Graphical Definitions: Expanding
Spreadsheet Languages through Direct
Manipulation and Gestures

MARGARET M. BURNETT
Oregon State University
and

HERKIMER J. GOTTFRIED
Hewlett-Packard Company

In the past, attempts to extend the spreadsheet paradigm to support graphical objects, such as
colored circles or user-defined graphical types, have led to approaches featuring either a direct
way of creating objects graphically or strong compatibility with the spreadsheet paradigm, but
not both. This inability to conveniently go beyond numbers and strings without straying
outside the spreadsheet paradigm has been a limiting factor in the applicability of spreadsheet
languages. In this article we present graphical definitions, an approach that removes this
limitation, allowing both simple and complex graphical objects to be programmed directly
using direct manipulation and gestures, in a manner that fits seamlessly within the spread-
sheet paradigm. We also describe an empirical study, in which subjects programmed such
objects faster and with fewer errors using this approach than when using a traditional
approach to formula specification. Because the approach is expressive enough to be used with
both built-in and user-defined types, it allows the directness of demonstrational and spread-
sheet techniques to be used in programming a wider range of applications than has been
possible before.

Categories and Subject Descriptors: D.1.1 [Programming Techniques]: Applicative (Func-
tional) Programming; D.1.7 [Programming Techniques]: Visual Programming; D.3.3 [Pro-
gramming Languages]: Language Constructs and Features—abstract data types; data types
and structures; H.4.1 [Information Systems Applications]|: Office Automation—spread-
sheets

General Terms: Design, Human Factors, Languages

Additional Key Words and Phrases: Direct manipulation, Forms/3, Gestures, Programming by
demonstration

This work was supported by Hewlett-Packard, by Harlequin, and by the National Science
Foundation under grants CCR-9308649, ASC-9523629, and an NSF Young Investigator
Award.

Authors’ addresses: M. M. Burnett, Department of Computer Science, Oregon State Univer-
sity, Corvallis, OR 97331; email: burnett@cs.orst.edu; H. J. Gottfried, Hewlett-Packard Com-
pany, 1000 NE Circle Blvd., Corvallis, OR 97330; herkyg@cv.hp.com.

Permission to make digital/hard copy of part or all of this work for personal or classroom use
is granted without fee provided that the copies are not made or distributed for profit or
commercial advantage, the copyright notice, the title of the publication, and its date appear,
and notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to
republish, to post on servers, or to redistribute to lists, requires prior specific permission
and/or a fee.

© 1998 ACM 1073-0516/98/0300-0001 $5.00

ACM Transactions on Computer-Human Interaction, Vol. 5, No. 1, March 1998, Pages 1-33.

2 . Margaret M. Burnett and Herkimer J. Gottfried
1. INTRODUCTION

In recent years, many new graphical techniques have been developed to
support programming with graphical objects. Of particular note are the
contributions of demonstrational programming research, which have
brought straightforward, graphical techniques for creating and working
with graphical objects to both end-users and programmers. Unfortunately,
however, users of spreadsheets have been left out of these advances and
still find themselves in a highly textual world with limited abilities to
incorporate graphical objects into their computations.

This article presents a solution to this problem. Our goal was to incorpo-
rate graphical objects into spreadsheets in a way that would fit seamlessly
within the spreadsheet paradigm. Further, we wanted our approach, like
most other features found in spreadsheets, to be applicable to all users of
spreadsheet languages. That is, we wanted to support the simple, built-in
graphical objects likely to be used by ordinary end-users, in a way expres-
sive enough to also support the complex, user-defined objects needed by
programmers.

The approach described in this article has these attributes. It supports
both simple and complex objects in a spreadsheet language via direct
manipulation and gestures. We call these direct manipulations and ges-
tures graphical definitions, to emphasize that they are a declarative way to
define formulas for cells in a graphical manner. The primary new contribu-
tions of the approach are that

—it supports a wide range of applications, from end-user-oriented program-
mable graphics to programmer-oriented data structures;

—it supports not only built-in graphical types, but also user-defined types;
and

—it fully supports working directly and graphically with objects in a way
that fits completely within the spreadsheet paradigm of cells and formu-
las, without employing state-modifying sublanguages, macros, or trap-
doors to other programming languages.

1.1 Organization of this Article

We begin with a discussion of the design goals of our approach. In Section
2, we review related work, evaluating how other systems relate to these
design goals. In Section 3, we present the approach informally via two
examples, showing how our technique might be used both by end-users and
by programmers. In Section 4 we formally present the semantics of
graphical definitions. After a discussion of interactions between the
approach and the spreadsheet paradigm in Section 5, the results of an
empirical study are presented in Section 6, followed by the conclusion in
Section 7.

ACM Transactions on Computer-Human Interaction, Vol. 5, No. 1, March 1998.

Graphical Definitions . 3

1.2 Design Goals

We use the term spreadsheet languages® to refer to all systems that follow
the spreadsheet paradigm, from commercial spreadsheets to more sophisti-
cated systems whose computations are defined by one-way constraints in
the cells’ formulas. The essence of this paradigm is expressed well by Alan
Kay’s value rule, which states that a cell’s value is defined solely by the
formula explicitly given it by the user [Kay 1984]. By “fitting seamlessly
within the spreadsheet paradigm,” we mean that the approach follows the
value rule. The characteristic of seamlessness within the spreadsheet
paradigm was one of our two primary design goals.

Our other primary design goal was directness, a term we will use to mean
following the principles advocated by Shneiderman, by Hutchins, Hollan,
and Norman, by Green and Petre, and by Nardi. The term direct manipu-
lation was coined by Shneiderman, who describes three principles of
direct-manipulation systems: continuous representation of the objects of
interest, physical actions or presses of labeled buttons instead of complex
syntax, and rapid incremental reversible operations whose effect on the
object of interest is immediately visible [Shneiderman 1983].

Hutchins, Hollan, and Norman expand upon these notions, suggesting
that the degree to which a user interface feels direct is inversely propor-
tional to the cognitive effort needed to use the interface [Hutchins et al.
1986]. They describe directness as having two aspects. The first aspect is
the distance between one’s goals and the actions required by the system to
achieve those goals. In traditional spreadsheet programming, distance is
fairly small because there is a well-understood, one-to-one mapping from
each operator and term in the goal to the formula that must be specified
(e.g., from the goal “add A and B” to the formula “A + B”). In contrast,
Green and Petre enumerate several examples showing the unfortunate lack
of this aspect of directness (termed “closeness of mapping” in their work) in
commonly used programming languages [Green and Petre 1996]. The
second aspect is a feeling of direct engagement, “the feeling that one is
directly manipulating the objects of interest.” Nardi sees direct engagement
as a critical element in spreadsheets, emphasizing freedom from low-level
programming minutiae in favor of task-specific operations [Nardi 1993].
Direct engagement has been largely absent from prior approaches to
supporting graphics in spreadsheet languages.

2. RELATED WORK AND BACKGROUND

2.1 Related Work

Many commercial spreadsheets provide the capability to display simple
graphics and charts. However, these graphical objects are strictly output

1We have chosen this terminology to emphasize the fact that even commercial spreadsheets
are indeed languages for programming, although they differ in audience, application, and
environment from traditional programming languages.

ACM Transactions on Computer-Human Interaction, Vol. 5, No. 1, March 1998.

4 . Margaret M. Burnett and Herkimer J. Gottfried

mechanisms: they cannot be values of cells; other cells’ values cannot
depend on them; and only the charts (not the other kinds of graphics) can
be dependent on other cells. Furthermore, these spreadsheets do not allow
users to extend the set of graphical objects that are supported. In some
spreadsheets, it is possible to gain some graphical support for objects
through the use of macro languages and incorporation of state-modifying
programming languages, but these approaches violate the spreadsheet
value rule. Macros violate it because a macro stored in one group of cells
actually changes other cells’ formulas during execution—the spreadsheet
equivalent of self-modifying programs.

Although some research spreadsheet languages have used graphical
techniques, they have not achieved the combination of generality and
directness that we sought. One of the pioneering systems in this direction
was NoPumpG [Lewis 1990] and its successor NoPumpll [Wilde and Lewis
1990], two spreadsheet languages designed to support interactive graphics.
The design goal of these systems was to provide the capability to create
low-level graphs while adding as little as possible to the basic spreadsheet
paradigm. Thus, NoPumpG and NoPumplI include some built-in graphical
types that may be instantiated using cells and formulas, and they support
limited (built-in) manipulations for these objects, but do not support
complex or user-defined objects.

Penguims [Hudson 1994] is an environment based on the spreadsheet
model for specifying user interfaces. Its goal is to allow interactive user
interfaces to be created with little or no explicit programming. This work is
similar to ours in its support for abstraction—it provides the capability to
collect cells together into objects—but unlike our work, it employs several
techniques that do not conform to the spreadsheet value rule, such as
interactor objects that can modify the formulas of other cells, and impera-
tive code similar to macros.

Action Graphics [Hughes and Moshell 1990] is a spreadsheet language
for graphics animations. It provides some support for complex objects, such
as the ability to group cells into “composite cells,” but does not provide the
directness we sought. Also, animation in Action Graphics is performed
through functions that cause side effects; thus, this approach violates the
spreadsheet value rule. Smedley, Cox, and Byrne have incorporated the
visual programming language Prograph and user interface objects into a
conventional spreadsheet in order to provide spreadsheet users with a
graphical interface for input and feedback [Smedley et al. 1996]. However,
although the Prograph approach to spreadsheets adds the ability to incor-
porate graphical objects into spreadsheets, it does not make programming
them more direct.

