
CrossTalk Only

 -
 -
 -

 -
 -
 -

Mission
Staff
Contact Us

Subscribe Now
Update
Cancel

 > > ArticleHome CrossTalk Jun 2004
Jun 2004 Issue

Software Engineering for End-User Programmers
Dr. Curtis Cook, Oregon State University
Shreenivasarao Prabhakararao, Oregon State University
Martin Main, Oregon State University
Mike Durham, Oregon State University
Dr. Margaret Burnett, Oregon State University
Dr. Gregg Rothermel, Oregon State University

It is estimated that by 2005, there will be 55 million end-user
programmers compared to 2.75 million professional programmers.
Even though end-user programs have the same reliability problems,
software engineering research has largely ignored the end-user
community. Because end users are different from professional
programmers in motivation, background, and interests, the end-user
community cannot be served by repacking tools and techniques
developed for professional programmers. This article describes our
work in developing software engineering devices for spreadsheet
developers, one of the largest classes of end-user programmers.

Software engineering research has focused on aiding programmers throughout the software
development and maintenance process. However, this focus has been on professional
programmers and has largely ignored the sizeable end-user programmer community. It is
predicted that by 2005 in the United States alone there will be 55 million enduser
programmers compared to 2.75 million professional programmers [1]. The programming
systems used by these end users include spreadsheets, web authoring tools, scientific
visualization languages, and graphical languages for creating educational simulations.

It should not be surprising that a high percentage of end-user programs contain errors that
can have significant economic impact. For example, a Texas oil and gas company lost
millions of dollars in an acquisition deal because of spreadsheet errors [2]. In error data
collected from field audit reports of real-world spreadsheets, Panko [2] reported that 20
percent to 40 percent of the spreadsheets contained errors, and errors were as high as 90
percent in some of the financial models reviewed. In empirical studies involving both
experienced and inexperienced spreadsheet developers, he found that over 60 percent of
the spreadsheets created by the participants contained errors. Compounding the reliability
problem is the unwarranted confidence of end users that their spreadsheets do not contain
errors [3].

What is surprising is that software engineering research has paid little attention to
spreadsheet programmers and other end-user programmers. Our research has focused on
the spreadsheet paradigm, the most widely used and studied end-user programming
paradigm. Our intent is to bring some of the advances in software engineering research to
these end users without requiring that they first learn the underlying software engineering
theory and principles. We call this concept .end-user software engineering

In this article, we first point out some of the unique characteristics of spreadsheet end
users. This serves two purposes. First, it shows that traditional software engineering
techniques must be modified for end users; second, it provides a context for understanding
the methodologies and tools we have developed as part of end-user software engineering.
These include the (WYSIWYT) methodology that provides
visual feedback to end users about how much of their spreadsheets have been tested (e.g.,
degree of testing of their spreadsheets), a device that automatically generates
test cases, and finally an approach for supporting assertions in end-user software. We
present the devices and briefly describe a series of empirical studies that validate our
efforts and conclude with a suggested follow-up.

What You See Is What You Test

Help Me Test

5/29/04 11:15 AMSTSC CrossTalk - Software Engineering for End-User Programmers - Jun 2004

Page 1 of 8http://www.stsc.hill.af.mil/crosstalk/2004/06/0406Cook.html

End-User Characteristics
The most obvious difference between professional programmers and end-user
programmers is programming experience and background. A high percentage of
spreadsheet programmers have little or no programming experience. They view a
spreadsheet as a tool to help them solve their problems and regard computers "as a means
to an end rather than objects of intrinsic interest" [4].

Hence in adapting a software engineering technique for spreadsheet end users, it is
unreasonable to expect them to have the time or interest to learn the underlying theory.
Spreadsheet end users are accustomed to working in an incremental fashion in a highly
interactive and visual environment with immediate feedback. Further, spreadsheets are
usually created in an ad-hoc manner without a clear design plan or formal specification [5].
Even though the spreadsheet creator has a mental model of how it should work, most often
it is not explicitly specified, and the actual spreadsheet is only an approximation of the
model. Thus any technique developed should require a minimum of training, not assume a
programming background or formal problem specifications, and be compatible with the
incremental working style.

