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After-Action Review for AI (AAR/AI)
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Explainable AI (XAI) is growing in importance as AI pervades modern society, but few have studied how XAI
can directly support people trying to assess an AI agent. Without a rigorous process, people may approach
assessment in ad hoc ways—leading to the possibility of wide variations in assessment of the same agent due
only to variations in their processes. AAR, or After-Action Review, is a method some military organizations use
to assess human agents, and it has been validated in many domains. Drawing upon this strategy, we derived an
AAR for AI, to organize ways people assess reinforcement learning (RL) agents in a sequential decision-making
environment. We then investigated what AAR/AI brought to human assessors in two qualitative studies1.
The first investigated AAR/AI to gather formative information, and the second built upon the results, and
also varied the type of explanation (model-free vs. model-based) used in the AAR/AI process. Among the
results were: (1) participants reporting that AAR/AI helped to organize their thoughts and think logically about
the agent; (2) AAR/AI encouraged participants to reason about the agent from a wide range of perspectives;
and (3) participants were able to leverage AAR/AI with the model-based explanations to falsify the agent’s
predictions.
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1 INTRODUCTION
By design, AI systems perform decision-making on behalf of a human user. This means that in
safety-critical applications such as self-driving cars, vendors may take on additional liability when
things go wrong. Failures may have such grave consequences that they are likely to wind up in
court [11]. Was the accident caused by the driver not reacting in time, or a defective AI? [48]. How
can AI stakeholders best determine that an AI system is safe and regulation compliant?
1This paper is a revised and expanded version of [43].
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Given that intelligent agents interact with the world in ways analogous to those of human agents,
could established techniques for evaluating the quality of human performance be applied to an
AI? In this paper, we investigate this approach by adapting a technique called After-Action Review
(AAR) for use with AI. AAR was devised by the U.S. Army in the mid-70’s [46], and has been a
success in various branches of the military. It has also been adapted for other domains including
medical treatments [61], transportation services [42], and fire-fighting [30]. Apparently, most of
these adaptations have proven successful, as a recent meta-analysis of 61 studies reporting effect
size for use of AAR found a moderate practical effect overall [32].
We term our adaptation AAR/AI (pronounced “arf-eye”, short for “AAR for AI”). AAR/AI is a

process for application domain experts to use in assessing whether and under which circumstances
to rely upon an AI agent. We envision AAR/AI to be suitable for sequential domains, guiding the
human through a series of steps to evaluate an AI agent’s actions using explanations.

To investigate AAR/AI in the hands of human users, we set it in the context of a real-time strategy
(RTS) game as the sequential system. We created a custom game in StarCraft II (Section 4.1).
Then, we created a reinforcement learning (RL) agent that yielded high-quality actions in the
domain (Section 4.2). For this agent, we also devised two types of explanations of the agent’s
actions (Section 3.4)—one type was a Model-Free explanation and the other was a Model-Based
explanation—so as to observe AAR/AI with two types of agents.
Model-Free and Model-Based agents work differently, yielding different possibilities for expla-

nation. Model-Free agents simply compute a value for each considered action and then select the
maximum. In contrast, Model-Based agents expand a search tree as they perform action selection.
The root of the tree reflects the current state of the system. The agent considers many actions
by predicting the state transition each action will cause. The process is then repeated using each
predicted state as a starting state. Model-Based agents offer a richer space for explanation because
the action and state information available in the tree is human-interpretable.

To improve experimental control, we needed Model-Free and Model-Based explanations which
select the same actions. To accomplish this, we used the same Model-Based agent for both, so that
they encoded the same policy, then heavily pruned the Model-Based explanation tree to form the
Model-Free one, only exposing the information that an Model-Free system would have.
AlphaZero [64] is a classic example of a Model-Based system. It uses MCTS to expand a game

search tree—the agent uses its model of the game rules to recursively predict subsequent states as
part of the decision process (given the current state and potential agent actions as input). Model-Free
agents too can be applied in domains which are sequential, but are more common in domains which
are not, such as image classification (e.g. VGG-19, illustrated by [25]’s Figure 3).

To investigate AAR/AI in the context of these explanations, we conducted two qualitative studies.
Study One employed a one-on-one in-lab think-aloud design with paper prototypes, and focused
primarily on the process. Using our Study One results, we implemented an interactive prototype,
and ran Study Two. Study Two allowed us to both triangulate with our preliminary results, and to
consider AAR/AI with two types of explanations: a Model-Free explanation and a Model-Based
explanation.

With our two studies, we investigated the following research questions:

RQ1 (Study One) To what extent are participants able to make sense of and learn from our
explanations while using AAR/AI for assessment?

RQ2 (Studies One and Two) Which actions should be included in search tree explanations? How
do these design choices affect user interaction patterns?

RQ3 (Studies One and Two) How did the aspects of theory present in our explanations affect
participants’ ability to make explanation-informed statements?
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RQ4 (Study Two) How did differences in how participants engaged with our explanations affect
their cognitive load?

2 BACKGROUND & RELATEDWORK
There are many papers describing the challenges of evaluating AI systems’ quality (e.g. [9, 22]),
including specific attacks (e.g. [18]). Rising to meet these challenges, approaches like DeepTest [71]
attempt to utilize concepts from software engineering to improve testing of deep neural networks. In
particular, they seek to measure and improve “neuron coverage” (proposed by Pei et al. [52], similar
to code coverage). To accomplish this, they apply a series of transformations to the input, a form of
data augmentation conceptually similar to fuzzing. However, these approaches are system-oriented
in terms of exposing problems, not human-oriented by giving an assessor the tools to determine
appropriate use for the AI.

2.1 People Analyzing AI
Human-oriented evaluation of AI is an active area of research, though much of it is at a different
granularity than we needed. For example, Lim et al. researched how their participants sought
information in context-aware systems powered by decision trees. The result of their research
was a code set of several “intelligibility types” describing the information. They discovered that
their participants demanded Why and Why Not information, especially when the system behaved
unexpectedly [40]. Using Lim’s code set, Penney et al. studied how experienced RTS players looked
for information when understanding and evaluating an “AI,” but they found that participants
preferred What information over Why information and that the large action space of StarCraft
II led to high navigation costs, which meant missing important game events [53]. Dodge et al.
analyzed how shoutcasters (human expert explainers, like sports commentators) assessed competi-
tive StarCraft II players. They showed the ways that shoutcasters present information that they
thought their human audiences needed [16]. Kim et al. gathered 20 experienced StarCraft II players
to play against competition bots and rank them based on performance criteria. They noted how
human evaluations of the AI bots differ from the evaluations used for AI competitions and that the
human player’s ability plays a huge role in their evaluations of the AI’s overall performance and
human-likeness [34]. These studies found how people evaluate an AI, but they did not present a
structured process for assessment.

There are several models which consider system assessment in a human-oriented way; however,
these works do not provide an assessment process for AI, but rather on whether humans will
adopt systems or not. One such framework is Technology Acceptance Modeling (TAM) [14]. TAM
can predict how well a system will be accepted by a user group and explain differences between
individuals or subgroups. More recently, the UTAUT (Unified Theory of Acceptance and Use of
Technology) model was proposed as an acceptance evaluation model [26]. Carrying on this spirit,
recently researchers have produced a spate of publications based on need-finding or perception
interviews meant to identify barriers to adoption (e.g. [5, 8, 28, 80]). While these techniques can
assist in assessment, they do not offer a concrete process for human assessors to enact.

More recently, a few researchers (e.g. [1, 76]) have made first forays into guidelines that can be
used to assess explanations without the user-in-context2 required by adoption models. Yang et al.,
identified two main challenges that may explain the rarity of this kind of fundamental AI usability
research, “uncertainty surrounding AI’s capabilities. . . [and]... AI’s output complexity.” [81]. Similarly

2Hoffman et al. [27] describe two kinds of AI evaluation, based on “Satisfaction” (roughly speaking, ‘does it help a user
complete a task?’), and “Goodness” (roughly speaking, ‘does a panel of experts think it is good?’).
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to adoption models, guidelines can assist in explanation assessment, but do not offer a concrete
process to follow.

2.2 People Explaining AI
The primary purpose of explanations is their ability to improve the mental models of the AI systems’
users. Mental models are “internal representations that people build based on their experiences in the
real world” that assist users in predicting system behavior [47].
Devising explanations that actually lead to better mental models is an active area of research.

One such example is Kulesza et al.’s proposed principles for explaining (in a “white box” way)
machine learning (ML) based systems, wherein the system made its predictions more transparent
to the user [37], which in turn improved the quality of their participants’ mental models. Another
study by Anderson et al. [2, 3] provided insights into the variability of changes in the mental models
of participants with different explanation strategies of an AI agent. One promising explanation
strategy is to manage users’ expectations. For example, Kocielnik et al. found that interventions,
like adding a gauge, helped participants estimate the system’s accuracy [36].

Another direct consequence of altering the mental models of users is the improvement in their
ability to control the system. According to a study by Kulesza et al. [38], participants with the most
improved mental models were able to customize the system’s recommendations best. Roy et al.
found that participants preferred high controllability, even in low accuracy settings [58]. Wang et
al. set up an accuracy-control tradeoff explicitly in their auto ML system, allowing users to search
longer for higher accuracy, or adjust the search constraints for higher control [77]. Another kind of
tradeoff, posed by Smith-Renner et al., reports that the systems adhering to the user input more
often can increase instability with respect to other changes that occur when the model updates to
incorporate that input [66], a problem also reported by Stumpf et al. [68]. Still, the preference for
controllable systems seems to hold even when the controls do not work [73].
Explanations in the domain of AI agents in RTS games have been gaining traction in recent

years. In a study by Metoyer et al. [44], they present a format where experienced gamers played
while providing explanations to non-RTS players, finding that one key to the explanation process
was the manner in which expert players communicated while demonstrating how to play. The
study by Kim et al. [35] had experienced gamers play against AI bots in order to assess the bot’s
skill levels and overall performance. However, despite the research mentioned above, there is a
dearth of literature concerning what humans really need in order to understand and assess such
systems [50].