Wilde’s WYSIWYC spreadsheet [Wilde 1993] aims to improve traditional
spreadsheet programming by making cell formulas visible and by making
the visible structure of the spreadsheet match its computational structure.
Although this work is similar to ours in its attempt to emphasize the
task-specific operations of spreadsheet languages, Wilde focuses on the

ACM Transactions on Computer-Human Interaction, Vol. 5, No. 1, March 1998.

Graphical Definitions . 5

visual representation of the resulting program rather than on the means of
specifying it and does not address graphical types.

C32 [Myers 1991] is a spreadsheet language that uses graphical tech-
niques along with inference to specify constraints in user interfaces. Unlike
the other spreadsheet languages described here, C32 is not a full-fledged
spreadsheet language; rather, it is a front-end to the underlying textual
language Lisp used in the Garnet user interface development environment
[Myers et al. 1990]. C32 is a way of viewing constraints, but does not itself
feature the graphical creation and manipulation of graphical objects.
Instead, this function is performed by the demonstrational system Lapi-
dary [Vander Zanden and Myers 1995], which is another part of the Garnet
package. The combination of C32 and Lapidary (and the other portions of
the Garnet package) features strong support for direct manipulation of
built-in graphical user interface (GUI) objects, but not for any other kinds
of objects, which must be written and manipulated in Lisp.

Recent work on the spreadsheet language Formulate introduced the use
of voice, handwriting, and gestures as input modalities for entering stan-
dard spreadsheet formulas [Leopold and Ambler 1997]. All three of these
modalities can be mixed in the entry of a single formula. The Formulate
work addresses a different problem than does our approach. The use of
gestures (and the other modalities) in Formulate replaces one token or a
small group of tokens in a single formula in order to enhance the conve-
nience of formula entry, whereas our approach replaces collections of
formulas in order to enhance the directness of the language syntax.

Our work is also related to research on demonstrational programming by
direct manipulation of objects, such as in Chimera [Kurlander 1993],
KidSim/Cocoa [Smith et al. 1994], Visual AgenTalk [Repenning and Am-
bach 1996], Mondrian [Lieberman 1993], TRIP3, [Miyashita et al. 1992],
and IMAGE [Miyashita et al. 1994]. Of these, the most closely related to
our work are those featuring a declarative approach, namely the rule-based
and the constraint-based systems. KidSim and Visual AgenTalk are two
rule-based systems from the demonstrational family, and they use direct
manipulation to specify declarative graphical rewrite rules. Although the
approaches used by these systems have some similarity to ours in their
support for directness using a declarative mechanism, they do not provide
the kind of flexible, declarative specification of objects and attributes that
we sought for a full-featured, spreadsheet-based approach.

The multiway constraint-based systems TRIP3 [Miyashita et al. 1992]
and IMAGE [Miyashita et al. 1994] also use direct manipulation as a
means of specifying relations declaratively; in these systems a visual
example defines a relationship between the application data and its visual
representation. However, like many demonstrational systems, their ap-
proach uses inference to determine this relation rather than having the
relation be specified explicitly by the programmer. Although our system
shares with inferential languages the property that concrete examples are
used in programming, our approach avoids using inference to derive
program logic. Also, the purpose of TRIP3 and IMAGE is to provide a visual

ACM Transactions on Computer-Human Interaction, Vol. 5, No. 1, March 1998.

6 . Margaret M. Burnett and Herkimer J. Gottfried

interface to traditional fextual programming languages, while our approach
attempts to extend the power of the spreadsheet without involving any
other programming language. Another kind of multiway constraint system
that uses direct manipulation as a means of specifying relations among
visual objects is EUPHORIA [McCartney et al. 1995]. With EUPHORIA,
end-users can specify user interfaces by direct manipulation of both GUI
objects and aggregates of these objects, but EUPHORIA does not support
more general types of objects or more general types of operations.

Because of the multiway nature of these constraint-oriented systems,
they would not fit seamlessly within the spreadsheet paradigm: multiway
constraints violate the spreadsheet value rule. To see why, imagine speci-
fying the formula for cell X to be a box whose width is a reference to cell W
(whose formula is cell A plus cell B). If the user then selects and stretches
the box in X, what does that mean for cells W, A, and B? If any of these are
automatically changed, the value rule is violated for the changed cell(s); if
they are not changed, the multiway nature of the constraints is not being
maintained. Multiway constraints also add a new concept to spreadsheet
languages, which was another reason we wanted to explore whether we
could develop a declarative approach that would work with the one-way
constraints used in spreadsheet languages.

2.2 Background: Forms/3

We have prototyped our approach in the spreadsheet language Forms/3
[Atwood et al. 1996; Burnett and Ambler 1994], and the examples in this
article are presented in that language. Forms/3 has long supported both
built-in graphical types and user-defined graphical types.? (Built-in types
are provided in the language implementation but are otherwise identical to
user-defined types.) Attributes of a type are defined by formulas in groups
of cells, and an instance of a type is the value of an ordinary cell that can be
referenced just like any other cell. For example, the built-in circle object
shown in Figure 1 is defined by cells defining its radius, line thickness,
color, and other attributes. Multiple circles can be defined by making copies
of the circle form, changing formulas as needed on the copies to specify the
desired attributes. In this article, we extend this approach with graphical
definitions to support a more direct style of specifying graphical objects.

3. PROGRAMMING GRAPHICAL OBJECTS DIRECTLY

3.1 Example 1: An End-User’s Use of Graphical Definitions

We have stated that we wanted to devise an approach appropriate for a
wide range of users who use spreadsheet languages, from end-users to
professional programmers. This section relates to the end-user side of that

?Besides its support for graphical types, Forms/3 has some other noticeable differences from
commercial spreadsheets. For example, Forms/3 cells need not be placed in a grid of rows and
columns (as shown in Figure 1), although they can be (as will be shown by Figure 2). Its
formula language is fairly conventional, however. See Table I.

ACM Transactions on Computer-Human Interaction, Vol. 5, No. 1, March 1998.

Graphical Definitions . 7

C == 40 soLID @
HRTRIX T
radius DASHQ)
| et ll DOUBLE-DASH Q
thickness linestyle
lineForeColor lineBackColor
newCircle [ELack]
.
fillForeColor fillBackColor
FALSE FALSE
linestipple dashPattern

Fig. 1. A portion of a Forms/3 form that defines a circle. The circle in cell newCircle is
specified by the other cells, which define its attributes. A user can view and specify
spreadsheet formulas by clicking on the formula tabs (the rectangular icon next to the cell
names). Radio buttons and popup menus are the equivalent of cells with simple formulas.

Table I. The Grammar for the Subset of Forms/3 Formula Language Used in this Article

formula ::= Blank | expr

expr ::= Constant | ref | infixExpr | prefixExpr | ifExpr |
composeExpr

infixExpr ::= subExpr infixOperator subExpr

prefixExpr 2= unaryPrefixOperator subExpr | binaryPrefixOperator
subExpr subExpr

ifExpr ::= IF subExpr THEN subExpr ELSE subExpr

composeExpr ;2= COMPOSE subExpr WITH subexpr AT (subexpr
subexpr) | COMPOSE subExpr AT (subexpr subexpr)

subExpr ::= Constant | ref | (expr)

infixOperator =4+ |- |*|/|AND|OR|=|>|<]...

unaryPrefixOperator = ROUND | WIDTH | — | ...

binaryPrefixOperator 2= APPEND | ...

ref ::= cellRef | Form : cellRef

cellRef ::= Cell | Matrix | Abs | Abs [Cell] | Matrix [subscripts] | Abs
[Matrix] | Abs [Matrix] [subscripts]

subscripts ;1= matrixSubscript@matrixSubscript

matrixSubscript iI= expr

As the top section shows, Forms/3 has the usual formula operators and some operators
supporting computations on graphics. The bottom four lines show cell reference syntax, which
includes cell groups (Abstraction boxes, which will be discussed in Section 4), and row/column
referencing for cells that are in a grid (matrix). There are also 6 “pseudoreferences”™—I, J,
NUMROWS, NUMCOLS, LASTROW, and LASTCOL—that are used in matrix subscripts.
Including these in the grammar is straightforward but tedious, and we have omitted them for
brevity.

range, considering a task that a spreadsheet end-user might be interested
in performing that is beyond the capabilities of current spreadsheets. One
such task might be displaying a visual representation of data, using
domain-specific visualization rules. Figure 2(a) shows such a visualization
that a population analyst might wish to specify in a spreadsheet language.

ACM Transactions on Computer-Human Interaction, Vol. 5, No. 1, March 1998.