What We Have Done
Our work has been guided by the above end-user characteristics. We have prototyped our
methodology and tools in the spreadsheet research language Forms/3 [6] because we have
access to the implementation of Forms/3, and thus we can implement and experiment
within that environment. Further, by working with Forms/3 we can investigate not only
language features common in commercial spreadsheet languages but also advanced
language features found in research spreadsheet languages.

Figure 1: A Forms/3 Grades Spreadsheet

In Forms/3, as in other spreadsheet languages, spreadsheets are a collection of cells and
each cell's value is defined by the cell's formula. A programmer receives immediate
feedback about a cell's value after the cell formula is entered. Figure 1 shows a Forms/3
spreadsheet that computes student grades based on quiz and extra credit scores. Three
differences between Forms/3 and commercial spreadsheets such as Excel are that cells can
have meaningful names, more than one cell formula can be displayed at a time, and the
cells do not have to be laid out in a grid and can be positioned anywhere on the screen.
None of these differences are required for or affect the end-user software engineering
devices presented here.

5/29/04 11:15 AMSTSC CrossTalk - Software Engineering for End-User Programmers - Jun 2004

Page 2 of 8http://www.stsc.hill.af.mil/crosstalk/2004/06/0406Cook.html

The WYSIWYT Methodology
The WYSIWYT [7] methodology gives end users visual feedback about the degree of testing
of individual cells and the entire spreadsheet. The WYSIWYT methodology is based on
definition-use associations (du-associations) in a spreadsheet that link a defining expression
in a cell formula (definition) with expressions in other cell formulas that reference (use) the
defined cell. See [7] for more details.

The WYSIWYT methodology provides visual feedback about the extent to which du-
associations have been covered by tests by means of cell border colors. A percent-tested
indicator at the upper right of the spreadsheet gives the percent of du-associations that
have been covered. A red cell border () means none
of the du-associations for the cell have been covered. A blue border () means all of the
du-associations have been covered, and shades of purple () mean some of the
du-associations have been covered. Via tool tips, the end users can learn that a red cell
border means that a cell is untested, blue means fully tested, and shades of purple mean
partially tested.

Total_Score, LetterGrade, ErrorsExist?
avg

EC_Award

An end user can also display arrows that indicate dependencies (du-associations) between
cells and cell formulas. The arrows follow the same color scheme as cell borders. The
arrows reveal the degree of testing at the du-association level, but they are optional; users
do not have to think about testing at the du-association level unless they prefer it. Arrows
for cell displayed in Figure 1 indicate a partial degree of testing. Since the
formula for this cell is displayed, the arrows point to the cell references in the formula and
from the formula to uses of the cell.

ErrorsExist?

The WYSIWYT visual devices keep the user continually informed about the degree of testing
of the spreadsheet, draw attention to untested parts of the evolving spreadsheet, and
suggest where testing will cover new situations. As cell formulas are modified or new cells
added, du-associations are added, deleted, or modified; these changes to du-associations
are immediately reflected in the cell border and arrow colors and the percenttested
indicator (upper right indicator).

Help Me Test
As described to this point, the WYSIWYT relies solely on the skill of the end user to develop
test cases for his or her spreadsheets. Sometimes the end user will know from the
WYSIWYT feedback that a spreadsheet is not fully tested, but will be unable to find a set of
inputs for a new situation. To aid end users in finding appropriate input values for these
situations, we have integrated a Help Me Test device that the user can invoke to find a test
case. When Help Me Test succeeds, it stops and highlights the input cells that have been
changed and the cells that now cover new situations. Figure 2 shows only the output in the
Help Me Test window when invoked for cell in the Grades spreadsheet and not
the cells in the spreadsheet that have been changed. The user can then make testing
decisions about some or all of these cells. A user can invoke Help Me Test for the entire
spreadsheet, a single cell, or a particular arrow.

