
Appendices A–D
A Scalable Method for Deductive
Generalization in the Spreadsheet Paradigm

MARGARET BURNETT
Oregon State University
SHERRY YANG
Oregon Institute of Technology
and
JAY SUMMET
Oregon State University

APPENDIX A. THE CG EDGE MAINTENANCE ALGORITHMS

CG edge maintenance is done using the simple algorithms Insert, Delete,
and Find, shown in Figure A-1.

Fig. A-1. Basic algorithms for edge maintenance.

APPENDIX B. COMPUTATIONAL EQUIVALENCE BETWEEN
CONCRETE AND GENERALIZED FORMULAS

We will say that the generalized version of a reference in cell X ’s formula is com-
putationally equivalent to the concrete version if replacing every concrete refer-
ence Fi : Z with the generalized reference results in the same value in cell X as

ACM Transactions on Computer-Human Interaction, Vol. 9, No. 4, December 2002, Pages 1–5.

2 • Burnett et al.

with the concrete reference, provided that the concrete version terminates. In
this appendix, we show that the generalization method maintains this property.
The notion of computational equivalence is basically correctness of the method
under the modelessness constraint given in the introduction, which requires
that there cannot be a “pregeneralization mode” that requires user actions
or reasoning that are different from those of a “postgeneralization mode.”

For now, assume the cell reference graph has information about all relation-
ships in the program, i.e., that there are no off-screen cells, and that no ICE
edges are present in the concrete version. (We will relax these assumptions in
the next paragraph.) Under these assumptions, as we have pointed out before,
replacing every reference Fi : Z with F(DefSeti) : Z using Notation 1 would have
maintained this property, since F(DefSeti) completely describes Fi by enumer-
ating every difference between Fi and F . Despite its omission of information
from Notation 1, Notation 2 does not lose this property, because a cell not in
AffectsSetx cannot possibly have any effect on X ’s value; hence a reference to
Fi : Z =F(DefSeti ∩ AffectsSetx) : Z must produce the same result in X as a
reference to F(DefSeti):Z would produce. Hence the generalized version of the
formula under both Notations 1 and 2 are computationally equivalent to the
concrete version under these assumptions, provided that the concrete version
terminates.

We now relax the above assumptions. First, we will allow some of the relation-
ships in the program to be off-screen (and thus not in the cell reference graph).
Because a trigger for generalizing is removal of a cell from the screen, we know
that all relationships involving off-screen cells were generalized at the time
the cell was removed. We have already explained that it is neither possible to
change the relationships uniquely described in existing off-screen cells, nor
to add new references to these off-screen cells without bringing them back onto
the screen. Because of this property, all relationships involving an off-screen
cell have already been generalized in a way that cannot be affected by the user’s
manipulations and edits of on-screen information, and the cell reference graph
can safely omit information about them. Even when off-screen cell formulas
are generated via gestures, the generated formulas are created in pregeneral-
ized form; after their creation the only way they can be edited in a way that
requires new generalization activity is for them to be brought onto the screen.

Second, we will allow ICE edges to be present in the concrete version. Al-
though these edges are removed from the cell reference graph, this does not
result in loss of information, because the inherited references on form instances
that these edges model are, by definition, simply duplicates of references that
also exist in the model. Thus, the model form’s edges include the same informa-
tion as the ICE edges and it is not necessary to include the latter’s duplicated
information in order to generalize. It is also not necessary to actually generalize
the inherited formulas modeled by the ICE edges, because cells with “inherited
formulas” can just copy or use the formulas in the model version after general-
ization is complete.

Thus, the method satisfies the computational equivalence property for con-
crete forms that are able to terminate. We now consider concrete forms that do
not terminate.

ACM Transactions on Computer-Human Interaction, Vol. 9, No. 4, December 2002.

Scalable Generalization in the Spreadsheet Paradigm • 3

Concrete forms that do not terminate, due to possible cycles, are either
incorrectly introducing true cycles, or are attempting to introduce recursion.
Formulas introducing true cycles are rejected, so no further attention to this
situation is needed. For concrete forms attempting to introduce recursion, we
now show that the “correct” recursive form is deduced, by induction on the num-
ber of recursive instances (references to other instances of the same form). By
“correct,” we mean that the recursive form has the same relationships, except
for the ICE edges, as those of the concrete forms.

The base case of the recursion (and also the base case of our induction)—
references that do not refer to other instances of the same form—has already
been demonstrated above. The inductive hypothesis is that n− 1 recursive in-
stances are correct. From this, it is obvious that the nth recursive instance is
itself correct because it combines these instances using exactly the same oper-
ators as those specified concretely.

Finally, we show that generalization does not introduce infinite recursion
if the concrete version did not do so. The key to this lies in the AffectsSet: the
system does not include any cells in the generalized notation except those on the
direct dataflow path to the formula being generalized, in essence following a lazy
strategy. More generally, the system does not add any relationships that were
not already specified by the user, and in fact eliminates all except those directly
needed to compute the cell being generalized. Thus, since it does not add new
relationships and eliminates those not needed for computation of the formula’s
result, it cannot introduce infinite recursion if the concrete version did not do so.