8 . Margaret M. Burnett and Herkimer J. Gottfried

51 = r—
Ll portland 450000
@ L =
{RAOI0 jor THoN}
Eugene 120000 .
Corvallis 55000 .
Albany 25000 .
£ (populntion[i&j] > 200000)
location population graph then cITY ®
else (if (population[i@j] > 50000)
then TowN ©
Yors elp . else VILLAGE @)
L J
cit town illage:
Capy Cell of v A9
@
® o)
(37] |
=] el |
Graphics Area: Graphics 1 [{i
R i IO i . mi’aaasuﬁ
box circ Tine box_ cire 1 “n,ﬁm”'co‘or
AN
| SN
newCircle U'» 1
£11|70 |color
veLLovf
] orawoe f————

Shov
[e | (TS FAL)
1[| %?;F;%T;pi:g
(b) ©

Fig. 2. (a) A visualization of population data. The formula shown is shared by the 4 X 1
matrix labeled graph. The tiny icons inside the formula are miniaturized drawings of the cells’
current values. (b) To define the circle for cell city, the population analyst first draws a circle
gesture in city’s formula edit window (1) and then (c) after clicking on the resulting circle to
display its definition form (2) (in gray because it is a copy; white indicates formulas different
from the original), the population analyst specifies the fillForeColor formula via a popup menu
(3). Each manipulation is immediately reflected textually and graphically in city’s formula edit
window (shown behind the gray form in (c)).

The program categorizes population data into cities, towns, and villages,
and represents each with a differently sized black circle.

The population analyst starts by drawing a circle-shaped gesture to
define the large city circle (Figure 2(b)), resizing the resulting circle if
necessary by direct manipulation. This defines the cell’s formula to be a
reference to cell newCircle on a copy of the built-in circle definition form
whose radius formula is defined to be the radius of the drawn circle
gesture. However, the analyst wants the circles in the program to be solid
black. Because there are no gestures to specify fill color, the population
analyst clicks on the circle to display its definition form and then defines
the formula for cell fillForeColor (Figure 2(c)).

ACM Transactions on Computer-Human Interaction, Vol. 5, No. 1, March 1998.

Graphical Definitions . 9

[8) Later Formula: T

Formula for: town Formula for: town
city] I l753—primitivecirc1e :newCircle I
Graphics Area: Graphics Area:

o |- i |o |-

box circ line box circ line

(@ (b)

Fig. 3. In defining the circle for cell town, (a) the population analyst first opens town’s
formula edit window and clicks on city to define town’s formula to be a reference to city. This
formula is immediately reflected textually and graphically. (b) The population analyst then
modifies town’s formula by shrinking the circle via direct manipulation. Thus town’s formula
no longer refers to city, but to a similar but smaller circle instead. This formula change is
immediately reflected textually and graphically.

An alternative technique for specifying cell city would have been to click
on the circle icon in Figure 2(b). This icon shows that sketching a circle is
one of the gestures that is applicable in this context. (How context works
will be discussed in detail in Section 5.2). Clicking on a gesture icon
produces a “representative” value (here, a circle with radius 25), which can
then be resized via direct manipulation. The icon-clicking technique has
the disadvantage of having fewer degrees of freedom than an actual
gesture, so it requires more manipulations by the user to communicate
equivalent information as a gesture if the gesture’s size and/or orientation
are important, but has the advantage of ensuring perfect recognition of the
intended object. In the empirical study presented later in this article, we
found that many subjects preferred to use a mixture of these two graphical
techniques, and others opted to use only the icon-clicking technique; only
one subject preferred to use gestures without sometimes using icon-click-
ing.

Cells town and village could be specified in the same ways as above, or
alternatively by showing how they are different from the city circle. For
example, to define the town circle, the population analyst clicks on cell city
instead of drawing a new circle. This displays the circle in the formula edit
window so that it can be manipulated (Figure 3). The population analyst
then resizes the circle in the formula window to define the town circle,
which has all of the attributes of the city circle except its radius.

3.2 Example 2: A Programmer’s Use of Graphical Definitions

The previous example was an end-user-oriented application of graphical
definitions that included only built-in types such as circles, with only
constant parameters defining their attributes, such as the width of the
sketched circle. Many programming environments that are intended for
end-users provide ease of use, but do not support programmers without
some kind of “trapdoor” mechanism leading to a different programming

ACM Transactions on Computer-Human Interaction, Vol. 5, No. 1, March 1998.

10 . Margaret M. Burnett and Herkimer J. Gottfried

2,
3

nev__top left oight

TIER

]
E
g

sl 10 5 5 15
: 5 15 ‘
OPTION

searchTree searchElement
inputTree :J

10

50z 5 = :
3 top

Cut Cell
Foae =1 [z =
left right

m newTree

22|
Zios) § -

newElement [

Show

@ (b)

Fig. 4. (a) The “user view” of the binary search program that Programmer A intends to write.
The formula tabs indicate that searchTree and searchElement serve as inputs. (b) Programmer
A’s view of the Tree which will be used to implement the search. Most of the cells report
information about the incoming tree (1). Tree gestures are enumerated at the top (2).

language than the easy-to-use top layer. (Typically the trapdoor leads
either to an imperative macro language or to a traditional interpreted or
incrementally compiled programming language, such as Lisp, Smalltalk, or
Visual Basic). To support more sophisticated programmers without the use
of trapdoors, graphical definitions needed to support complex, user-defined
types (such as graphs or trees) whose parameters would not be restricted to
constants, but rather could be based upon the relationships and operations
that have been defined for these user-defined types (such as the left subtree
of some tree). The example in this section uses a very traditional data
structure processing task to show how graphical definitions support such
types and parameters.

Suppose Programmer A wants to develop a binary search algorithm along
the lines of Figure 4(a), using a binary tree (Figure 4(b)) that was
previously implemented by Programmer B. This example focuses on how
graphical definitions support programmers such as Programmer A in this
kind of task. (Programmer B’s implementation of the binary tree will be
discussed in Section 4.) The user-defined tree type contains operations to
insert a new element into a tree, report the top element of the tree, and
report the left and right subtrees. The tree implementor (Programmer B)
has previously defined gestures (Figure 4(b)), to perform these operations
and to instantiate a new empty tree (the “top-level” gesture alluded to in
the figure).

Like the population analyst in the previous example, Programmer A can
use graphical definitions to experiment with and access different elements
of the tree. Programmer A starts by using graphical definitions in cell
searchTree to instantiate a new tree (via the “top level” gesture) and inserts

ACM Transactions on Computer-Human Interaction, Vol. 5, No. 1, March 1998.

Graphical Definitions . 11

three new elements (via three “new” gestures). For convenience, Program-
mer A has decided to set up three hidden (private) cells—top, left, and right
(Figure 5(a))—each of which is defined using one gesture. For instance, the
programmer can define cell left’s formula by clicking on searchTree and
drawing the left gesture—a line pointing down to the left (Figure 5(b)).

This left gesture is semantically equivalent to entering a pair of formulas
in a more conventional way: namely, by copying the tree definition form of
Figure 4(b), defining the formula for cell inputTree on the new copy to be a
reference to the search tree, and referencing cell left. Making copies of a
form and changing a few of the formulas on the copy to reference cells on
other forms (similar to the “linked spreadsheets” of commercial spread-
sheets) provides the same functionality as parameter passing and is
general enough to support both constant and nonconstant parameters.
Since Programmer B has previously set up the left gesture to be equivalent
to this pair of formulas (using techniques that will be shown in Section 4),
it includes the same “parameters” as would the textual formulas in this
context. However, unlike the actions of copying the form and writing
textual formulas, the gestural specification corresponds directly to the
italicized words in Programmer A’s intent: “I want that tree’s left subtree.”

To finish up the program, Programmer A needs to specify the recursive
formula for found?. The way recursion is done in Forms/3 is by pointing at
cells on copies of the form being defined, which are then automatically
generalized using a deductive technique [Yang and Burnett 1994]. Thus,
Programmer A copies the search form twice and defines the first and
second copies’ searchTree cells to refer to the original’s left and right cells,
respectively. The recursive references in found? are then specified by
pointing at the found? cells on the copies.

To automatically generalize the recursive calls to all other copies, the
dataflow subgraph containing all relationships among the original form
and its first two copies that lead to found? are first analyzed to eliminate
duplicated information about relationships. Then the resulting acyclic
subgraph is topologically sorted. The result of the sort is a sequence of
references that describes the computation in terms of relationships among
the original and its copies. This allows the system to express formulas in
terms of these relationships rather than in terms of references to specific
copies. Since there is enough information present in the system to perform
the tasks just described, inference?® is not needed; rather, the generalization
algorithm uses solely deductive reasoning.

To allow users to view the results of generalization, the static represen-
tation, which was designed using benchmarks quantifying some of Green’s
and Petre’s work from the psychology of programming area [Green and
Petre 1996; Yang et al. 1997], includes a complete representation of the

3In much of the Al literature, the term inference includes both sound reasoning techniques,
such as deduction, and techniques employing guesswork. However, in literature about
demonstrational programming languages, the term is normally used to mean only reasoning
techniques employing guesswork. In this article we follow this latter convention.

ACM Transactions on Computer-Human Interaction, Vol. 5, No. 1, March 1998.

'866T YIIBIN ‘T "ON ‘G '[0A ‘UoIdRIIU UBWN-I93ndWo)) U0 SUOIJoRSURL], NV

»
searchTree (TREEX} e

left [TREE**b:left ,]

right [TREE**c:right |

search**a: found?
else search**b:found?))