EC_Award

Figure 2: Help Me Test Window

5/29/04 11:15 AMSTSC CrossTalk - Software Engineering for End-User Programmers - Jun 2004

Page 3 of 8http://www.stsc.hill.af.mil/crosstalk/2004/06/0406Cook.html

Assertions
Assertions — statements about the properties of a program — are used by professional
programmers to prove their programs are correct and to help detect errors. When creating
a spreadsheet, the user has a mental model of properties it should have and how it should
operate. One approximation of this model is the formulas they enter, but unfortunately
these formulas may contain inconsistencies or faults. These formulas, however, are only
one representation of the user's model of the problem and its solution: They contain
information on how to generate the desired result, but do not provide ways for the user to
communicate other properties. Traditionally, assertions in the form of preconditions, post
conditions, and invariants have fulfilled this need for professional programmers, providing a
method of making explicit the properties the programmers expect of their program logic,
providing a reason about integrity of their logic and providing a way to catch exceptions.

While these forms of assertions may aid professional programmers, their syntax and
Boolean expressions are inappropriate for most end users. Our approach attempts to
provide the same advantages to end-user programmers, but is different from traditional
approaches in that ours is a component of our integrated set of software engineering
features specifically designed for end users. As part of the incremental end-user
spreadsheet development, the user can enter a few assertions and see the effects. Our
assertions look like simple ranges, but because they
include open and closed ranges, , , and references to cells, this syntax allows a fairly
powerful set of assertion types [8].

and or

Figure 3:
(Click on image above to show full-size version in pop-up window.)

 User-Entered and System-Generated Assertions in Grades Spreadsheet

There are two types of assertions: user-entered and system-generated. Userentered
assertions are those explicitly entered by the user while the generated assertions result
from propagating assertions through formulas in the direction of dataflow using logic and
interval arithmetic. User-entered and system-generated assertions are stacked on the top of
the cells in Figure 3. The top row of cells is simply input cells with constant values as their
formulas. Cell has a user-entered assertion (stick figure icon) from one to 50
while the user-entered and system-generated (computer icon) assertions for cell

 are the three integer values zero, two, or five. Assertions help users detect
errors through assertion conflicts (user and system assertions disagree) and value
violations (cell value outside of range). To draw the user's attention to possible errors, red

ExtraCredit

EC_Award

5/29/04 11:15 AMSTSC CrossTalk - Software Engineering for End-User Programmers - Jun 2004

Page 4 of 8http://www.stsc.hill.af.mil/crosstalk/2004/06/0406Cook.html

ovals circle assertion conflicts and value violations. Cells and have value
violations and the cell has an assertion conflict in Figure 3.

quiz2 ExtraCredit
avg

To introduce users to the idea of entering assertions, Help Me Test provides suggested
assertions on some cells that do not yet have them. When users run Help Me Test to get
new test inputs, our empirical work showed that these suggested assertions were effective
in inducing them to use assertions while debugging [9].

Commercial spreadsheets such as Microsoft Excel have a data validation feature that bears
a surface similarity to assertions in our environment. However, these commercial
spreadsheets do not propagate assertions, do not automatically display assertions, and do
not update the display of assertion violations when changes are made. In short, their
assertions are data entry checks, whereas ours form an ever-present reasoning mechanism
that watches over all the cells at all times.

Validation
We have used empirical studies both to demonstrate that our methodology and tools do
indeed aid end users in testing, debugging, and maintaining their spreadsheets and to gain
a better understanding of how end users work and how our devices help them. In nearly all
of these studies we have used sophomore and junior business majors as subjects.

Two controlled experiments [10, 11] showed that subjects using the WYSIWYT methodology
tested significantly better (higher coverage, fewer redundant tests) and were significantly
more successful in a maintenance task (more correct modifications, more testing) than
subjects without the WYSIWYT methodology. In a debugging study [12], we found that
WYSIWYT subjects using assertions found significantly more bugs and found them faster
than WYSIWYT subjects without assertions. A follow-up study [9] showed that end users
elected to enter assertions of the type described in this article, and did so quite accurately.