2.3 After-Action Review
To structure our assessment method, we turned to processes that have been used for humans
to assess other humans, including Post-Control, Post-Project Appraisal and After-Action Review
(AAR) [62]. Our criteria for the process to use as our basis included: (1) have a structured and
logical flow, (2) be well established, and (3) be suitable for evaluation during a task, not just useful
at the end of a task. We selected the AAR method as the one that best fulfilled these criteria.

AAR is a debriefing method created by the United States Army, and it has been used by military
and civilian organizations for decades [60], to encourage objectivity [42]. The purpose is to un-
derstand what happened in a situation and provide feedback, so people can meet or exceed their
performance standards by going through the structured series of steps shown in Table 1.

The AAR process was primarily used as a method to provide performance feedback after soldier
training sessions. Before starting an evaluation session, the leader (a designated individual across
all sessions) performs groundwork to collect and aggregate data from the training session for
further analysis. The leader enters that session with a pre-planned mechanism to collect data. The
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evaluation session begins by reiterating the objectives of the analyzed exercise. From there, the
leader asks a series of open-ended and leading questions about what happened during the training
session, making sure to encourage a diverse range of perspectives. These responses are then filtered
into a recapitulation that the group collectively agrees on, and the discussion is shifted to any
shortcomings in performance. This is followed by brainstorming solutions to avoid or improve
responses to problematic outcomes. The evaluation concludes by delineating an action plan to
adhere to for future training [72].

AAR showed effectiveness for combat training centers [60], and the military still uses it, with a
recent investigation of current methodologies for simulation-based training [23]. Outside military
applications, AAR has been used in other domains, from medical treatment [55, 61], emergency
preparedness [13], and emergency response [30, 39]. The closest research to ours discusses how
AAR will be different for manned-unmanned team compositions, but focused on the technologies
needed to support the AAR process, not the process itself [7].

3 THE AAR/AI PROCESS
Our After-Action Review for AI (AAR/AI) is an assessment method for a human assessor to judge
an AI. We base the steps of our method from Sawyer et al’s DEBRIEF adaptation from the Army’s
AAR [61]. In their adaptation, they Define rules, Explain objectives, Benchmark performance,
Review what was supposed to happen, Identify what happened, Examine why, and Formalize
learning. Table 2 outlines our AAR/AI adaptation.
The original AAR method is a facilitated, team-based approach, but our AAR/AI method is for

an individual that is reviewing, learning the AI’s behavior, and assessing its suitability [62]. The
outcomes are different for the approaches: AAR aims for transfer of knowledge within a team, and
AAR/AI aims for individual acquisition of knowledge and assessment of an AI. These two primary
differences between AAR and AAR/AI are what generated the specific ways AAR/AI (Table 2’s
columns 2 and 3) carries out the original method’s steps (Table 2’s column 1).

3.1 AAR/AI: Defining Rules & Objectives
A facilitator starts each session with a tutorial on the user interface, domain, explanations, and
the objectives of the assessment (Steps 1-2, Table 2). This contextualizes the discussion in terms of
what the assessor is supposed to do and the objectives of agent that they are assessing. After that,
the facilitator begins the AAR/AI “inner loop” (discussed next), and after every loop is done the
assessor completes a questionnaire.

US Army AAR Process
Introduction and rules.
Review of training objectives.
Commander’s mission and intent (what was supposed to happen).
Opposing force commander’s mission and intent (when appropriate).
Relevant doctrine and tactics, techniques, and procedures (TTPs).
Summary of recent events (what happened).
Discussion of key issues (why it happened and how to improve).
Discussion of optional issues.
Discussion of force protection issues (discussed throughout).
Closing comments (summary).

Table 1. Steps of the US Army AAR process [72].
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3.2 AAR/AI’s Inner-Loop: What, Why, How
During each iteration of the inner loop, the facilitator asks the assessor, “What was supposed to
happen?”, “What happened?”, “Why did it happen?”, and “How can it be improved?” (Steps 3-6,
Table 2). The assessor also summarizes what happened in the past three rounds and writes down
anything they observed that was good, bad, or interesting on an index card. At Step 5, we provided
the assessor with the AI’s explanation for the most recent round, and asked them to explain why
the AI did the things it did, according to the process in Table 2. Following this, to formalize learning
about this particular decision, the facilitator asks the assessor the questions listed in Table 2 step
6, (e.g. whether they would allow the AI to make these decisions on their behalf). Thus ends the
inner loop, which would repeat until the end of that analysis session.

3.3 AAR/AI’s Artifacts
Part of AAR/AI involves creating materials to help keep everyone on task during the assessment.
The US Army AAR uses cards in order to log observations [72], though the information collected is

AAR Steps AAR/AI ?s Answered AAR/AI Empirical Context
1. Define the rules How are we going to do this

evaluation? What are the de-
tails regarding the situation?

We established the rules of evaluation and
the domain (see Supplemental Materials).

2. Explain the
agent’s objectives

What is the AI’s objective or
objectives for this situation?

We explained the AI’s objectives for the sit-
uation (see Supplemental Materials).

A
A
R
/A

II
nn

er
Lo

op

3. Review what
was supposed
to happen

What did the evaluator intend
to happen?

We asked, “What do you think should happen
in the next round(s)?”.

4. Identify what
happened

What actually happened? The participant watched the required num-
ber of rounds. Then, we asked, “Could you
briefly explain what actually happened in
these past rounds?”.

5. Examine why
it happened

Why did things happen the
way they did?

We asked, “Why do you think the rounds hap-
pened the way they did?”. Next, the partici-
pant summarized anything good, bad, or in-
teresting on an index card. Last, we provided
the participant the agent’s explanation.

6. Formalize
learning (end
inner loop)

Would the evaluator allow the
AI to make these decisions on
their behalf? What changes
would they make in the deci-
sions made by the AI to im-
prove it?

We asked three questions: “Would you al-
low the AI to make these decisions on your
behalf?”, “What changes would you make in
the decisions made by the AI to improve it?”,
“Would you allow the Friendly AI to make this
category of decisions on your behalf?”.

7. Formalize
learning

What went well, what did not
go well, and what could be
done differently next time?

The participant completed a post-task ques-
tionnaire (see Supplemental Materials).

Table 2. How AAR/AI (right two columns) adapts the original After-Action Review debrief steps (left column).
The “Empirical Context” column explains how we realized it in Study One. (Study Two’s realization of AAR/AI
was almost the same, except that we shortened Step 6 to just the “What Changes” question.) Note that
steps 3-6 form an “inner loop” that we repeated every three decisions. The parts outside the inner loop are
documented in our Supplemental Materials (tutorials, questionnaires, etc), so we describe them only briefly.
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largely focused on personnel and their positioning. Since the AI performs within the RTS domain,
we turned to how professional shoutcasters analyze AI, like AlphaStar [67]. They used formatted
text for actions that they found “good,” “bad,” or “interesting,” which we replicated in the AAR/AI’s
index cards. This prevents assessors, regardless of the AI’s use, from relying on memorizing when
a decision is good or not. By using such written artifacts, the AAR/AI process has the benefit of
gaining retrospective feedback on the process itself or the explanations used in it. Further, artifacts
like these can assist in comparing the assessment results from multiple individuals or be released
with the system as a means to document the kind of validation conducted and the results from it,
akin to Model Cards [45].

3.4 AAR/AI: Explanation Component
AAR/AI evaluators, like the AAR equivalent, require information on what happened, so our process
requires an embedded Explanations Component, since the evaluators not only must they know
what happened, but the agent must be able to explain why it performed an action. In both studies,
we used a model-based agent to enable a model-based explanation.

Amodel-based agent (and its explanation) offers the benefit of explicitly representing its emerging
model of the world, such as the future states the agent is trying to reach or avoid—in essence, an
underlying rationale for its decisions3. For example, consider Model-Based agents that expand a
search tree as they select actions, allowing them to fill in an explanation template [15] like the
one shown in Figure 1b. On the other hand, Model-Free agents can only fill in a more limited
explanation template, illustrated in Figure 1a. In particular, Model-Free explanations do not expand
a search tree—instead more of a search stump—by attaching to each action only a single number
for its value.
We therefore prototyped a Model-Based explanation for Study One, capturing a portion of the

agent’s search tree. That explanation is shown in Appendix B, and here we focus on the revised
version of our Model-Based explanation, used in Study Two, shown in Figure 2. We described the
search tree to participants as, “...a diagram of decisions, where the Friendly AI decides what actions or
decisions it must take to complete a round in the game.”

The explanation lays out the agent’s “explanatory theory” [65] of how the game could play out
in different situations. In essence, the theory’s “constructs” of that theory are: game states, roles
(e.g. friends or enemies), actions available to various roles, and (estimated) values of different states
and actions.

In AAR/AI then, the evaluator’s central mission is to evaluate one aspect of the AI agent’s theory:
its falsifiability [54]. To carry out this mission, the evaluator answers the AAR/AI questions (e.g.,
What just happened? Why? ...) by gathering information from a combination of game behavior and
the explanation’s diagram of actions and states among which the agent is deliberating (Figure 1).