TRUE
found? [if (top = "NIL") then false
else (if (top = searchElement &) then true
else (if (top > searchElement B) then

(@

Formula for: left

‘search’rreq

Graphics Area:

top left right

10 / E

2—_
5 15 /
|

|
4 ==
(b

FE]E

-m l Eu I -c!.one I -stplay H

—1

5 15

.
searchTree |:|
L] o L]

Fig. 5. (a) The search program. There are 3 hidden cells (1), all of whose formulas were entered
using gestures. The recursive formula for cell found? (2) was entered using a combination of typing
and pointing. (3) marks an input cell searchTree. Its sample value was entered using gestures. (b) To
program cell left, Programmer A clicked on the search tree (1) to set the context (2) for the gesture. Iconic
representations of the tree gestures were then automatically displayed (3). The programmer then drew a

gesture (4) to reference the left subtree.

ch

PaLII0n) [JowpieH pue pauing ‘| 184ebiely

‘866T YIIBI\ ‘T "ON ‘G '[OA ‘UOIPRIdU] UBWNL-I19IndWO)) U0 SUOIOBSURL], NV

1

search**a: found?
else search**b:found?))

—2

where

search**a:found? = found? on the copy of search whose
searchTree = search:left

search**b: found? = found? on the copy of search whose
searchTree = search:right

—2

(@

CELL BMATRIX

[|==

RADIO |OPTION

searchElement

searchTree Isearch: leftl I

TRUE

found?=

1111}

(b)

Fig. 6. (a) The underlined references such as search**a (1) in found?s formula have been
automatically generalized. Programmer A can point at the legend arrow (2) at the bottom of
found?s formula to see these generalized definitions (3). Also, the programmer can touch the
underlined reference to bring up a concrete instance of the generalized form being referred to,
which is shown in (b). Cell searchTree is highlighted because it identifies how this form instance

differs from the original (in Figure 5).

suoniuyeq [eaydess

el

14 . Margaret M. Burnett and Herkimer J. Gottfried

generalized formulas via the textual portions of Figure 5 and Figure 6.
These textual portions alone, however, would be rather indirect. To add
directness, the static representation includes miniaturized sketches of the
current values displayed next to the formula references, which removes the
indirection of having to locate the cell via its name in order to find out its
value. The user can also see a “concretized” version of any form being
referenced by simply pointing at the reference, as in Figure 6(b) (“show me
what that refers to”).

4. THE SEMANTICS OF GRAPHICAL DEFINITIONS

Thus far, we have informally described through examples how graphical
definitions extend our previous work on graphical types in the spreadsheet
paradigm. In this section, we present the semantics of graphical definitions
more precisely by defining the mapping from graphical definitions to these
graphical types.

4.1 A Brief Review of the Model for Graphical Types

The central philosophy of our past work on graphical types has been that in
a language in which even intermediate values are automatically displayed
(such as in spreadsheet languages’ on-screen cells), all types are in a sense
graphical [Burnett and Ambler 1994]. Graphical types are useful in a wide
variety of applications, and examples of their uses include event-based
programs [Burnett and Ambler 1992], inventory tracking [Burnett and
Ambler 1994], an analog desktop clock, [van Zee et al. 1996], algorithm
animation [Carlson et al. 1996], and an animated Turing Machine [DuPuis
and Burnett 1997]. Since the purpose of graphical definitions is to provide a
direct way to work with such graphical types, we briefly review here our
underlying model of graphical types in the spreadsheet paradigm.

In keeping with the philosophy that all types are graphical, a type is the
four-tuple: (components, operations, graphical representations, interactive
behaviors). To define a new type 7, a programmer creates a type definition
form (spreadsheet) F_ which, following the spreadsheet paradigm, consists
of cells with formulas. The form contains two distinguished cells: an
abstraction box, which is a complex cell that defines the structure of the
type as the composition of cells placed inside it (the first element of the
four-tuple), and an image cell, whose formula defines the type’s appear-
ance(s) (the third element of the four-tuple). The other two elements of the
four-tuple, operations and interactive behaviors for type 7, are specified by
additional abstraction boxes and ordinary cells on F_. All cells inside
abstraction boxes are hidden (private), and other cells can explicitly be
made hidden by the programmer.

F’s distinguished abstraction box defines as its value a sample instance
of type 7, and each additional instance 7; of 7is defined by the distinguished
abstraction box on a copy of F,, denoted F_, upon which formulas different
from those on F_ can be defined to allow individual differences among
instances of type 7. Instances of type 7 can be referred to by any cell but,

ACM Transactions on Computer-Human Interaction, Vol. 5, No. 1, March 1998.

Graphical Definitions . 15

except for cells on copies of F_, can only be operated upon in more
substantive ways via the nonhidden cells (public operations) that have been
defined on F_.

Note that in this model there is no theoretical distinction between
built-in and user-defined types. Both are theoretically defined by the above
four-tuples and are practically defined by their accompanying type defini-
tion forms. The only distinction is implementation, i.e., whether the type’s
definition form has already been provided by the language implementor.

F ircle, the circle form in Figure 1, is one example of a type definition
form. Because circles are a built-in type, F ;... is provided in the language
implementation. The abstraction box is newCircle, and the image cell is
hidden because it is not useful to the user: its formula consists of nonedit-
able low-level code that draws a circle with the attributes specified by the
other cells and formulas on the form. If the user copies F ... and changes
the formulas on the resulting form F;, .. for the attribute cells, a different
instance of a circle is defined in F s abstraction box newCircle. Infor-
mation about the new circle is available in F . s cells such as radius and
lineForeColor. The user can continue to make more circles by copying F ;1.
and specifying the formulas on each as desired. We term this way of
working with graphical types the “copying technique.” This copying tech-
nique, allowing a user to create multiple copies of a form and refer to
various cells on those copies from a common spreadsheet, is the same idea
as the “linked spreadsheets” of many commercial spreadsheet systems
(although, unlike our system, commercial spreadsheet systems do not use
linked spreadsheets to support defining and referring to graphical types).
Prior to the development of graphical definitions, the copying technique
was the only way to work with graphical types.

4.2 Adding Graphical Definitions: Semantics for Built-In Types

In order to add a graphical approach for specifying graphical objects to the
model just described, we defined semantics that would map a programmer’s
direct manipulations and gestures into the elements of this model. First we
consider the built-in types.

As was shown by population example, we have provided a gesture and a
clickable icon allowing users to instantiate the built-in type circle using
direct manipulation and gestures. We also provided gestures and clickable
icons for two other built-in graphical types, box and line. The user’s gesture
(or click on the icon) defines a formula that is a reference to an abstraction
box on a copy FT’3 of the definition form F_ for the built-in graphical type 7.
The mappings from such actions to formulas are shown in Table II. As this
table shows, the formulas for some of the cells on copy FTB are defined by
the attributes of the gesture itself: for instance, the circle gesture defines a
reference to the abstraction box on a copy of F;,.. in which the formula for
cell radius is defined to be the radius of the drawn circle gesture. If the
user clicks on the icon instead of drawing a gesture, the default formulas
enumerated in Table II are used to define the attributes.

ACM Transactions on Computer-Human Interaction, Vol. 5, No. 1, March 1998.

16 . Margaret M. Burnett and Herkimer J. Gottfried

Table II. The Mapping from Gestures and Icon Clicks to Formulas for Built-In Types

Graphical
Type Action Formula
Circle draw circle of radius p primitiveCircle (radius=p):newCircle
click on circle icon primitiveCircle (radius=25):newCircle

Box draw box of width @ and height 1 primitiveBox (width=w, height=mn):newBox
click on box icon primitiveBox (width=50, height=50):newBox

Line draw line with dx ¢ and dy ¥ primitiveLine (deltax=¢, deltay=V):newLine
click on line icon primitiveLine (deltax=50, deltay=50):newLine

In each case, the formula is a reference to an abstraction box on a definition form copy F. . The
notation is F. (DefList):x, where DefList is a list of formula definitions for each cell defined
differently on form F_ than on F_, and y is the abstraction box being referenced on F. The
notation for each element of DefList is (X=¢), denoting that a cell X has the formula ¢.

Table III. The Mapping from Direct Manipulation of an Object « to Formulas for Built-In

Types
Graphical
Type Action Formula
Circle stretch edge of circle « to radius p primitiveCircle(radius=p, cell,=cell):
newCircle
Box stretch corner of box « to width w and primitiveBox(width=w, height=n,
height 0 celly=cell,)newBox
Line stretch line «’s endpoint to position primitiveLine(deltax=¢, deltay=V,
(& W) cell,=cell)newLine

In addition to the notation from Table II, the notation cell,=cell, denotes that for all cells X
not specified explicitly in the table, the formula for cell X on FTﬁ is the same as the formula for
cell Xon F, .

The other graphical way to create a new object 8 of type 7 is to define a
formula that refers to another object of the same type 7, and then to
directly manipulate the object, such as shrinking the circle’s radius as in
Figure 3. These manipulations, like the gestures described above, specify a
reference to an abstraction box on a copy F, of the definition form F_. The
formulas for the cells on F_ that do not depend on the attributes of the
manipulation itself will be the same as those on F_, the definition form for
the object a being manipulated. Table III defines thls mapping from direct
manipulations to formulas.

