30 
Linear regression: p<.01, F(1,74)=14.11, R2=.16 

Tinkering differences by environment ANOVA 2(gender) x 2 (environment): (Environment 
affected the genders differently) 

 Main effect of environment: p<.01, F(1,72)=7.15 
 Interaction effect:  p<.05, F(1,72)=4.42 

Tinkering predictive of post-task self-efficacy change: 
 
 Intermittent tinkering in high-support environment 
 Tinkering in low-cost environment 

Linear regression:  
 Males: no predictive effects. 
 Females decrease: p<.05, F(1,21)=6.32, R2=.23 
 Females increase: p<.10, F(1,15)=3.51, R2=.19 

Table 3. Statistical results of Experiment #4.   

These differences between males’ and females’ tinkering behaviors and the benefits that came from these behaviors 

seem tied to two factors.  First, some males exhibited a tendency to tinker without pausing much. In fact, males 

paused significantly less often than the females, and when they did such “pauseless” tinkering, their effectiveness 

suffered. Research from the education field has shown that if students are given “wait-time” of three seconds or 

more after a classroom response, their critical thinking about that response improves [20], and we found similar 

results: pauses after any action were predictive of more understanding and more effective use of problem-solving 

features.  
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Second, the differences in the software environments affected male and female tinkering behavior differently. As 

Figure 6 points out, females tinkered about the same amount in the two software environments, but males’ tinkering, 

which was about the same as the females’ in the high-support environment, skyrocketed in the low-cost 

environment. In the low-cost environment, where tinkering was easy to do, males were willing and eager to tinker to 

excess, which was not the case for females. 

The tinkering results suggest that tinkering (in either environment) helped females gain valuable information about 

the features, leading to positive outcomes. However, there were both positive and negative ties between tinkering 

and females’ self-efficacy.  As with our other experiments, pre-task self-efficacy was an important predictor of 

effectively using the features. However, one type of tinkering in the high-support environment, a pattern of 

intermittently tinkering in fits and starts, was predictive of a drop in post-task self-efficacy. The more the females 

tinkered intermittently in this environment, the larger their drop in self-efficacy.  

One possible interpretation, in light of the findings from Experiments #2 and #3, is that, as the females received 

increased feedback from the high-support environment through their tinkering, they became ever more convinced 

that they would not be able to master its more complex features. In the other, less complex environment, there was 

suggestive evidence linking increased tinkering frequency to increased self-efficacy for the females after the task. 

This suggests that females’ self-efficacy may be more sensitive than males’ to tinkering with software whose user 

interface seems to contain obstacles, such as by being overly complex. The males did not experience changes in self-

efficacy tied to tinkering in either environment.  

In summary then, the males’ biggest problem related to tinkering was that too much tinkering interfered with their 

effectiveness.  The females’ biggest problem was that, although in some circumstances tinkering helped with their 

self-efficacy, under other circumstances it interfered with their self-efficacy.      

Conclusion  

There is ample evidence that gender differences exist in the ways people solve problems.  Our results show that 

these differences are highly relevant to users’ ability to gain benefits from the features that exist in software.  As we 

continue this work, we hope to ultimately identify specific features and attributes of software that present barriers, so 

that alternative choices can be made available to users of the software.   
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Figure 6. This interaction plot depicts the gender x environment interaction in tinkering frequency.  
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We offer the following advice to usability professionals. First, gender differences often are not revealed simply 

through feature usage counts. Rather, gender differences are manifested subtly, in users’ early exploration of 

features, in adoption patterns for long-term use, and in style of usage. Second, for male users, watch for excessive 

tinkering. Although males' willingness to tinker can be an asset, excessive tinkering can be harmful to males' task 

success. Environment factors that make tinkering too readily available may encourage tinkering to excess. Third, for 

female users, watch for ineffective usage of or avoidance of particular features. Signs of this in females, particularly 

low self-efficacy female users, may indicate a need for more supportive feature design. 

It is important to an organization to encourage a diversity of ideas contributing to their efforts, in order to maintain 

their creative edge.  This is true for the employees who create the software an organization builds, and it is also true 

for the employees who use software in problem-solving activities—like Ashley.   

In fact, “Ashley” is a male. His story is true.  Ashley went on to a college career in art, and ultimately won the most 

prestigious academic award his university bestows. He enjoys art, but regrets his decision not to pursue graphic 

design.  Now that he has graduated, the barriers to making the switch back to graphic design are even higher, 

because he no longer has access to the educational support structures available to students.  Still, at home after work, 

he is working to overcome the barriers that prevent information technology from being a good fit to his strengths. 

Although gender differences in self-efficacy, motivations, problem-solving styles, learning styles, and information 

processing styles are all implicated in this issue, it is important to remember that no single female is likely to have 

every trait statistically associated with females, nor is any single male likely to have every trait statistically 

associated with males.  For example, some males process information in the comprehensive style statistically 

associated with females, and some females process information in the more linear style associated with males. Thus, 

designing software in ways that support these differences does not penalize either gender—it helps everyone. 
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