APPENDIX C. TIME COMPLEXITIES CASE BY CASE

From the cost of each algorithm, the total cost of the generalization method can
be derived by considering the possible user actions relevant to generalization
and which algorithms they trigger:

— New formula/cell. A new formula is entered or brought onto the screen, or
an existing formula is modified. There are two possible subcases: either the
new formula caused a possible cycle or it did not.

— Several new formulas/cells. Several existing cells are moved onto the
screen, such as when an entire form is displayed. This is the same case as
the previous one except for its volume.

— A form is saved or chosen for removal from the screen or memory. At least
all the cells on the form must be generalized; in some cases all the cells on
the screen must be generalized, as was discussed earlier.

— A new instance is created by copying from a model.

Table C-I recapitulates the costs presented in the main paper of each algo-
rithm, and Table C-II uses these costs to show the time complexity for each of
the above user actions. As Table C-II shows, the worst-case costs are in every
case based on the size of the on-screen portion of the program as opposed to
the size of the entire program. We have mentioned that in the Forms/3 imple-
mentation of the method, some cells that are not actually visible are classified
as “on-screen,” such as cells on obscured or in iconified windows. However, the

ACM Transactions on Computer-Human Interaction, Vol. 9, No. 4, December 2002.

4 • Burnett et al.

Table C-I. Summary of Algorithm Costs

Algorithm Description Time Complexity
Insert(le) Add labeled edge le. O(|V|)
Delete(le) Delete labeled edge le. O(|V|)
Find(le) Find labeled edge le. O(|V|)
Cycle?(aCell) Detect possible cycles in subgraph rooted O(|E|)

at cell aCell.
RemoveICE Remove ICE edges. O(|E|)
Generalize Record generalized formula relationships

(cost shown is if triggered by editing one cell’s formula). O(|V|*|E|)

Table C-II. Costs by User Action

User Action Algorithms Invoked (from Table C-I) Time Complexity
New formula/cell on Insert,Delete,Find: called for

the screen, each reference in (constant-length) O(|V|)
possible cycle formula.

Cycle?: called once. O(|E|)
RemoveICE: called once. O(|E|)
Generalize: Called on one cell. O(|V|*|E|)
Total O(|V|*|E|)

New formula/cell on Insert,Delete,Find: called for
the screen, no each reference in (constant-length) O(|V|)
cycle formula.

Cycle?: called once. O(|E|)
Total O(|V| + |E|)

Several new Same as new formula (above), but repeat O(|V|2*|E|)
formulas/cells on for each cell.
the screen.

Any action requiring RemoveICE: called once. O(|E|)
generalization of a Generalize: Called on multiple cells. O(|V|2*|E|)
single entire form Delete,Find: In cases where cells are

being removed from the screen, up to O(|V|*|E|)
|E| edges may need to be removed.

Total O(|V|2*|E|)
Any action requiring Same as row above. O(|V|2*|E|)

generalization of
the entire screen

New instance (copy) Cost of generalization of single form. O(|V|2*|E|)
Insert,Find: Add edges for up to |V| cell formulas. O(|V|2)
Total O(|V|2*|E|)

method does not require this or any other particular definition of “on-screen” to
succeed. Any reasonable definition will suffice, because taking a cell out of this
status is one of the events triggering generalization. For example, to precisely
bound generalization cost by the number of pixels on the screen, a variation that
we have considered is for the definition of “on-screen” to exclude obscured cells
and cells on iconified windows. Under such a change, whenever the user iconi-
fied a form or obscured a cell, generalization would be triggered (for the affected
cells). This change would generate more calls to the generalization algorithm
than presently occur, but each call would potentially process a smaller SSCG,
since fewer cells would be considered to be on-screen. However, there has been
no reason to make this change, as generalization time in our implementation

ACM Transactions on Computer-Human Interaction, Vol. 9, No. 4, December 2002.

Scalable Generalization in the Spreadsheet Paradigm • 5

is already fast enough to not introduce noticeable delays, as was demonstrated
in Section 6.

APPENDIX D. ADDITIONAL PROGRAMS

Fig. D-1. A version of Fibonacci as it might be programmed by a more traditional programmer
than the one who created Figure 4. This version is hierarchical—its relationships are those of
a recursive “call tree”—which makes it much more traditional than Figure 4’s. However, it still
requires generalization for the same reasons as for Figure 4.

Fig. D-2. The factorial program from Section 6. The user has used the key icon to view the gener-
alized meaning (at bottom left) of the “sample” reference to 53 Fact:Ans.

ACM Transactions on Computer-Human Interaction, Vol. 9, No. 4, December 2002.

6 • Burnett et al.

Fig. D-3. The stocks example program from Section 6. This is an investment visualization appli-
cation. The rightmost cells in the StockwColor window form a horizontal color bar graph comparing
different stock prices.

ACM Transactions on Computer-Human Interaction, Vol. 9, No. 4, December 2002.