4.3 Preface to Example 3: Implementing the Tree Type

For a user-defined type to support direct manipulation and gestures, the
new type must first be implemented. To do so, using the mechanism just
described for graphical types, the programmer creates the type definition
form, placing abstraction boxes and ordinary cells on it as needed and
defining their formulas. Programmers will often use more than one abstrac-
tion box, placing an input abstraction box, other cells for input specifica-
tions and output information, and one or more output abstraction boxes on
the definition form. Each abstraction box for a particular type definition

ACM Transactions on Computer-Human Interaction, Vol. 5, No. 1, March 1998.

Graphical Definitions . 17

Top-Leval
o) Kool 88 Besturs
CELL ENATRIX
RADIO [OPTION
35' if (EMPTY?) then ""
else

(compose TOP

at (0 0)
with LEFTO

at ((- (width LEFTO)) 25)
with RIGHTO

at ((width TOP) 25))

L1

|TRUE } 3

empty? [if (TOP = "NIL") then true
else false

NIL

top liINPUTTREE[TDP] I

A
newTree left IIINKUTTREE[IEFT] T/ r:"gm"lIINPU’l"I‘REI'Z[RIGHT] 0

N

Fig. 7. The tree definition form’s accessible cells (1-3) and gestures (4) as in Figure 4(b), plus
the hidden cells used in the implementation of these accessors. Cells inside abstraction boxes
(1) are by definition hidden (private). The image cell (5), which is also hidden, defines how
instances of this type appear, and was specified by arranging the cells and rubberbanding the
arrangement, and then modifying the x-coordinates to refer to widths of the components.

Cut Cell

2

form must contain the same set of cells, although they may have different
formulas. For example, recall Programmer A’s view of the tree definition
form (Figure 4(b)). The way the tree’s implementor, Programmer B, imple-
mented this type is shown in Figures 7 and 8. As these figures show, the
form contains an input abstraction box inputTree intended to contain an
incoming tree, input cell newElement for an element to be inserted into the
tree, and output abstraction box newTree to define a tree into which the
new element has been inserted. Other cells providing operations for the
tree (such as the predicate reporting whether the incoming tree is empty,
and a cell reporting the root element) are also present. Just as with the
circle type, multiple instances of type #¢ree can be instantiated using
multiple copies of the tree form.

4.4 Semantics of Graphical Definitions for User-Defined Types

The semantics for gestures on user-defined types are a generalization of the
semantics for built-in types, as can be seen by comparing Table IV with Tables
IT and III. (Direct manipulations can be viewed as gestures in the context of an
existing instance of a type, and hence their semantics do not really need to be
separated, although they were in Tables II and III, for clarity.)

ACM Transactions on Computer-Human Interaction, Vol. 5, No. 1, March 1998.

18 . Margaret M. Burnett and Herkimer J. Gottfried

Top-Level
Gesture

CELL EMATRIX

=
P
-

<18 [—
e |
newElement [E]

inputTree [EMPTYTREE U
P

emptyTree

top [if (EmPTY?) then NEWELEMENT 0
else TOP
N | —
left [if (EmpTY?) then EMPTYTREE U
else (if (TOP > NEWELEMENT 0) then Tree**a:newTree
else LEFT U) >
right (if (EMPTY?) then EMPTYTREE U
else (if (TOP < NEWELEMENT B) then Tree**b:newTree
M newTrela]se RIGHT [) >

Fig. 8. The formulas defining how trees are constructed. The accessor cells have been moved
aside to make room for these formulas to be displayed. The underlined references refer to
generalized instances of the Tree form that recursively construct the left and right subtrees.

4.5 Example 3: Specifying Gesture Semantics

Here is how Programmer B provides the formulaSpecs in Table IV and
Table V that map the desired gestures to the tree definition form’s cells and
formulas. The first step is to specify the set of gestures that are applicable
to the type. In our implementation, gestures are defined and trained using
the Agate gesture recognizer [Landay and Myers 1993], which is part of the
Garnet environment [Myers et al. 1990]. Programmer B presses a button on
the type definition form to start Agate, and then types the name of a
gesture and draws a few examples of the gesture. Our implementation
creates and displays miniature gesture icons at the top of the type definition
form when Agate is exited. After demonstrating the gesture, the programmer
specifies the gesture’s semantics: the mapping from the gesture to a collection
of formulas. For instance, the new gesture at the top of Figure 8 needs to be
defined to mean a reference to newTree on a copy of the tree definition form, in
which the formula for cell newElement is the element to be inserted into the
tree, and the formula for the abstraction box inputTree is a reference to the
tree being manipulated. This is accomplished as follows.

As indicated by Table IV, the semantics of a gesture on object a are
specified by two things: a cell y to be referenced on form FTB (e.g., newTree),
and formula specifications formulaSpec,, for form FTB’S other cells cell, (e.g.,
newkElement). The input cells, namely those that are not hidden and have
not had their formula tabs removed, are the ones that serve a parameter-
like function; the formula specifications for these cells need to be provided

ACM Transactions on Computer-Human Interaction, Vol. 5, No. 1, March 1998.

Graphical Definitions . 19

Table IV. The Mapping from a Graphical Definition Applied to Object « of Type 7 to
Formulas

Action Formula

draw gesture, or click Ffﬁ(A = q, cell,, = formulaSpec,):x
on gesture icon

A represents the distinguished abstraction box, and x represents the cell to be referenced on
F., which is a copy of F, . The programmer explicitly specifies which cell is x in defining the
new gesture’s semantics. The notation cell,, = formulaSpec, denotes that for every cell X other
than A on FTB, its formula is defined by the formula specifications in Table V.

Table V. Explicit Formula Specifications

Permissible
Type of Formula Formula Formula Defined for a Cell X on
Specification Specification Values Form Copy FTB
Gesture Attribute height height of user’s gesture
width width of user’s gesture
radius radius of user’s gesture
dx dx of user’s gesture
dy dy of user’s gesture
Same same X,
Constant anything same as formula specification value
askUser ask “string” the user’s response

The programmer defines the formulaSpec of Table IV as a one-to-many mapping from a
gesture G on some graphical object « to formulas for cells X on form F., using the specification
types shown in this table. X,, is the cell on form F, corresponding to cell X on form F.. For the
askUser formula specification, the keyword ask followed by the prompt “string” causes a dialog
box to be displayed when the user makes the gesture; the user’s response becomes the formula
for cell X.

explicitly by Programmer B. In Figure 8, there is an input cell, newEle-
ment, that requires explicit formula specifications. There is also an input
abstraction box in the figure: the distinguished abstraction box inputTree.
The distinguished abstraction box is always an input cell, and its formula
is always defined automatically to be a reference to «, the object being
manipulated. Programmer B can use the four types of explicit formula
specifications given in Table V’s four rows, each of which is illustrated in
Figure 9, to specify the semantics of input cells. All remaining cells on FTB
are defined implicitly to have the same formulas as on F_ .

In addition to specifying gestures that derive one object from another, the
programmer can specify a gesture to create an object not derived from any
other object. To specify such a gesture, the programmer presses the
“top-level gesture” button on the type’s definition form and specifies a new
gesture (whose name is the name of the type). This gesture is automatically
added to the set of gestures understood by the top-level gesture recognizer.

Top-level gestures are important to the consistency of the approach for
two reasons. First, they allow user-defined types to be instantiated using

ACM Transactions on Computer-Human Interaction, Vol. 5, No. 1, March 1998.

20 . Margaret M. Burnett and Herkimer J. Gottfried

[#] Defining *Bold® gesture for SectionHeading {1
Cell to be referenced:

[®] Defining 'new*gesture for Tree [(2

I 0K I I .\pplyl Icancell
Cell to be referenced:
NEWELEMENT: ask "Enter the new element"

-

W N

@ (b

Fig. 9. Defining gesture semantics. (a) The bold gesture defines a reference to cell formatted-
Text on a copy of the sectionHeading definition form in which (1) the formula for cell size is
defined to be the height of the drawn gesture, (2) string is defined to be the same as the string
formula for the sectionHeading object being manipulated, and (3) style is the constant “Bold.”
(b) The new tree gesture defines a reference to cell newTree on a copy of the tree definition
form whose newElement formula is to be entered by the user at the time the gesture is drawn
(see Figure 10).

the same interface mechanism that is provided for built-in types. Second,
they provide the same interface for instantiating a new graphical object
“from scratch” as for deriving one object from another object.

5. HOW THE APPROACH AFFECTS THE SPREADSHEET PARADIGM

5.1 Graphical Definitions and the Value Rule

That graphical definitions are consistent with the value rule follows from
the previous section, which showed how they map to the textual, spread-
sheet formula mechanism. A key feature of graphical definitions that is
needed for this consistency with the value rule and that is different from
most demonstrational approaches is that what the user directly manipu-
lates is the cell’s formula, not its value. If graphical definitions operated on
cell values as opposed to cell formulas, the spreadsheet value rule would be
violated. For example, suppose there are two cells x and y, both of whose
formulas are references to some cell newCircle, and the user was allowed to
manipulate x’s value directly by, say, shrinking its radius. In that case,
manipulating x’s value would be in contradiction of x’s formula, which is
supposed to have the same value as cell newCircle. Or, if interpreted to
mean that both x and newCircle should change, then even y would be
affected, even though y was not defined to be dependent upon x. Neither of
these possibilities would be consistent with the value rule.