4 METHODOLOGY SHARED BY STUDY ONE AND STUDY TWO
To inform our design of AAR/AI, we ran two in-lab studies: Study One, a one-on-one think-aloud
qualitative study and Study Two, a two-treatment qualitative study run in small groups. The main
goal of Study One was to formatively investigate participants’ sensemaking attempts when doing
AI assessment and how AAR/AI came together with those attempts. Additionally, since the AAR/AI
process embeds an explanation, we designed both studies to include investigating the explanation
strategy in the context of the process.

3To compensate formodel-free agents’ lack of underlying rationale, one body of research attempts to generate approximations
of an underlying rationale, e.g., [17].
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Study Two moved beyond the sensemaking goal of Study One to gain insights into how the
explanations might help humans with failure detection or fault localization. To illustrate, Study
One featured only the Model-Based explanation strategy in paper prototype form, whereas Study
Two’s treatments included software implementations of both the Model-Based explanation and
the (simulated) Model-Free (detailed later in Section 4.2). Notionally, since Model-Free agents do
not expand a search tree with any depth and can be thought of as a search stump, Model-Free
explanations are limited to fewer interactions than Model-Based (as illustrated in Figure 1).

Both studies used the same domain and agent implementation, which we describe next.

4.1 The Domain
StarCraft II is a popular Real-Time Strategy (RTS) game that offers hooks for AI development
([74, 75]) and a flexible engine for map creation4. Using this engine, we built a custom game called
Tug of War, shown in Figure 3. The objective of the game is to destroy either of the opponent’s
Nexus in the top lane or bottom lane. If no Nexus is destroyed after 40 rounds (or decision points,
which we denote as DPs), the player whose Nexus has the lowest health will lose.

At every DP of the game:
• Each player receives income (100 minerals, +75 per pylon)
• The player chooses to build any combination of unit production facilities (i.e. barracks) to be
added for the next DP, subject to the following constraints:

(1) Total cost cannot exceed current mineral count
(2) Players are only allowed to build in one lane at a time

4Many map creation resources are available at places such as [70].

Action1 Action2 Action3

State

ActionN

(a) Template for aModel-Free explanation,
notionally showing its “search stump,” be-
cause it has no depth—just values asso-
ciated with taking an action in a state.
Here, since we are showing the tem-
plate, we have simplified away details like
state/action representation and presenta-
tion (addressed in Appendix B).

Action1 Action2 Action3

State
0

ActionN

A1

S1’

AN A1

S1’’

AN A1

S1’’’

AN A1

S1’’’’

AN

(b) Template for a Model-Based explanation, notionally showing
the full search tree. In general, these search trees do not reach
terminal nodes, and when that is the case, they must use a
heuristic function or Model-Free system to evaluate the quality
of that state.

Fig. 1. A comparison of explanation templates which can be filled out by Model-Free and Model-Based
explanations, respectively. Note that if one imagines starting with just a root node and the best action, and
iteratively revealing the tree via interaction, Model-Free explanations would only need to “widen” the tree,
while Model-Based explanations also support “deepening”. We will return to this in Section 8.1.
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Fig. 2. Interactive Model-Based explanation for DP 20 in Study Two, as observed by participant S1MB20. The
Model-Based explanations, shown above, starts at the top with the current state node. Next are the top five
predicted friendly agent actions considered, each followed by the enemy agent action that is predicted to be
most effective. Next down are the predicted states that are consequent to those actions. The cycle is then
repeated again. We refer to a fully-rendered prediction trajectory as a “future“. The principal variation, the best
predicted future, is at left, with actions decreasing in estimated value to the right. Participants could choose to
adjust visibility of individual nodes or future trajectories of particular actions by selecting nodes and clicking
buttons on the Node Actions menu. The legend at bottom left reminded participants of the meaning of each
rendered state and action detail, as well as showing the rock-paper-scissors relationship among unit types. We
simulated Model-Free explanations (dashed red box) by featuring only the root node and the friendly agent
action nodes directly below, essentially truncating the depth of the tree. Even though participants in both
treatments were able to increase or adjust the width of the tree, the Model-Free explanations were essentially
different in that they provided no information beneath the friendly agent action node. Since Model-Based
explanations included the tree at greater depth, they allowed participants to expand the width of the tree at
any internal node—as opposed to just the top level actions.

(3) Players do not know the opponent’s action until both actions are finalized
• Players spawn units equal to the total number of unit production facilities currently held
(i.e., 5 barracks =⇒ 5 marines)
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Fig. 3. Game screen at decision point 22 during Study One. Note the text boxes offering state information
(current units, nexus health, etc) as well as action information (adding units). The evaluation interface
primarily adds a time slider (shown in the middle of the screen with a diamond for each DP) and the blue
overlays to increase visibility of fonts presenting information available in the in-game interface.

At eachDP, both players choosewhich lane to build in and the number of unit-producing buildings
to spend resources on for each of 3 unit types which share a rock-paper-scissors relationship.
Marines (50 minerals) are low health units that attack in small quick shots. They are effective
against immortals. Banelings (75 minerals) are medium health units that attack by exploding on
contact. Banelings are effective against marines. Lastly, Immortals (200 minerals) are high health
units that attack in large slow shots. Immortals can inflict significant damage on a Nexus. Players
may also choose to build a pylon to increase their income. The maximum number of pylons they
can build is 3, and the cost of a pylon increases each time one is purchased. Note that an action in
this context is essentially an integer vector representing the intended purchase of unit-producing
buildings and/or pylons, meaning the branching factor is combinatorial with respect to minerals
possessed.
Once units spawn, the players can no longer control them; they will move toward the enemy

Nexus and attack any enemies along the way. Also, units always spawn at the same location each
wave.

4.2 The Agent Implementation
We have pointed out that the agent used for both studies is Model-Based, meaning it has access to
a transition function that maps a state-action tuple to the successive state. Applying the transition
function allows the agent to expand a search tree, and perform minimax search on it5 on it. The
system uses three learned components (all represented by neural networks): the transition model,
the heuristic evaluation performed at leaf nodes, and the action ranking at the top level.
The heuristic evaluation function estimates the value, or quality, of non-terminal leaf nodes in

the search tree. This function is necessary to address the depth of the full game tree, since the search
will rarely be able to expand the tree until all leaf nodes are terminals. The action ranking function
provides a fast estimate of the value associated with taking each action in a state. This function is

5For more information on game tree search, see Russell and Norvig, Chapter 5 [59].
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necessary to address the large action-branching factor by only performing the more expensive tree
expansion under some number of top-ranked actions to improve estimates (similar to AlphaGo and
AlphaZero [63, 64]). A big difference, however, is that our system uses a learned transition model,
due to the stochastic and complex nature of the transitions between states; whereas Silver et al.’s
used a perfect move-transition model (e.g., Chess’s deterministic rules).

We actually used the same Model-Based agent in both treatments of Study One and Study Two,
simulating the Model-Free treatment’s agent for the Model-Free treatment. We simulated the
Model-Free explanation simply by withholding the Model-Based agent’s learned “model of the
world,” which amounted to less completeness, excluding information past the value associated
with the actions (illustrated in Figures 1 and 2). This design enabled scientific control, with the
Model-Free and Model-Based agent choosing from (and selecting) the same actions given the same
state. This level of control would have been extremely difficult to ensure via independent training
processes.

5 METHODOLOGY SPECIFIC TO STUDY ONE
For Study One, we recruited 11 students at Oregon State University who had not taken classes in
AI/ML or participated in our previous studies. Since our game is based on StarCraft II, we recruited
those familiar with real-time strategy games, to ensure that participants could understand the game
sufficiently to assess the AI.
A researcher served as facilitator with one participant (assessor) during the AAR/AI process,

starting with a tutorial on the interface, domain, and task (covering AAR/AI Steps 1/2). Since each
session was limited to 2 hours, we wanted to ensure that each participant reached the end of the
replay with time for our post-task questionnaire. Thus, we decided to have them analyze every
third decision point of the 22 available, including the last one (e.g. 3,6,...,21,22). This allowed up to
5-7 minutes for each iteration of the AAR/AI inner loop—though it was rarely necessary to enforce
limits during the studies. We chose to sample these decisions because timing our pilot participants
revealed that we would not have time to cover all of them, and we wanted the participants to see
the full evolution of a game.

At each iteration, the researcher asked the assessor a structured series of open-ended questions to
elicit their thoughts as they performed their assessment of the AI’s actions (Steps 3-6). Additionally,
the participant wrote on index cards (Section 3.3) to help them formalize thoughts and offer the
option to refer back to previous notes.

Upon completion of the task (Step 7), we asked: “Did the process of the questions I asked you help
you understand and assess the AI better?”, “Do you think the AI’s diagrams have enough detail?”,
“Would you prefer the width of the diagram to be narrower or wider? Or do you like the way it is?”,
“What kind of actions would you have liked to see on the diagram?”, and “In the main task, did you
find these cards useful?”. Finally, we compensated participants $20.

Each session spent ~30 minutes for the briefing/tutorial (pre-task), ~50 minutes on the inner-loop
(the main-task), and ~25 minutes on the post-task questionnaire. This timing was consistent with
Sawyer et al.’s recommendations (25/50/25%, respectively) [61].