We have also conducted several thinkaloud studies during which we observe subject
behavior and record subject verbalizations as they perform the experimental task. These
studies provide insight into their thought processes and strategies. Our think-aloud studies
have found that end-users understood assertions and could effectively use them in a
maintenance task [8], and that end-users with WYSIWYT and Help Me Test were more
effective and more efficient in a modification task than end-users with only WYSIWYT [8].
In all of our experiments, the subjects using our end-user software engineering devices
showed a more appropriate level of confidence about whether their spreadsheets contained
errors.

Conclusions
Software engineering research has largely ignored the end-user community in spite of the
fact that there will soon be 20 times as many end-user programmers as professional
programmers. Yet, it should not be a surprise that end-user programs have the same
correctness problems. Because end users are different from professional programmers in
background, motivation, and interests, the end-user community cannot be served by simply
repackaging techniques and tools developed for professional programmers. Instead, the
methodologies, tools, and techniques developed for end users must take these differences
into account.

In this article we have described our approach in developing software engineering devices
for spreadsheet users, which has been met with considerable success. We advocate that
spreadsheet languages contain some of the devices we have developed, and we believe our
approach holds promise for those developing tools and techniques for other types of end-
user software. We welcome the opportunity to collaborate with others interested in this
work. If you are interested in either theoretical or practical follow-up, please contact author
Dr. Curtis Cook.

References

1. Boehm, B., E. Horowitz, R. Madachy, D. Riefer, B. Clark, B. Steece, A.W. Brown, S.
Chulani, and C. Abts. Software Cost Estimation With COCOMO II. Englewood Cliffs, N.J.:
Prentice-Hall, 2000.

2. Panko, R. "What We Know About Spreadsheet Errors." Journal of End User Computing
Spring 1998: 15-21.

3. Brown, P., and J. Gould. "Experimental Study of People Creating Spreadsheets." ACM
Transactions on Office Information Systems 5.3 (July 1987): 258-272.

4. Nardi, B., and J. Miller. "Twinkling Lights and Nested Loops: Distributed Problem
Solving and Spreadsheet Development." Int. J. Man-Machine Studies 34 (1991): 161-
184.

5/29/04 11:15 AMSTSC CrossTalk - Software Engineering for End-User Programmers - Jun 2004

Page 5 of 8http://www.stsc.hill.af.mil/crosstalk/2004/06/0406Cook.html

5. Ronen, B., R. Palley, and H. Lucas. "Spreadsheet Analysis and Design."
Communications of the ACM 32.1 (Jan. 1989): 84-93.

6. Burnett, M., J. Atwood, R. Djang, H. Gottfried, J. Reichwein, and S. Yang. "Forms/3: A
First-Order Visual Language to Explore the Boundaries of the Spreadsheet Paradigm."
Journal of Functional Programming 11.2 (Mar. 2001): 155-206.

7. Rothermel, G., L. Li, C. DuPuis, and M. Burnett. What You See Is What You Test: A
Methodology for Testing Form-Based Visual Programs. Proc. of 20th International
Conference on Software Engineering. Kyoto, Japan. Apr. 1998: 198-207 http://
cs.oregonstate.edu/~burnett/ITR2000.

8. Rothermel, K., C. Cook, M. Burnett, J. Schonfeld, T.R.G. Green, and G. Rothermel.
WYSIWYT Testing in the Spreadsheet Paradigm: An Empirical Evaluation. Proc. of the
22nd International Conference on Software Engineering. Kyoto, Japan. June 2000:
230-239.

9. Wallace, C., C. Cook, J. Summet, and M. Burnett. Assertions in End-User Software
Engineering: A Think- Aloud Study. Proc. of IEEE 2002 Symposia on Human Centric
Computing Languages and Environments (HCC 2002). Arlington, VA, Sept. 3-6, 2002:
63-65.

10. Wilson, A., M. Burnett, L. Beckwith, O. Granatir, L. Casburn, C. Cook, M. Durham, and
G. Rothermel. Harnessing Curiosity to Increase Correctness in End-User Programming.
Proc. of ACM Conference on Human Factors in Computing Systems. Ft. Lauderdale, FL,
Apr. 5- 10, 2003.