Another alternative would be for the user interface to be set up such that
the user’s manipulation of x’s value did not change exactly that object (x’s
value), but rather changed x’s formula. Such a solution would be consistent
with the value rule, but may be misleading to the user, because the
manipulations that the user was directly applying to the value would be
actually happening to a subtly different object, namely the formula. To
avoid this potential miscommunication, our user interface makes explicit
the fact that the user is manipulating formulas by supporting graphical
definitions in the formula edit windows instead of in the main part of the
spreadsheet.

ACM Transactions on Computer-Human Interaction, Vol. 5, No. 1, March 1998.

"'866T UYIIBIN ‘T "ON ‘G "[0A ‘UorjoRISIU] UBWN]-Io3NduUIo)) U0 SUOIPIBSURL], NIV

it
T

searchTreq| l
l Undo Il Redo “ Clone Ilnuplayl

Graphics Area:

N A [/‘ N

v top left right

{@} Enter formula for NEWELEMENT £}

Enter the new element:3

(@

(b)

&} Enter Formula:

Formula for: new‘rree

’660—Tree ‘newTree| ‘

Graphics Area:

mndu |_mp1ayﬂ

AN VA AN

new top left right
10

5 15

3

©

Fig. 10. Using the graphical definition defined in Figure 9(b) to insert a new element into a tree.
(a) The programmer draws the new gesture. (b) After drawing the gesture, the programmer is
prompted for the element to be inserted. (¢) The resulting formula is a reference to a new copy of
the tree definition form in which cell newElement has the formula 3 and in which cell inputTree is

a reference to the original tree.

suoniuyeq [eaydess

(¥4

22 . Margaret M. Burnett and Herkimer J. Gottfried

5.2 Gesture Spaces and Context

A problem for gesture-based systems is that many gestures are too similar
for the gesture recognizer to be able to differentiate them, and some research-
ers have advocated the desirability of supporting context-dependent gestures,
e.g., “The system needs a way to map the same gesture into multiple meanings
based on the context” [Landay and Myers 1993]. To date, however, only a few
gesture-oriented approaches have incorporated the notion of context.

Our approach addresses this problem by defining context from a formula
perspective: it defines the set of gestures recognized by the gesture classi-
fier completely via the context established by the formula being edited. By
partitioning the gestures into different gesture spaces (a concept similar to
name spaces in traditional programming language literature), gestures’
shapes need only be distinct within a specific context. This allows a gesture
shape to have different meanings in different contexts without introducing
ambiguity. For example, a carat-shaped gesture (") might be an insertion
mark in the context of a text editor, but a “roof of” accessor when working
with a building object.

The “scope rules” that determine which gestures are applicable in the
current context are simple. If the formula being edited is a reference to an
instance of type 7, then the set of gestures for type —and only those
gestures—will be recognized. Otherwise, the recognized gestures are the
set of top-level gestures. For example, recall from Figure 5 that the
programmer clicked on an instance of type ¢ree to establish the context for
cell left’s gestures.

In the work of Gross and Do, as in ours, gestures are only applicable in
certain contexts, but in their system the context is inferred and may not yet
be defined at the time a particular gesture is drawn, and thus the meaning
of the gesture may be ambiguous [Gross and Do 1996]. Such ambiguities
may be left unresolved until further information is added by the user. Since
their system is intended to support conceptual and creative design, ambi-
guity may be an advantage because it supports the designer’s creativity by
allowing specific design choices to be deferred until some later time. In
contrast, our approach is intended for programming, which is not particu-
larly compatible with ambiguity.

Even given a well-defined way of keeping the number of operations
(gestures) possible small, a problem that programmers face in any pro-
gramming language is that of remembering which operations are permissi-
ble in that context, and this problem is exacerbated if the operations are
dynamic gestures that are rarely actually seen. Our approach addresses
this problem by displaying miniature icons of the allowable gestures (and
their names) for the current context. These icons document the set of
allowable operations, and, as was demonstrated in the population example,
can be used as an alternative means of specifying gestures: rather than
drawing a gesture, a programmer can click on a gesture icon. The partition-
ing of the gestures into different gesture spaces paired with the automatic

ACM Transactions on Computer-Human Interaction, Vol. 5, No. 1, March 1998.

Graphical Definitions . 23

display of the allowable gestures keeps the set of operations permissible at
any one time small, recognizable, and visible.

Note that although this approach is effective for keeping the set of
allowable gestures small at all levels except the top, it does not solve the
problem of the size of the gesture space at the top level. For example, if
there are many user-defined types, and if the programmer provides a
top-level gesture for every type, then the top-level gesture space will be
large. This problem remains unsolved and affects not only the iconic
display of the gestures, but also the probability that one gesture will be
misinterpreted as another by the system. A second, more manageable
problem is that in our current implementation it is not possible to switch
among multiple contexts within a single formula, such as to use the carat
in one subexpression to mean “roof of” and in another subexpression of the
same formula to mean “insert.” In future work, we intend to switch context
at each different cell reference instead of at each entire formula in order to
solve this problem.

5.3 Scalability of Spreadsheet Languages

A practical side effect of graphical definitions is that they allow the screen
real estate and memory usage of a spreadsheet program to be significantly
less than that required under the copying technique, thus helping make
spreadsheet languages more suitable for building large applications. Per-
haps even more important to the programmer is that graphical definitions
reduce the amount of work required to create programs containing graphi-
cal objects (Table VI). To consider a small example, building the population
visualization program shown in Figure 2 without graphical definitions
would have required the programmer to copy the circle definition form
three times, to define the radius formula on each copy, and to reference
each circle from the population form, whereas graphical definitions re-
quired only a single copy of the definition form to define the first circle’s fill
color. Although each graphical object specified with a graphical definition is
defined by a definition form behind the scenes, only the graphical object
itself is explicitly displayed on-screen; its definition form is shown only if
the programmer elects to display it by clicking on the object. Because so
many fewer visual components need to be constructed, displayed, and
redrawn, supporting the programmer’s manipulations requires less screen
real estate, less memory, and less computation time.

6. EMPIRICAL STUDY

We devised graphical definitions because we thought their greater degree
of directness would allow users to program more correctly or more quickly
than with the previous approach, which uses a traditional, primarily
textual way of working with spreadsheet formulas. In order to find out
whether this hoped-for benefit had been achieved, we conducted an empir-
ical study [Gottfried and Burnett 1997]. In this section, we describe the
primary results of the study.

ACM Transactions on Computer-Human Interaction, Vol. 5, No. 1, March 1998.

24 . Margaret M. Burnett and Herkimer J. Gottfried

Table VI. Actions Needed to Create Graphical Objects without (top four) and with
(bottom four) Graphical Definitions

Number of Number of Number of Number of
To Create These Formulas Number of Cells to Off-Form Cells Type Definition
Graphical Objects to Define Gestures Reference to Reference Forms to Copy

three circles (population 9 N/A 3 3 3
program)

n circles (population 3n N/A n n n
program)

three-element search 6 N/A 3 3 3
tree

n-element search tree 2n N/A n n n

three circles (population 4 3 2 0 1
program)

n circles (population n+1 n n—1 0 1
program)

three-element search 1 4 0 0 0
tree

n-element search tree 1 n+1 0 0 0

Programmers perform fewer actions using graphical definitions; in some cases the reduction is
as much as a factor of n. Of particular importance is the reduction in the more complex
programming actions, i.e., those that require multiple forms (linked spreadsheets), shown in
the two rightmost columns.

The study was conducted one subject at a time at a workstation. The
subjects were 20 computer science graduate students at Oregon State Univer-
sity. Each subject was given a scripted introduction to programming in
Forms/3, followed by instruction on how to create boxes using either graphical
definitions or a primarily textual technique (the copying technique). The
subject was then asked to use the newly learned technique to create the
colored circles in the population program. This problem session was followed
by instruction in the second technique on the binary tree data type, and then a
second programming task was given, in which the subject used the tree type to
create a tree of three elements and accessed the left subtree of that tree.

As this description shows, the study was counterbalanced with regard to
the programming method involved; that is, half the subjects completed the
population program using graphical definitions, and the tree program using
the copying technique, and the other half of the subjects did the same
programs in the same order, but using the opposite techniques. The
placement of subjects into the two groups was random, except that care was
taken to ensure equal representation of subjects with Forms/3 experience
in the two groups.*

4There were four such subjects, and their prior experience with Forms/3 was quite limited.
Subsequent analysis showed that there was no significant correlation between performance in
this study and prior experience with Forms/3 (Fisher’s exact test, p = 0.406).

ACM Transactions on Computer-Human Interaction, Vol. 5, No. 1, March 1998.

Graphical Definitions . 25

Table VII. Program Correctness

Population Tree Total
n % n % n %
Graphical Definitions Correct 10 100% 9 90% 19 95%
Incorrect 0 0% 1 10% 1 5%
Copying Technique Correct 10 100% 4 40% 14 70%
Incorrect 0 0% 6 60% 6 30%
Total Correct 20 100% 13 65% 33 82.5%
Incorrect 0 0% 7 35% 7 17.5%

The population problem was completed correctly by all subjects. The tree program was
completed correctly by 90% of the subjects using graphical definitions, as compared to only
40% of the subjects using the copying technique.

Note that since the same program was always performed first, the second
program had a learning advantage. However, because the study’s results
did not require any assumption that the problems be of equal difficulty,
this did not affect their validity.