5.1 Analysis Methods
To answer RQ1, we drew from a code set that Dodge et al. used in their StarCraft II study, which
had been adapted from Lim et al.’s work [16, 41]. Dodge et al. also added a “judgment” code, which
the AAR/AI needed because of the nature of assessment. Individually, the two researchers coded
20% of the data corpus, achieving an inter-rater reliability (IRR) of 76.4%, computed via Jaccard
Index [31]. Given this level of reliability, they then split up the remaining coding.
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To answer RQ2 and RQ3, two researchers applied content analysis [29] to the coded statements
from the post-task questions about helpful or problematic elements of the process or explanations,
resulting in the code set in Appendix A, Table 9. The two researchers coded 21% of the data corpus
separately, achieving inter-rater reliability (IRR) of 82.4% (Jaccard). Given this level of reliability,
they then split up the remaining coding.

We enumerate these code sets in the context of the relevant results sections.

6 RESULTS: STUDY ONE
We begin with participants’ sensemaking attempts when they were using AAR/AI and our explana-
tions, deferring Study One results that intertwine with Study Two results to Section 8.

6.1 Using AAR/AI to Learn
The goal of our project was to enable participants to understand how the AI agent is “thinking”
well enough to evaluate how suitable the agent is for different situations that arise—which involves
people building mental models of the AI agent. In this subsection, we consider what the AAR/AI
process brought to our Study One participants’ mental-model building.

In a post-study questionnaire, we directly asked Study One participants what was helpful about
AAR/AI and what was not. In their responses, many of the Study One participants commented on
how AAR/AI’s “structuredness” helped their understanding by keeping their thinking organized,
structured, and/or logical. (Only a single Study One participant said it was not helpful, but this was
because they believed that with their experience in RTS games, they already understood the AI’s
behavior without the need of any assistance.) For example:

S1MB8: “Uh, yes, I would say <AAR/AI was helpful>. It definitely directed me towards what I
should be paying attention to.”
S1MB18: “I could think what it should improve on and why the previous round happened the
way it did. So, when those questions were broken down... Really helped in following the game.”
S1MB14: “...it categorized the flow of logic that we should’ve had in analyzing the prediction
and what actually happened, so it kept it more organized, and therefore, more logical.”
S1MB17: “I know it was too much information ... it helped me understand it better. ...it just helps
me ... to understand it better, and makes it more logical.”

To understand the level of our Study One participants’ mastery of understanding the agent, we
applied Bloom’s Taxonomy [6], which is a framework used by educators to categorize the different
levels of learning. The taxonomy has six levels [4], ranging from basic understanding of a concept
(level 1), through a fairly advanced understanding (level 6). Each level requires learners to engage
with a higher level of abstraction than the last. The application of Bloom’s taxonomy to our context
is detailed in Table 3.

As Table 3 shows, subsets of Study One participants showed mastery of every Bloom’s level. In
fact, each of these participants achieved Bloom’s Level 5 at least once during the study. Further, all
except one of them achieved Bloom’s Level 6 at some point.

Bloom’s Level 5 is of particular interest to our project: it is the level of understanding that allows
evaluation. Evaluation is precisely the level of understanding needed for assessing an AI.

In considering how the participants who reached Bloom’s Level 5 managed to do so, we turned to
the Lim-Dey intelligibility types, which we used as a codeset for our qualitative coding (Table 4). As
the results show, each of AAR/AI steps guided participants’ thinking (according to their self-reports)
toward different Lim/Dey perspectives [40]. The wording of the AAR/AI questions compared with
the Lim/Dey type names may explain some of this result.
For example, the AAR/AI question in the top row of Table 4, “What ...should happen,” guided

most participants to focus on “What Could Happen”—an almost syntactic match between the
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Level: [6]’s De-
scription

How it applies to under-
standing the AI

Examples from our participants

1. Remembering:
Have students ac-
quired the ability to
correctly recall in-
formation?

Participants recall domain
information, such as game
rule(s), what an agent can do
with particular game units,
etc. (Supported by AAR/AI’s
questions about the game.)

+S1MB20: “It’d probably buy another baneling... to
counter the marines...”

2. Understanding:
Can students under-
stand information
they have learned
to recall?

Participants understand the
domain information provided.
(Supported by AAR/AI’s
“What” and first “Why”
question.)

+S1MB8: “...you <the AI> don’t necessarily know which
lane they’re coming through... it’s not much of an in-
formed decision until the first round happens.”

3. Applying: Can
students apply
their newly learned
knowledge?

Participants apply the expla-
nation of the AI to the game.
(Supported by second “Why”
question.)

+S1MB2: “I ...like it how <the explanation diagram> is,
because like I could try to drawmy own conclusions from
it rather than just like ‘oh this is just what happened’.”

4. Analyzing:
Can students see
patterns and make
inferences about a
problem?

Participants analyze the AI’s
problems in the game, and rea-
son about solving them. (Sup-
ported by the prediction task
and the “What changes would
you make” question.)

+S1MB2: “So the bottom one did pretty well like overpow-
ering the enemy AI and even attacking nexus, lowering
its health while the top one, the enemy AI did a better job
sending more marines and the friendly AI sent banelings
which got overpowered by the marines.”
+S1MB19: “So we have almost same health on top and
bottom. So, to defeat us, they have to focus on either one.
So I guess they will focus bottom, because they have to
save them at the time. I guess we have to use minerals
to buy immortal here, so that we can save ourselves and
at the same time, kill the enemy.”

5. Evaluating: Can
students take a
stand or decision,
and justify it?

Participants evaluate the AI
agent, and judge if they would
allow the agent to make
decisions on their behalf in
this or similar situations.
(Supported by the “Would
you allow...” question series.)

+S1MB5: “Producing these banelings <in both> lanes
allowed nexus damage bottom lane, and then having the
one or two marines do consistent damage on the nexus
really took down the nexus health, so that was actually
a really good decision.”
+S1MB20: “This is gonna be sad. Yep. It’s all downhill
from here. (after watching the replay) Uh, the friendly
AI lost, uh, due to their misinvestment in the top row,
and only increasing their baneling count, which only
works at melee range which is ineffective to marines if
there’s already a baneling wall in front of them.”

6. Creating: Can
students create a
new point of view?

Participants create new points
of view by generalizing upon,
abstracting above, or
recommending differences in
the AI’s behaviors.

+S1MB14: “Well, the enemies will invest in banelings,
and I feel that the friendly’s will invest in marines, es-
pecially more in the top row, since it is more damage...”
+S1MB21: “I would consistently save a small quantity
of minerals each round, rather than trying to save them
all in a single round.”

Table 3. Bloom’s taxonomy levels Study One participants achieved in learning the agent’s behavior.
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AAR/AI question and that Lim/Dey type. The “Why...did” AAR/AI question (fourth row) also
featured a strong syntactic match with the Lim/Dey “Why did” type. While not a near-syntax
match, the AAR/AI question on the last row, “What changes would you make...to improve it,” is
still semantically a reasonable match to the “How To” Lim/Dey type.
The AAR/AI question on the second row, “what ... actually happened,” is more subtle. This

question guided many participants to focus on Output types of information. In the context of a
computer system, this still seems a fairly direct semantic match between the question and Lim/Dey
type. However, this question also guided over one-fourth of the responses toward the Input type,
which has neither a syntactic nor semantic match to the Lim/Dey type. It could be an example of
these participants working through a cause/effect connection.
Other research has shown each intelligibility type has its own advantages and disadvantages

(e.g. [12, 41]), so we see the diversity of perspectives that AAR/AI seemed to elicit as a particular
strength of AAR/AI.

6.2 Participants’ Views of Model-Based Explanations
Participants’ mental-model building with AAR/AI relied upon the presence of an explanation. In
Study One, the model-based tree diagrams provided participants with a global view of the agent’s
decision process, supplementing the local-only “right now” view provided by the game state. As
two participants put it:

S1MB2: “I kinda of like it how it <explanation diagram> is, because like I could try to draw my
own conclusions from it rather than just like ‘oh this is just what happened’.”
S1MB14: “<In the game state>... difficult to grasp the whole situation, so having the graph gave
me a chance to get my footing on overall trends and options.”

This way of using the explanation was a theme which was echoed in a post-task response from
another participant:

W
ha

t
W

ha
t 

C
ou

ld
 

H
ow

 T
o

Ju
dg

m
en

t

W
hy

 D
id

W
hy

 D
id

n'
t

In
pu

ts

M
od

el

O
ut

pu
ts

sum
"What do you think should 
happen in the next 3 rounds?" 
(Before watching them) 2 71 16 1 0 0 24 6 2 122
"Could you briefly explain about 
what actually happened in these 
past three rounds?" (After 
watching them) 13 6 2 6 18 2 53 12 74 186
"Why do you think the the rounds 
happened the way they did?" 2 6 3 1 32 2 24 31 30 131
"Why do you think the Friendly AI 
did what it did?" (After seeing the 
explanation) 2 8 8 0 55 1 60 27 36 197
"What changes would you make 
in the decisions made by the 
Friendly AI to improve it?" 3 8 56 2 2 0 38 3 2 114

Sum 22 99 85 10 107 5 199 79 144 750

Table 4. Lim Dey coding of participant responses, sliced by question asked during the AAR/AI.
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S1MB17: “The diagrams used to make it easier also helped to understand the predictions. To look
at one thing from many angles and make appropriate predictions.”

However, a pitfall some participants fell into was extrapolating too much information from the
tree diagrams. Several participants seemed certain about the agent’s long-term plan, which was
troubling because the explanation did not make such a plan explicit, if the agent even had one.

S1MB21: “At this point, I feel certain that the friendly’s trying to destroy the bottom nexus of
the enemy.”
S1MB10: “I think it’s because it was a whole game plan from the beginning. ... like from the
beginning of the bottom lane, the friendly AI started increasing the troop numbers.”