11. Krishna, V., C. Cook, D. Keller, J. Cantrell, C. Wallace, M. Burnett, and G. Rothermel.
Incorporating Incremental Validations and Impact Analysis Into Spreadsheet
Maintenance: An Empirical Study. Proc. 25th IEEE International Conference on
Software Maintenance. Florence, Italy, Nov. 2001: 72-78.

12. Burnett, M., C. Cook, O. Pendse, G. Rothermel, J. Summet, and C.Wallace. End-User
Software Engineering With Assertions in the Spreadsheet Paradigm. Proc. of the
International Conference on Software Engineering. Portland, OR, May 2003.

About the Authors

 is professor of computer science at Oregon State University. He has
more than 20 years of research and experience in software complexity metrics, program
understanding, and software quality. Cook is a member of the editorial board
of the . He has a doctorate in computer science from the University
of Iowa.

Computer Science Department
Oregon State University
Corvallis, OR 97331-3202
Phone: (541) 737-5564
Fax: (541) 737-3014
E-mail:

Curtis Cook, Ph.D.,

Software Quality Journal

cook@cs.orst.edu

5/29/04 11:15 AMSTSC CrossTalk - Software Engineering for End-User Programmers - Jun 2004

Page 6 of 8http://www.stsc.hill.af.mil/crosstalk/2004/06/0406Cook.html

 is a graduate student in the Computer Science Department
at Oregon State University. He works as a research assistant in the Forms/3 research
group. His research interests are software engineering, software testing, and empirical
studies. Prabhakararao has a bachelor's degree from Osmania University, India, and a
master's degree in computer applications from Birla Institute of Technology, Mesra, India.

E-mail:

Shreenivasarao Prabhakararao

prabhash@cs.orst.edu

 is a senior and undergraduate research assistant in Computer Science at
Oregon State University. Prior to returning to college studies, Martin was a recording
engineer assisting on major label recordings. The current shift in that industry into
computer usage sparked Main's interest in how computers are used by society as a whole.
E-mail:

E-mail:

Martin Main

mainma@cs.orst.edu

 is a senior and undergraduate research assistant with Oregon State
University's Computer Science department. He contributed to a recently published paper on
the curiosity and behavior of end users. Durham's research interests include human-
computer interaction, end-user software engineering, and psychology.

E-mail:

Mike Durham

durhammi@cs.orst.edu

5/29/04 11:15 AMSTSC CrossTalk - Software Engineering for End-User Programmers - Jun 2004

Page 7 of 8http://www.stsc.hill.af.mil/crosstalk/2004/06/0406Cook.html

is an associate professor in the Computer Science Department at
Oregon State University. She previously worked for several years in industry. Her research
interests are where programming languages, human-computer interaction, and software
engineering meet, namely in visual programming languages and in how programming
language and software engineering research can be applied to support end-user
programming. Burnett received the National Science Foundation's Young Investigator Award
for her work in visual programming languages. She has a doctorate in computer science
from the University of Kansas.

E-mail:

Margaret Burnett, Ph.D.,

burnett@cs.orst.edu

 is an associate professor in the Computer Science Department at
Oregon State University. His research interests include software engineering and program
analysis, with an emphasis on software maintenance and testing. Rothermel is a recipient of
the National Science Foundation's Faculty Early Career Development Award and is associate
editor for IEEE Transactions on Software Engineering. He has a doctorate in computer
science from Clemson University.

E-mail:

Gregg Rothermel, Ph.D.,

grother@cs.orst.edu

 · · · Privacy and Security Notice External Links Disclaimer Site Map Contact Us

Please or call 801/DSN 775-5555 if you have any questions regarding your or for
additional STSC information.

 OO-ALC/MASE, 801-777-7026,

E-mail CrossTalk subscription

Webmaster: E-mail

STSC Parent Organizations: OO-ALC/MAS Ogden Air Logistics Center, Hill AFB

5/29/04 11:15 AMSTSC CrossTalk - Software Engineering for End-User Programmers - Jun 2004

Page 8 of 8http://www.stsc.hill.af.mil/crosstalk/2004/06/0406Cook.html