6.1 Correctness Results: Do Graphical Definitions Help Programmers Con-
struct Correct Programs?

The two primary research questions were how graphical definitions af-
fected the correctness and speed with which the subjects could complete
their programming tasks. A summary of the results pertaining to the first
of these, correctness, is shown in Table VII. For the population program, all
subjects—both those using graphical definitions and those using the copy-
ing technique—were able to complete the program correctly. However, for
the tree program, significantly more subjects were able to complete the
program correctly using graphical definitions than those using the copying
technique (Fisher’s exact test, p = 0.03): whereas 90% of the subjects using
graphical definitions completed the program correctly, only 40% of the
subjects using the copying technique did so. These results produced a
significant difference in the cumulative results, which show that, overall,
significantly more programs were completed correctly with graphical defi-
nitions than with the copying technique (Fisher’s exact test, p = 0.05).

6.2 Speed Results: Do Graphical Definitions Help Programmers Construct
Programs More Quickly?

We measured the amount of time it took each subject to complete each
program. Both programs were completed significantly faster using graphi-
cal definitions (population: Mann-Whitney test, p < 0.02; tree: Mann-
Whitney, p < 0.002). In fact, in the tree program, each of the subjects who
used graphical definitions completed the tree program faster than any
subject who used the copying technique for that program. Further, the
standard deviation for graphical definitions was much smaller on both
problems than the standard deviation for the copying technique, demon-

ACM Transactions on Computer-Human Interaction, Vol. 5, No. 1, March 1998.

26 . Margaret M. Burnett and Herkimer J. Gottfried

I_ Graphical
Definitions ()

Population + |ee s [] «Jo [e] gm o m

—— copying @) ——]
|_ Graphical _I
Definitions
Tree ~jeee o o o0 OO0 O 0O m] oo

Ii Copying —I

0 100 200 300 400 500 600 700 800 900
Time (sec.)

Fig. 11. Subjects’ programming times on each problem.

strating the consistency of the faster times for graphical definitions. Figure
11 shows the data.

6.3 Programming Errors

One possible explanation of the fact that the subjects programmed more
quickly using graphical definitions could have been the directness of
graphical definitions, i.e., that directness was helping with the problem-
solving aspect of the programming task. However, another possible
explanation could have been that the speedup was simply a matter of
eliminating typing, i.e., that the approach sped up entry time alone without
improving any of the problem-solving aspects of programming. To investi-
gate this possibility, we looked specifically at graphical definitions’ effects
on problem-solving difficulties by examining the numbers and types of
errors subjects made along the way to completing the programs.

Only one subject using graphical definitions (10%) had any problems in
defining the formulas on the tree program for cell binTree, and only one
(10%) had difficulty with cell left. The subjects using the copying technique,
on the other hand, encountered several difficulties. When instantiating the
tree, several subjects made errors in defining the relationships between
cells on the various copies of the tree definition form. Many of these errors
were later corrected, in part because the subjects could see that the
formulas they had defined were not producing the results they had ex-
pected. However, in defining the formula for cell left, this continuous
immediate feedback may actually have contributed to some errors: a few
subjects defined incorrect formulas (such as creating a new tree with the
elements 3 and 8) that looked correct, but did not define the correct
relationship. See Table VIII. As this table shows, significantly more errors
were made when the subjects used the copying technique than when they
used graphical definitions (Fisher’s exact test, p = 0.001).

ACM Transactions on Computer-Human Interaction, Vol. 5, No. 1, March 1998.

Graphical Definitions . 27

Table VIII. Difficulties Encountered on the Tree Program

binTree left entire program

(number of subjects)

Graphical Definitions none 9 9 8
minor 1 0 1
major 0 1 1
Copying none 3 3 2
minor 3 2 3
major 4 5 5

Minor difficulties consisted of incorrect formulas that were quickly discovered and corrected.
Major difficulties included numerous minor errors or errors that were never corrected.

6.4 Do Programmers Prefer to Draw Gestures or to Click on Gesture Icons
When Using Graphical Definitions?

In using the graphical definitions technique, the subjects could either draw
a gesture or click on a gesture icon. For some formulas, such as those used
in the tree program, these two actions specified exactly the same formula.
For the circles used in the population program, however, drawing a gesture
specified more information (the size of the circle) than did clicking on the
gesture icon. Thus, a subject who clicked on the gesture icon would need to
perform an extra action of resizing the circle using direct manipulation.

We were interested in determining which of these techniques the subjects
preferred and whether this depended on the problem they had solved using
graphical definitions. We asked the question, “When you used gestures, did
you prefer to draw the gesture or click on the gesture icon?” The possible
answers to this question on the questionnaire were drawing the gesture,
clicking on the gesture icon, or using both techniques. A little over half of the
subjects (55%) said they preferred to click on the gesture icon, while most of
the others said they preferred to use both techniques (x* = 7.90, df = 2, p <
0.02). Only one subject preferred solely to draw the gesture (Table IX).

6.5 Limitations of the Study and Questions for Followup

Because controlled experiments such as this are not done under “real-
world” conditions, it is important to use caution in generalizing from them.
Our subjects were graduate students, and further experimentation is
needed with different populations, especially with spreadsheet end-users
and with professional programmers comfortable with spreadsheets. Also,
the tasks were very small, designed to fit in a time reasonable for the
controlled experiment, and how well the results generalize to larger, more
realistic programming tasks has not been shown.

The subjects in the study were given about 15 minutes of training on the
first technique before they worked on the first program, which was followed
by a similar period of training on the second technique, and then the second
program. One possible concern that arises in any experiment with this
design is the extent to which the training itself influenced the results of the

ACM Transactions on Computer-Human Interaction, Vol. 5, No. 1, March 1998.

28 . Margaret M. Burnett and Herkimer J. Gottfried

Table IX. The Subjects’ Preferred Method of Using Graphical Definitions

Problem Done Using Graphical

Definitions
Population Tree Total
Preferred Method draw 0 1 1
click 7 4 11
both 3 5 8

study. For instance, did the results reflect the techniques themselves, or
only the effectiveness of the training approach on the two techniques?
Although we took steps to minimize this possibility, it was not feasible to
eliminate the possibility completely. One strategy we used was to reduce
dependence on factors related solely to training quality, such as memoriza-
tion and reliance on visually oriented training devices, by providing written
information sheets as part of the training, to which subjects were able to
refer throughout the problem-solving sessions. We also trained on exactly
the same functionality in both techniques, to ensure the equivalence of the
material being covered during the training.

A related question requiring followup study is what impact the first
technique learned had on the second program the subjects worked. For
instance, the subjects who used graphical definitions on the tree problem had
previously been trained on the copying technique for the population problem;
did knowing the copying technique improve their performance in using graph-
ical definitions on the tree? Further experimentation on this question is
needed, particularly to determine whether the effectiveness of graphical defi-
nitions is impacted by understanding of the copying technique.

Several followup questions arise regarding the subjects’ willingness to
draw gestures. Since in our approach the gesture’s context must be estab-
lished before the gesture begins (e.g., by referencing a tree), rather than by
where a gesture’s “hotpoint” falls, each gestural operation takes two actions
(a click and a gesture) instead of the one it would have taken with
hotpoints. This decreased the efficiency advantage that could be gained
using the gestures as opposed to the clickable icons, and may have
influenced subjects’ interest in using the actual gestures. Another factor
may have been that our gesture device was a mouse. Especially in the
population program and the preceding training with boxes, we noticed that
several subjects had difficulties drawing circle and box gestures. Since a
mouse is not particularly well suited to the task of gesturing, this probably
made use of gestures less attractive to the subjects than it would otherwise
have been. In fact, some subjects had difficulty in using the mouse to draw
gestures at all, and others initially drew circular gestures that were
incorrectly recognized by the gesture recognizer as boxes or lines. (Gesture
recognition errors did not occur with the tree gestures, which, unlike the
circle gesture, all consisted of straight line segments.) Even with a different
gesture device such as a pen, however, any gesture recognition software
necessarily includes a possibility of error, and this also seems likely to

ACM Transactions on Computer-Human Interaction, Vol. 5, No. 1, March 1998.

Graphical Definitions . 29

affect subjects’ willingness to use gestures. In the graphical definitions
approach, the drawback of gesture recognition difficulties is tempered
because of the clickable icons, which offer an alternative graphical means
for entering shapes, and subjects used this alternative often. Indeed, the
subjects’ preferences indicated that the clickable icon alternative was
important to them, and it is possible that this ability to click when gesture
recognition was imperfect was critical to our study’s strongly positive
results for graphical definitions.

6.6 Relationship to Other Studies

As was discussed in Related Work (Section 2.1), other than spreadsheets
that employ macros written in other languages, there are only a few
spreadsheet languages that support either complex or graphical objects.
Thus, it is not surprising that our empirical study is the first to study the
use of dynamic graphics to program such objects in spreadsheet languages.
In fact, using dynamic graphics in programming is not yet well-studied
even outside of spreadsheet languages, and hence it is useful to consider
how the results of our study relate to the other studies to date about the
use of graphics in programming.