However, the explanation could not possibly have shown a many-step game plan, because the
agent was only looking head two states.
Another participant also expressed difficulty in seeing long term strategies, but for a different

reason—granularity mismatches between moves, tactics, and strategies:
S1MB20: “There are subtasks and decisions that go into making a strategy and not being able to
see this had me make less informed assumptions about the future decisions.”

In Study Two, we built interactive software, in part to alleviate the problem of too much or the
wrong information at the wrong time.

7 METHODOLOGY SPECIFIC TO STUDY TWO
Study Two used a similar protocol as Study One, but in lab sessions with up to 5 participants
at a time and without the think-aloud protocol, to allow more participants than are viable with
think-aloud studies. Also, Study Two utilized interactive software that we built, using the results
we had just learned from Study One. Also, the fact that Study Two’s prototype was implemented
enabled participants to perform actions like expanding the tree.

We recruited 22 participants for Study Two at Oregon State University using the same criteria as
before, and randomly assigned them to our two treatments, Model-Free and Model-Based. Each
participant made predictions, viewed the replay, then viewed the associated explanation for seven
decision points (DPs 6, 7, 11, 17, 20, 26, and 36), selected due to their having sizeable impacts on
the game outcome, which is the friendly AI winning the game at DP 37. We gave participants four
minutes to fill out the prediction sheet, two minutes to understand the explanation for each DP, and
an additional four to complete the questionnaire with questions from Table 2’s Step 5. To ensure
that they did not advance to the explanation before we were ready, we had participants type a short
unlock code into the interface after the researcher provided it verbally.

7.1 Analysis Methods
We analyzed RQ1, RQ2, and RQ3 using the same codesets described in Section 5.1. For RQ4, two
researchers looked for evidence of participants having been somehow informed by the explanations,
in the written responses to our AAR/AI questions (What happened, what was Good/Bad/Interesting
about it,Why did it happen, andWhat changes would youmake). Specifically, we removed responses
without clear evidence that participants had been informed by the explanation, as opposed to the
game state or a participant’s domain knowledge. Each part of good/bad/interesting was a separate
response, so the 22 participants answered 6 questions each for a total of 132 responses, of which 50
passed the filter to be considered “Explanation-Informed Statements”. Using content analysis [29],
we then derived the code set shown in Table 6. A different two researchers coded 44% of the data
corpus independently, achieving IRR of 81.2% (Jaccard). (Usually, researchers use a smaller subset
of the data for agreement, but we expanded beyond the more typical 20% in order to include more
instances of rare codes.)
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8 RESULTS: BOTH STUDIES
Since Study Two was intended to complement and triangulate with Study One, we present Study
Two’s results in combination with the pertinent results from Study One6.

8.1 Which Information to Show?
To answer the AAR/AI questions, participants needed information from the explanations, but
which information and how much of it to show is a question XAI researchers have been wrestling
with for years (e.g., [16, 37, 38, 40, 41, 49, 76]). One participant simply wanted to see everything—
corresponding to an explanation with maximum completeness:

S1MB5: “All the possible actions and all possible outcomes.”
Unfortunately, with the agent considering combinatorial action spaces, showing the full search
tree all at once (statically at least, it might be possible to navigate via dynamic mechanisms) would
have been too large for humans to process. Thus, we needed to choose a smaller set of noteworthy
actions to show—but which ones and how many?

Recall that the explanations showed only four actions (Figure 5). Some participants thought there
should be more and/or different actions. For example:

S1MB5: “... since there are only four options ... if it was a possibility for more options ’cause there
was definitely more possibilities.”

However, these four options were only “top” as per the agent’s estimations, which may not have
been the right four:

S1MB5: “I would think the AI would have the best four, which it didn’t have the best four.”
One participant proposed also showing the worst possible choice:

S1MB20: “I’d like to see ... what the friendly AI thinks is the ... choice that would give them the
least chance of winning as well as their greatest chance of winning...”

Study Two participants seemed to need information about another class of action as well—actions
that spend all resources—since not explaining this class led them to believe the AI did not consider
these actions carefully enough:

S2MF46: “Why didn’t AI use all remaining resources?”
S2MF38: “It’s unreasonable to not purchase buildings when you’ve got no reason to save and
invest in pylons.”
S2MB30: “There is no reason that I can think of for it to have not spent minerals.”

Despite the fact that this class of actions was in these participants’ world view, the AI does not
include this human-created abstraction in its world view. That said, the agent does consider each
available action, so the “complete” search tree contains at least some information about the kind
of actions the participants describe—even if they were pruned away. The importance of this class
of actions to the participants suggests that participants need this information, but answering this
question might require finding more than just one action from the class, but instead many of them
to reason about as a set. This suggests that participants might benefit from query systems built to
select all instances of a class of action interesting to their world view.

As to how many actions to show, seven of the participants indicated that they liked the tree—but
one wanted a smaller one, and three wanted a larger tree.

S1MB8: “I liked the way it is. It’s easy to read.”
S1MB21: “I do not have any problem with narrow diagram...”
S1MB11: “I would just have more options available...”

6Keeping context explicit is the reason we prefix each participant ID with the appropriate study number; e.g., S1MB5 denotes
“Study One, Model-Based participant 5”.
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The previous paragraphs discussed participants’ self-reported responses. Now we turn to what
Study Two participants actually did when provided with an interface, enabled by watching the
screen capture videos from 21 of the participants7.
Even given the interactive explanation, 10 of the participants (5 in each treatment) did not

interact with the explanation beyond panning and zooming—in effect treating it as a static di-
agram too large for the screen. The behaviors of the remaining participants are aggregated in
Table 5. Thus, the experiences of the 10 pan/zoom-only Study Two participants with the interactive
explanations prototype were similar to what Study One’s participants experienced with their paper-
prototyped explanations. This suggests the importance of the system’s initial/default presentation
of explanations—for about half of our participants, our choice of initial presentation was the only
one they ever looked at.
Of the Model-Free participants who did tree manipulations, most were to widen the tree more,

which was one of the few interactions available. Tree widening usually occurred in one or two
short bursts of 3–8 node additions to the tree. However, they also dragged more nodes around than
the Model-Based participants did, presumably for the purpose of comparing actions. For example,
at one point, S2MF40 performed a series of drag operations to visually group similar action nodes
(characterized by a top lane action making 3–5 marines and 1–2 banelings).

Model-Based participants also manipulated tree width, but they also took advantage of the
Model-Based capability of going deeper into the tree, to peer into the AI’s predictions of the future.
Expanding depth adds 5 nodes, but expanding width adds just 1 node, so the amount of additional
information Model-Based participants added per “deepen” manipulation was 5 times as many as
with a “widen” manipulation, so the participants who used “deepen” processed a great deal more
information than those who did not.
Of these “deepen”s, the most popular among the participants was the one that expanded the

second-best action, then the third-best, and so on (17 second-best, 14 third-best, 8 fourth-best, 3
fifth-best, 8 beyond fifth-best). (Recall from Figure 2 that the actions were ordered best to 5th-best.)
One pattern shared by four participants (S2MB20, S2MB21, S2MB31, and S2MB36) was to expand
the top 𝑘 futures, for some 𝑘 , then visually scan it up and down. This behavior “filled the screen”
with information, suggesting that our explanation’s default presentation did not adequately fill
up its rectangular viewing region with nodes (it started out as roughly a ⊢ shape). Had we done

7One participant’s data (S2MB8) was not included in this analysis, due to corruption of their video file.

MF-PID Widen Drag
S2MF1 39
S2MF32 15
S2MF40 6 7
S2MF42 54 8
S2MF43 41 2

Totals 155 17

MB-PID Widen Deepen Drag
S2MB20 14 12
S2MB21 10 2
S2MB31 46 20
S2MB35 1 2
S2MB36 7 6

Totals 68 50 2
Table 5. Interaction totals from participants who interacted with the explanation by: “widening” the tree by
adding an action node (at any location), “dragging” a node in the tree by shifting its position, presumably
to better enable comparison, or “deepening” the tree by expanding the future associated with a top-level
action (refer to Figure 2). (Participant S2MB8’s data was damaged, and thus excluded from this analysis.) The
following 10 participants did not interact with the explanation beyond pan and zoom operations: S2MF38,
S2MF41, S2MF44, S2MF45, S2MF46, S2MB23, S2MB26, S2MB28, S2MB30, S2MB39.
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so in this system, the “static diagram” participants might have passively consumed more, and the
“screen fillers” would not have had to manually fill the screen.

8.2 Explanations as Theory
Oneway to think about how participants workedwith the explanations to answer AAR/AI questions,
is to view the explanations as the agent’s “theories”. In the explanation trees, upon reaching leaf
nodes, the agent used a neural network to evaluate the quality of states. These estimates were, in
essence, axioms and the minimax search that proceeds atop those values are akin to theorems. Thus,
if the axioms hold true, then the theorems were true.

In Study One, we saw that not all participants were willing to “grant the axioms.” Some were:
S1MB14: “I mean because, those are the ones with greater scores. So I guess that is why it chose
those decisions.”

Others did not grant them and found themselves not understanding or possibly disbelieving parts
of the diagram.

S1MB10: “I think diagram needs improvement, because those are not that clear at some times.
...It does have enough details, but the decisions were, not made... according to the diagram.”

Two participants identified the issue well: that the win probabilities have no clear provenance.
S1MB8: “... If there’s any easy way to say why it came up with these numbers... there were
several steps that I just didn’t know why it was taking that action...”

We found that RTS experience seemed to be a potential driver for rejecting the heuristic evaluation
function, with S1MB5 and S1MB20 being particularly critical of the agent’s decisions:

S1MB5: “Wow, rewards went down... A baneling is better than a marine by rewards points, but
there’s clearly a better answer.”

Those with less RTS experience seemed less critical of the agent’s explanation, but they still
compared the agent’s actions to the tree:

S1MB14: “Information didn’t always line up with what occurred. Therefore, it gives a false belief
on what/how the AI is doing.”

When we conducted Study Two, through use of the Model-Free and Model-Based explanations,
we offered two very different presentations of the agent’s theory. In particular, the Model-Free
explanations are mostly leaf nodes, meaning they are almost entirely axiomatic. Despite this, some
of Study Two’s participants did find the Model-Free explanations helpful:

S2MF43: “Decision tree helped understand logic of AI better.”
Further, they were able to use Model-Free explanations to compare different actions, for example:

S2MF41: “It was very helpful to be able to see multiple potential game paths side by side.”
However, the Model-Free participants did not have access to the information that would allow

them to “disprove” deeply nested theorems by following them all the way down the tree. Recall
from Figure 2 that Study Two’s Model-Free explanations provide the current state at the root node,
and then the top 𝑘 actions and their values beneath that. In contrast, Model-Based explanations
allow explorations all the way down the tree, eventually running into an axiomatic value, where
we see the same curiosity about provenance that we saw in Study One:

S2MB30: “ Where does the % come from?”
Thus, Model-Free explanations lacked some information that the Model-Based participants

appeared to value highly:
S2MB21: “Ability to see additional buildings for the next round gave insight on future AI actions.
Explanation elements were easy to read and understand.”
S2MF41: “ I’m not 100% sure the information given in the explanations necessarily completely
reflected the AI’s decisions.”
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One way of considering the value Model-Free vs. Model-Based participants obtained from the
explanations is to consider their Explanation-Informed Statements. These are defined in Table 6
and, as the table indicates, Model-Free participants made fewer Explanation-Informed Statements
of every type than Model-Based participants did (20 vs. 48). Further, Model-Free participants not
only provided fewer of them than Model-Based participants did, but also did not even attempt
Explanation-Informed bug reports until near the end of the task, as Figure 4 illustrates.

The bug reports were also different. Below are all four reports from Model-Free participants:
S2MF46: “Good choice, but in bottom nexus is much lower. Why not commit to destroying it?”
S2MF46: “Why didn’t AI use all remaining resources <at round 36>?”
S2MF37: “no round 36 purchase? Why?”
S2MF38: “It’s unreasonable to not purchase buildings when you’ve got no reason to save and
invest in pylons <at round 36 of 40>. I guess there is a bias introduced on how many buildings it
can buy at a time.”

In essence, the Model-Free bug reports above are simply disagreements with high-level strategic
choices the agent makes, as opposed to falsifications of the logic contained in individual nodes or
transitions. A few Model-Based participants also gave those kinds of bug reports, such as:

S2MB30: “There is no reason that I can think of for it to have not spent minerals.”
However, in addition to these strategy disagreements, Model-Based participants considered the

correctness of individual predictions that go into the overall action selection:
S2MB26: “Only 2 immortals were created. Prediction of marines was wrong.”
S2MB28: “I think friendly AI is not able to assess that bottom lane is better. It is doing very well
in bottom lane. But end result predicted is wrong.”

Or, stated just as logically but less passionately:
S2MB36: “The friendly AI decided to fortify the bottom lane assuming an attack. The attack
actually came from the top, where the enemy now has the advantage.”
S2MB28: “The enemy AI outsmarted friendly AI. It sent marines along with banelings. Friendly
AI thought enemy AI will send marines so it bought baneling producing building.”
S2MB36: “It’s interesting that the AI keeps assuming an attack on the bottom and not defense
on the top.”
S2MB36: “It still assumes it will win by destroying the top nexus.”
S2MB28: “Friendly AI still predicts it will win by destroying top enemy nexus.”

Code: Description Example MF MB
Explanation-Informed Observa-
tion: Participant strictly interprets the
explanation.

S2MB39: “The friendly AI bought 1 banel-
ing predicting that the opponent marines
would increase.”

7 23

Explanation-Informed Inference:
Participant forms or adjusts their
mental model explanation, judge the
explanation.

S2MB23: “The AI is thinking ahead of
how to win the game in the shortest num-
ber of rounds.”

9 16

Explanation-Informed Bug Report:
Participant identifies flaw/bug in
agent’s reasoning from explanation OR
finds explanation confusing.

S2MB26: “Only 2 immortals were created.
Prediction of marines was wrong.”

4 9

Totals 20 48
Table 6. Explanation-Informed Statements code set, as applied to Study Two’s 22 participant responses to
our decision questionnaire (What happened, what was Good/Bad/Interesting about it, Why did it happen,
and what Changes would you make), with examples and counts from each treatment.
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These differences in the Model-Free vs. Model-Based participants’ Explanation-Informed State-
ments illustrate a key strength ofModel-Based explanations. They enabledModel-Based participants
to “disprove” aspects of the agent’s decisions by seeing inconsistencies and logic errors in the path
propagating the axiomatic values computed at the leaves to the theorems about action selection.
This process brings explicit falsification [54] capabilities to the system’s users.

We observed participants engaging in falsification in both studies. In particular, Model-Based
explanations make part of the search tree explicit and include concrete predictions about the future,
including states. These concrete predictions allowed participants to falsify those predictions:

S1MB14: “So the friendly had ... two banelings, so one baneling and some marines. Yes, that
seems right. ... it predicted that the enemy would buy two more marines, and it ended up being
so. Yep, it was right ... it was predicted that they would buy a baneling, and they did ... so far,
it’s going as predicted.”
S2MB26: “ Only 2 immortals were created. Prediction of marines <from the previous state> was
wrong...<later>...Prediction was correct.”

We explicitly crafted parts of the process to allow the human to reflect on their past thoughts, but
this participant focused on the accuracy of the agent’s predictions about the future. Notably, this
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Fig. 4. Explanation-Informed Statements from Study Two participants interacting withModel-Free (top)
and Model-Based (bottom) explanations. Statements are broken down into 3 categories. DPs (each bar
cluster) are time ordered and aligned.
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type of assessment was made possible by the Model-Based agent, and our explanations revealed
relevant information to be able compare different time slices.

Thus far, we have focused on viewing explanations as theory in terms of their composition and
falsification of elements. However, there are other criteria that can be used to evaluate theories [65].
In Table 7, we consider how to apply these criteria to evaluate this agent’s Model-Based explanation,
this style of Model-Based explanations, and in some ways, even all Model-Based explanations.

“The degree to
which...” [65]

Applicable to... Evidence to date for or against

Testability ...empirical refutation
is possible: constructs
and <predictions> are
understandable, inter-
nally consistent, free
of ambiguity

...this explanation of
the agent’s model of
the world.

Empirical: The agent’s explanations were found
to be understandable by several participants, as
described in Section 6.1. The diagrams were clear
and explicit in their information from most, but
not all, participants’ reports.

Falsifiability
/Empirical
Support

...is supported by
empirical studies that
confirm its validity

...this explanation of
the agent’s model of
the world.

Empirical: Our explanations explicitly represented
the agent’s predictions about likely future states
and their values, which participants could falsify.

...this style of
Model-Based
explanation.

Empirical: AAR/AI evaluators (one instance: our
participants).

Explanatory
Power

...accounts for and
predicts all known
observations within
its scope

...this explanation of
the agent’s model of
the world.

Empirical: One measure is whether the agent’s
theory and explanation correctly predicted
everything. In our study, the agent did not
achieve this. Criteria-based: Whether its
constructs are sufficient to express every possible
action and state, i.e. completeness. In this study,
the constructs have full explanatory power—but
our explanation limited the number, so the actual
explanation was not complete.

...this style of
Model-Based
explanation.
...all Model-Based
explanations.

Parsimony ...<has> a minimum of
concepts and proposi-
tions

...this explanation of
the agent’s model of
the world.

Criteria-based: This explanation had 4 con-
structs/concepts that do not overlap, so cannot be
reduced further.

Generality
...breadth of scope...
and independent of
specific settings

...this explanation of
the agent’s model of
the world.

Criteria-based: This explanation’s scope is limited
to explaining this particular domain.

...this style of
Model-Based
explanation.

Criteria-based: The style of explanation is not re-
stricted to games, and should be usable for any
sequential setting of Model-Based AI.

...all Model-Based
explanations.

Model-Based explanations are restricted to Model-
Based agents.

Utility ...supports the
relevant areas

...this explanation of
the agent’s model of
the world.

Empirical: Most, but not all, participants reported
the agent’s explanations to be useful to under-
standing its actions.

...this style of
Model-Based
explanation.

Empirical: AAR/AI evaluators (one instance: our
participants).

Table 7. Applying Sjøberg et al.’s Evaluation Criteria for Theories [65] to the agent’s Model-Based explanation
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8.3 Participants’ Cognitive Load and Performance
How did the differences in how participants engaged with the different explanations play out in
participants’ views of the challenge, effort and frustration levels of the entire AAR/AI process they
experienced? To provide insights into this question, we turn to the NASA Task-Load indeX (TLX)
responses from 15 of the Study Two participants (not all participants provided this data) at the
end of the session. The TLX is a validated post-task survey to measure cognitive load [24]. As
shown in Table 8, participants rated Physical Demand very low. There was also no difference in
Temporal Demand (in either the medians or the distribution of data points) and little difference in
Performance. Thus, we ignore those three and shift focus to the remaining factors.

The remaining three factors reflect participants’ perceptions of cognitive load. Table 8 suggests
that the participants who saw the Model-Free treatment tended to feel more Mental Demand8
than the Model-Based participants in their AAR/AI-based evaluations. Consistent with this result,
Model-Free participants also reported higher Effort9 than the Model-Based participants. However,
the Model-Free participants reported less Frustration10. This observation was unexpected for us,
since Model-Free explanations contain a smaller amount of information.

These three results conceptually relate to Sweller’s influential cognitive load theory [69]. Cogni-
tive load theory includes three concepts: intrinsic load, i.e., the cognitive work that is inherent in
the task for everyone; germane load, i.e., helpful additional cognitive work that may be necessary
for that individual (e.g., inferring helpful new abstractions, such as by comparing a past item with
a current item to abstract above the current situation); and extraneous load, i.e., extra, unhelpful
cognitive work that hampers the individual in performing the task (e.g., having to continually look
up the meaning of different UI widgets) [51, 69].
Using these concepts, Mental Demand (“task-inherent” load) approximates intrinsic load, and

Effort (“your” load) approximates the sum11 of intrinsic + germane + extraneous load [51]. Our
results suggest that some participants decided that Mental Demand matched Effort (i.e., I had to do
it, so it must have been what the task needed). Frustration is an interesting side-effect relating to
Demand and Effort—our data suggested that it reflected participants’ reaction to excessive load,
especially extraneous load.

9 DISCUSSION
9.1 Future AAR/AI Adaptations
AAR/AI is highly adaptable, and this provides leeway to iteratively improve it. Two areas for
improvement that we observed were that participants thought they could remember what happened
in the past, and that participants found questions/artifacts repetitive and burdensome at times. For
example:
8TLX question: “How mentally demanding was the task?” (emphasis added)
9TLX question: “How hard did you have to work to accomplish your level of performance?” (emphasis added)
10TLX question: “How insecure, discouraged, irritated, stressed, and annoyed were you?”
11Orru et al. discussed a version of the NASA-TLX modified to equate the Effort question specifically with extraneous
load [21, 51]. However, without that modification, NASA-TLX’s Effort question is not confined to extraneous load

Mental Physical Temporal Performance Effort Frustration
Model-Free 14.5 1 13 13.5 15.5 3
Model-Based 11 3 13 14 13 9

Table 8. Median results of the NASA TLX. Our discussion focuses on the responses with the greatest differences
between the two treatments (highlighted): Mental Demand, Effort, and Frustration.
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S1MB20: “... I am fairly confident in my ability to remember what occurred.”
S1MB5: “Some of this stuff kind of repeats...”
An alternative might be to instead enable people to decide where to pause, in an approach

similar to the empirical mechanism used by Penney et al. [53]. In that study, their participants
watched a replay until they came to a decision that seemed important, at which point they could
pause, consider our questions, and write down their thoughts. In essence, blending this device with
our inner loop would give more control to the evaluators as to how often and exactly where the
evaluation questions need to be answered.

As a meta-analysis of AAR by Keiser and Arthur [32] observed, it “was initially operationalized
with high administrative and content structure...” with the goal being that “higher administrative
structure is expected to free up cognitive resources that would otherwise be spent on how to conduct the
AAR.” Further, the authors go on to describe situations with less structure, and offer a flowchart
(see Figure 10 from [32]) to help select the appropriate flavor of AAR for a variety of use cases.

Our short series of studies left many open questions about AAR/AI’s efficacy in different possible
usages. Among them, to what extent is it: ...rigorous enough to support examining catastrophic
failures that will necessarily consume hours of time from investigators? ...efficient enough for real
time analysis, akin to sports commentary? By investigating open questions like these, researchers
will be able to discover shortcomings and devise adaptations to improve fitness for different
usages—and possibly illuminate other evaluation processes in so doing.

9.2 Prediction as Explanation
Trend 1: People used explanations as prediction tools. Reed et al. suggested that explaining a

solution to a problem helps people solve similar problems [56]. Our strategy followed a similar
approach, where participants predicted the agent’s action (i.e., the problem), saw the action (i.e., the
solution), and then provided an explanation to the action (i.e., explanation of the solution). Some
participants even began using the explanations as the basis for their prediction:

S1MB8: “Understanding the diagram gave some insight into how the AI thought, which made
predicting its next move easier.”

Participants engaging with the Model-Based explanation reported attitudes consistent with a series
of studies Kelleher and Hnin observed, “suggest that learners who attempt to understand the steps of
a problem solution may have higher germane load but improved ability to apply these elements in
novel situations.” [33].

Trend 2: The process of having participants predict the actions first, and then showing them the
actions, was powerful. Another trend we observed was that predicting the AI agent’s decisions
prior to observing the AI agent’s actual actions turned out to be part of our explanation strategy.
One of the pillars of learning effectively is self-explaining [10]. Those researchers describe how
students who learn with understanding the material and forming self-explanations on their own
achieve better outcomes than those relying heavily on examples to learn and struggling to generate
explanations on their own. Positioning the prediction task before the observation task effectively
caused participants to create self-explanations for the AI agent’s actions. Participants used the
process and the explanation, to generate their own explanation for predicting the agent’s actions:

S1MB10: “I think the aim of the AI is to increase the number of minerals, and then go to the last
one that is immortals, so that they can make a great damage to the nexus.”

Participants who answered AAR/AI questions perform a “rationale generation” [17] task, which
appears to offer some benefits as an AI evaluation strategy.
Renkl et al. found that acquisition of transferable knowledge can be supported by eliciting

self-explanations [57]. Learners with low levels of prior topic knowledge profit from such an
elicitation procedure. We observed this effect in our study, as participants with little experience in
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RTS comfortably navigated through the process of assessing the AI’s actions—even forming their
own explanations.

9.3 Encouraging Metacognition
Researchers in the field of education have long pointed to the benefits of metacognition, in which
learners evaluate the success of their own learning/understanding processes [19]. Metacognitive
activity is well-established as an important influence on learning and understanding [78].
Participants in Study One and Study Two, with both the Model-Free and the Model-Based

explanations, showed several instances of metacognition that seemed to come from the integration
of AAR/AI, the explanations they saw, and the “active user.” For example:

S1MB5: “It made me think of it like how the AI is thinking. Is it thinking long term? Is it thinking
short term? Thinking about the two different lanes each time?... what the best decision would be
or what I would make as the decision, so you asking that question made me think ‘was my own
decision better?’.”
S1MB8: “...it was good to kind of evaluate myself where I was at when thinking about what
decisions the AI was doing, so I can better evaluate the next stage.”
S2MF41: “ Being able to compare the AI’s choices in the explanation graphs made it helpful in
seeing what may have been a stronger choice (AI vs yourself).”
S2MB35: “Friendly AI bought 1 baneling building in bottom lane. I’m unable to notice all possible
changes at a decision point.”

One form of metacognition is self-explanation, and our approach encouraged some participants
to generate their own explanations:

S1MB10: “I think the aim of the AI is to increase the number of minerals, and then go to the last
one that is immortals, so that they can make a great damage to the nexus.”
S2MB8: “Plans to distract Enemy AI in bottom lane.”
S2MF42: “ AI doesn’t appear to consider killing bottom lane to be an avenue to victory.”
Finally, while our process promoted thinking about the future, the artifacts also supported

participants’ ability to reflect on the past:
S1MB19: “These cards? It’s good to write good points and bad points for every three rounds, so
that we can go back and see what mistakes we did from the bad.”

10 THREATS TO VALIDITY
Any study has threats to validity, which can skew results towards particular conclusions [79].

One such threat was the participants’ amount of domain expertise. Evaluators of an AI system
need domain knowledge to evaluate the AI’s performance in the domain, and some of the partici-
pants may not have had enough RTS experience. As an example, 46% of Study One’s participants
had at least 10 hours of RTS gaming experience. It is possible that these participants’ experience
levels may have impacted their ability to evaluate an AI in that domain. Also, it was not clear
how to interpret large decreases in the number of clarifications a participant requested early vs.
late in the process. It could have meant that the participants understood the explanations over
time, or alternatively that they simply gave up. The question wording could also have influenced
participants’ responses. Many were written and uniformly worded in a balanced set of positive,
negative, and neutral wording, but the verbal post-task interview wording was informal, so more
subject to individual variation.
The reliability of qualitative coding rests upon inter-rater reliability (IRR) measures. We used

Jaccard [31], and 80% is considered good agreement, but for one code set we achieved only 76%.
Another hindrance to the generalizability of our findings is the circumscribed design and small
size of our study—preventing comparative statistics from yielding meaningful contrast between
Study Two’s treatments. Similarly, the sensemaking task we have chosen focuses on the depth and
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breadth of participants’ constructed mental models—but says little to nothing about their accuracy
or usefulness.
Also, qualitative studies are intended to reveal phenomena on approaches that have not been

investigated before, and are not suitable for generalization. That said, our study can still inform
model-based explanations for domains where the branching factor is small (or can be made small
via pruning, as we have done).

11 CONCLUSION
In this paper, we have presented AAR/AI (After-Action Review for AI), a new assessment method
to bring accountability to both AI agents and to the humans who must assess them. To inform the
design of AAR/AI, we present results from two qualitative lab studies to learn what people need
when assessing an AI agent, as well as pros/cons of both the AAR/AI process and the explanations
embedded in the process. Among the phenomena we found were:
• “Organized,” “Logical,” and...“Repetitive”: Some participants remarked that AAR/AI process helped
them think logically and stay organized. Some appreciated its support for reflection on past
thoughts. Notably, the process helped participants generate rationale for events with long time
lags. However, some bemoaned the repetitiveness of the AAR/AI questions.

• Explanation complexity:Our search tree explanations for a model-based agent were approximately
the right complexity for some of the participants to understand. They reported being able to “draw
their own conclusions” from them, and appeared to be using them to align the agent’s prediction
with the actual future. Other participants did not fully understand the diagram. This mix of
attitudes toward the same explanation corroborates other research reporting that explanations
are not “one size fits all” (e.g. [2]), and suggests allowing people to access different actions and/or
explanation types on demand.

• Model-Free or Model-Based: In Study Two we had both Model-Free and Model-Based explanations.
Study Two participants who used the Model-Free explanations expressed less than half as many
explanation-informed statements as the Model-Based participants did. More critically, the Model-
Free participants’ bug reports were merely participants’ disagreements with the agent’s strategy,
whereas some Model-Based participants were able to point explicitly to logic errors in the
explanations.

• Diversity of perspectives: As we observed and participants reported, AAR/AI’s questions encour-
aged participants to consider their observations from multiple, different perspectives, which
research suggests may produce problem-solving benefits [20].

• How many and which: To answer some of the AAR/AI questions, participants needed to compare
items in the explanation from a very large set of options, the sheer quantity of which made them
hard to co-locate. We provided the AI’s most promising options, but some participants wanted
to see options the AI considered bad, as well as actions that spend all resources. Accommodating
different people’s comparison needs to answer the AAR/AI questions is an unresolved issue—so
methods to support scalable comparisons of items in large datasets (e.g. [49]) is an active area of
Info Viz research.

• From whence: Some participants needed to know the provenance of axiomatic values (value
estimations at the leaf nodes). That said, if people are to be held accountable for relying on an AI
agent, then the ability to “audit” its decision making by allowing the ability to trace provenance
may be a requirement.
Overall, AAR/AI’s ability to organize participants’ work with our agent’s explanations assisted

the participants in the assessment process. Our results are particularly promising when combining
AAR/AI with Model-Based explanations. Still, developing useful explanations and rigorously
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measuring their quality remains quite difficult and, as our participants pointed out, there is much
work still to be done. Ultimately, we hope that AAR/AI’s framework around explanations can help
people like S1MB14 see “the flow of logic that we should’ve had” when assessing AI systems that
impact us daily.
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A HELPFUL/PROBLEMATIC CODE SET FOR EXPLANATIONS

Code: Description Example #
Explanation Overall Quality: Participant
found explanation useless or helpful in a vague
sense, or in determining reasons for actions in
the decision process (clarity, or lack thereof).

S1MB2: “I think it’s pretty easy to understand,
like, after looking at for a little while.”

8

Diagram Color Coding: Participant com-
ments on the manner in which an explanation
object is colored.

S1MB17: “The color coding is okay, it’s pretty
distinctive. I don’t know if the background is
gray or...even the marines are gray... it was
confusing because if it was different color...”

4

Changing Diagram Data Contents: Partici-
pant talks about changing data in the diagram
(such as changing the node definitions, chang-
ing the key, etc). This is NOT about showing
an action/state node that is not present.

S1MB18: “How much minerals it has, some-
thing like that. I would like that to be repre-
sented on the diagram.”

7

Diagram Node Contents: Participant wants
the diagram to contain more/fewer nodes, (e.g.
interactively expand a node, request a specific
action be examined, or have a “wider/narrower”
tree) OR thinks it contains the right amount.

S1MB11: “I would just have more options
available, you know. ... So sometimes, there
are missing... missing options which should
be taken.”

16

Diagram Glyph Presentation: Participant
comments on the glyphs for the action or state
nodes, referring to the way the state informa-
tion is presented in the glyph

S1MB10: “As the number of units goes on
increasing, the line goes on increasing. And
that is why it’s short. That’s clear, but vertical
lines are... if it would have been 1, it would
have been great. Just 1 line.”

6

Table 9. Helpful/Problematic code set for the explanations. Frequencies are from Study One’s post task three
questions centered on the explanation and its contents. (“What was helpful about the information given to
you?”, “What was problematic about the information given to you?”, and “Under what circumstances is the agent
likely to make bad decisions?”)

B MORE ABOUT THE EXPLANATION AND ITS DESIGN EVOLUTION
In Figure 5, the root node (region 1) shows the current game state and its estimated value. One
layer down (region 2) shows the 4 best actions available to the friendly AI in the current game
state–and their values, as estimated by the agent based on the tree expansion. The third level of the
tree (region 3) shows actions available to the opponent—again, the 4 best actions and their values
as estimated by the agent. The fourth level of the tree (region 4) shows the predicted state that the
agent thinks will ensue based on the current state, taken together with the simultaneous actions
from itself and the opponent. From that level, the agent performs another round of search in the
same way, resulting in an agent that looks ahead 2 rounds. Each node is shown with the state or
action that node depicts, alongside the estimated value of that state/action, shown in more detail
in Figures 6a and 7a. If that value is part of the principal variation (colloquially, the most likely
trajectory given “optimal” play from both sides), its value is shown in green instead of blue.
Figure 5 depicts the explanation used in Study One. For Study Two, we used the explanations

shown in Figure 2. These Study Two explanations were implemented in an interactive prototype,
hence offering interactions not possible in Study One’s paper-prototyped explanations. Also,
drawing from our observations of Study One participants, in Study Two’s explanations we changed
the glyphs used to represent states and actions, including outcome bars, which are shown in more
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detail in Figures 6b and 7b. Based on Study One’s results, we made the default tree more complex
by increasing the branching factor at the root from 4 to 5, but eliminated the branching between
friendly and enemy actions, instead including only the option estimated to be the best.
We improved the explanation in other ways between the studies. For example showing an

estimation of the resources available to both the friendly AI and its opponent, as requested by a
Study One participant:

S1MB20: “I would enjoy to see ... the AI’s, calculation of their minerals. ...further extrapolation
of getting this many more minerals allows you to buy these units. ...Because in RTS games you
think about the enemy’s resources as well and how to manage those as well as your own.”
For Study Two, we incorporated much of this Study One feedback into our explanation design,

but Study Two participants were not entirely satisfied. Some wanted information that still went
beyond that available in the explanations:

S2MB30: “It would have been helpful to know how many immortals are effective against a
baneling and number of marines, effective against immortals etc. Instead of which ones are
effective against each other.”
S2MB28: “There was no info on what enemy AI is thinking. Also both lanes play at same time
so hard to focus on both.”

These quotes suggest that finding, processing, and sorting out high-level information intermingled
with low-level information was cognitively burdensome. Adding to this cognitive burden, some
Study Two participants pointed to the cognitive work of comprehending certain glyphs and layout:

S2MB35: “I didn’t explore all parts of the explanations. Couldn’t relate shapes with marines,
banelings, or immortal buildings.”
S2MF38: “Object shapes and names were pretty hard to remember, should have simplified to
basic code shapes used in the explanation. Damage powers weren’t displayed.”
S2MB26: “The position of the boxes are wide apart so it takes time to visually go from one box
to another. Keeping track of both lanes wide apart is difficult.”
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1

2

3

4

Fig. 5. Search tree explanation for decision point 22 in Study One, presented to participants as a paper
prototype. Dashed red boxes show: (1) game state at decision point 22, (2) top 4 most rewarding actions,
as estimated by the AI, (3) top 4 most rewarding actions for the enemy in response to its “best” action, as
estimated by the AI, and (4) predicted game state at decision point 23. Our agent searches to depth 2, so the
explanation includes another turn of search from the predicted state (box 4). Note that all states below the
root (box 1) are predicted by the agent. Green highlighted numbers indicate parts of the principal variation.
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Ç√
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.16235
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FRIENDLY ENEMY
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(a) Study One example of State node presentation. (b) Study Two example of State node presentation.

Fig. 6. In Study One (left), we represented the state with a bar showing a number of unit production facilities
for each lane and type. Here, the Friendly AI has 6 marines (gray bar) and 5 banelings (orange bar) in the top
lane—with 3 marines and 16 banelings bottom. In Study Two (right), we improved the state representation
by including nexus health information via the bars at the edges, as well as pylon count with the yellow/grey
rectangles along the bottom. Also the state node, instead of showing troop production facilities, now shows
troops that are on the map. This is presented by dividing each lane evenly into four parts, each containing a
single shape (oval, square, or triangle) for each type of troop, whose size reflects the number of troops in that
part.

Ç√

Ç√

Ç√

FRIENDLY ENEMY
.16235

.16235

FRIENDLY ENEMY
.16235

.16235

(a) Study One example of Action node presentation. (b) Study Two example of Action node presentation.

Fig. 7. In Study One (left), we used a design similar to states, with bars split by lane and by unit. Each node
gives the agent’s estimate of the win probability associated with that action (number at the bottom.) In
Study Two (right), we improved the action node representation by including both the friendly (top, blue
outline) and enemy actions (bottom, red outline) and which lane they are in, with total troop production
facilities shown in each lane, and newly acquired production facilities bordered in black. The stacked bar
chart illustrates the AI’s expectations for likely game outcomes. Each bar shows a nexus’s probability of
causing a player to lose, with the bar’s texture indicating why that nexus causes a loss (being destroyed,
having lowest health at game end).
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