In the area of visual programming languages (VPLs), there are surpris-
ingly few studies on the usefulness of dynamic graphical devices for
programming, such as direct manipulation and gestures. Most of the
studies that have been done on VPLs have been intended to answer some
kind of “static graphics versus static text” question regarding comprehen-
sion (as opposed to program construction), and most of them have concen-
trated on diagrammatic programming via flowcharts, dataflow diagrams,
and Petri nets (e.g., see Green et al. [1991], Moher et al. [1993], and Petre
[1995]). See Whitley [1997] for an excellent survey of that work. There is,
however, a little work relating to direct manipulation and/or dynamic graphics
and how it affects people’s ability to comprehend and work with previously
existing programs through algorithm animation [Lawrence et al. 1994, Stasko
et al. 1993] and in debugging [Cook et al. 1997; Wilcox et al. 1997]. These
studies did not find statistically significant results for all the aspects studied,
but for the aspects in which statistical significance was found, the dynamic
approaches were found to be superior to the static approaches.

Unlike the studies in the previous paragraph, our study relates to
constructing new programs or portions of programs, not to debugging or
understanding existing programs. To date, there are only a few other
reports on the effects of graphical techniques for constructing new pro-
grams, and most of these reports investigate static, not dynamic, graphics.
One study on program construction with static graphics compared ability to
construct matrix programs using a static version of Forms/3 with ability to
construct the same programs using static versions of two textual lan-
guages, and it found that subjects constructed more correct programs using
Forms/3 [Pandey and Burnett 1993]. Baroth and Hartsough report one of
the few industrial studies of VPLs, a three-month study in which program

ACM Transactions on Computer-Human Interaction, Vol. 5, No. 1, March 1998.

30 . Margaret M. Burnett and Herkimer J. Gottfried

construction of a sizable project in the dataflow language LabView pro-
duced a higher-quality solution in a shorter time period than was achieved
when a different team programmed the same problem in C [Baroth and
Hartsough 1995]. Since this was an industrial experiment involving a real
project, there were many uncontrolled variables, but it may be the only
report evaluating the construction of real, industrial-strength programs
using a graphical technique.

Regarding the use of dynamic graphics in constructing new programs,
such as programming-by-demonstration techniques, most of the studies
that we have been able to locate are informal evaluations and user studies
intended to verify usability or to discover potential improvements by
observing where users have trouble with the system. See Cypher [1993] for
several examples of these studies. However, there is one recent empirical
study on a by-demonstration visual shell language about the importance of
the representation used to reflect dynamic graphics used in programming
[Modugno et al. 1996]. This study found that the use of dynamic graphics
paired with a static graphical representation was more effective than the
use of dynamic graphics paired with a static textual representation.

One interpretation of the results of our study is that it adds to the body of
evidence favoring graphics over static text in constructing new programs.
However, a slightly different interpretation, and the one to which we
subscribe, is that the results are more an indicator that the use of
directness, which is a central feature of the graphical definitions approach,
can lead to reduced errors and increased programming speed. Our study
seems to be the first to quantitatively analyze a direct approach compared
with a computationally equivalent indirect approach, and we are hopeful
that more such studies will be done by others, because empirically estab-
lishing the effects of directness in the domain of programming could have
significant implications for the design of future visual languages and
environments.

7. CONCLUSION

Although direct manipulation is not new to programming, most other
approaches have been imperative, and even those few direct-manipulation
approaches that have been declarative have not fit with the spreadsheet
paradigm. As a result, spreadsheet languages have either been limited to
supporting only the simplest of textual types—numbers and strings—
within the computations themselves, or have incorporated indirect ap-
proaches to support other types.

Graphical definitions remove this limitation, allowing graphical objects
to be seamlessly integrated into the spreadsheet paradigm without the use
of macros, state-modifying mechanisms, or indirection. The approach is
expressive enough to support a wide range of uses, from programmable
graphics such as circles and boxes likely to be of interest to end-users to
graphical data structures for programmers. The approach supports these
capabilities while still satisfying the principles of directness advocated by

ACM Transactions on Computer-Human Interaction, Vol. 5, No. 1, March 1998.

Graphical Definitions . 31

Shneiderman; by Hutchins, Hollan, and Norman; by Green and Petre; and
by Nardi. Two strategies central to this result that are unique to graphical
definitions are (1) complete adherence to the spreadsheet value rule of all
parts of the program, including the definition of new user-defined types,
and (2) the approach’s use of gesture spaces and visible, clickable gesture
icons to keep the number of gestures applicable in any one context small
and visible.

The empirical study showed that graphical definitions were quite usable
by the subjects. In particular, compared with the traditional, primarily
textual way of entering spreadsheet formulas, graphical definitions led to a
significantly smaller number of programming errors, greater degree of
correctness in the completed programs, and faster programming speed.
Although these results greatly favored the graphical definitions technique,
there were indications that the effectiveness of the gestures aspect was
highly dependent on the quality of the gesture recognition, which may
mean that having an alternative program entry mechanism (such as
clickable icons) may be critical in maintaining these strongly favorable
results.

ACKNOWLEDGMENTS

We would like to thank the members of our research group, especially John
Atwood, Rebecca Walpole, and Sherry Yang, for their work on the Forms/3
design and implementation and for their feedback on graphical definitions.
Special thanks also go to Shikha Ghosh Gottfried and Judith Hays for their
help in testing the empirical study’s design, and to the subjects of the study
for their participation.

REFERENCES

ATwWOOD, dJ., BURNETT, M., WALPOLE, R., WILCOX, E., AND YANG, S. 1996. Steering programs
via time travel. In Proceedings of the 1996 IEEE Symposium on Visual Languages (Boulder,
Colo., Sept. 3-6). IEEE Computer Society Press, Los Alamitos, Calif., 4-11.

BaroTH, E. AND HARTSOUGH, C. 1995. Visual programming in the real world. In Visual
Object-Oriented Programming: Concepts and Environments, M. Burnett, A. Goldberg, and T.
Lewis, Eds. Prentice-Hall, Englewood Cliffs, N.J.

BURNETT, M. AND AMBLER, A. 1992. A declarative approach to event-handling in visual
programming languages. In Proceedings of the 1992 IEEE Workshop on Visual Languages
(Seattle, Wash., Sept.). IEEE Computer Society Press, Los Alamitos, Calif., 34—40.

BURNETT, M. AND AMBLER, A. 1994. Interactive visual data abstraction in a declarative
visual programming language. J. Vis. Lang. Comput. 5, 1 (Mar.). 29-60.

CARLSON, P., BURNETT, M., AND CADIZ, J. J. 1996. A seamless integration of algorithm
animation into a visual programming language. In Proceedings of Advanced Visual Inter-
faces 96 (Gubbio, Italy, May 27-29). ACM, New York, 194-202.

CooK, C., BURNETT, M., AND BooMm, D. 1997. A bug’s eye view of immediate visual feedback
in direct-manipulation programming systems. In Empirical Studies of Programmers: Pro-
ceedings of the 7th Workshop (Alexandria, Va., Oct. 24-26). ACM, New York, 20—-41.

CYPHER, A., En. 1993. Watch What I Do: Programming by Demonstration. MIT Press,
Cambridge, Mass.

DuPuis, C. AND BURNETT, M. 1997. An animated Turing machine simulator in Forms/3.
Tech. Rep. TR 97-60-08, Dept. of Computer Science, Oregon State Univ., Corvallis, Ore.

ACM Transactions on Computer-Human Interaction, Vol. 5, No. 1, March 1998.

32 . Margaret M. Burnett and Herkimer J. Gottfried

GOTTFRIED, H. AND BURNETT, M. 1997. Programming complex objects in spreadsheets: An
empirical study comparing textual formula entry with direct manipulation and gestures. In
Empirical Studies of Programmers: Proceedings of the 7th Workshop (Alexandria, Va., Oct.
24-26). ACM, New York, 42—68.

GREEN, T. AND PETRE, M. 1996. Usability analysis of visual programming environments: A
“cognitive dimensions” framework. J. Vis. Lang. Comput. 7, 2 (June). 131-174.

GREEN, T., PETRE, M., AND BELLAMY, R. 1991. Comprehensibility of visual and textual
programs: A test of superlativism against the “match-mismatch” conjecture. In Empirical
Studies of Programmers: Proceedings of the 4th Workshop (New Brunswick, N.J., Dec. 7-9).
Ablex, Norwood, N.J., 121-146.

Gross, M. AND Do, E. 1996. Ambiguous intentions: A paper-like interface for creative
design. In Proceedings of the ACM Symposium on User Interface Software and Technology
(Seattle, Wash., Nov. 6-9). ACM, New York, 183-192.

Hubpson, S. 1994. User interface specification using an enhanced spreadsheet model. ACM
Trans. Graph. 13, 3 (July). 209-239.

HucHES, C. AND MOSHELL, J. 1990. Action Graphics: A spreadsheet-based language for
animated simulation. In Visual Languages and Applications, T. Ichikawa, E. Jungert, and
R. Korfhage, Eds. Plenum Publishing, New York, 203-235.

HurcHins, E., HoLLAN, J., AND NORMAN, D. 1986. Direct manipulation interfaces. In User
Centered System Design: New Perspectives on Human-Computer Interaction, D. Norman and
S. Draper, Eds. Lawrence Erlbaum, Hillsdale, N.J., 87-124.

Kay, A. 1984. Computer software. Sci. Am. 250, 5 (Sept.). 53-59.

KURLANDER, D. 1993. Chimera: Example-based graphical editing. In Watch What I Do:
Programming by Demonstration, A. Cypher, Ed. MIT Press, Cambridge, Mass.

LANDAY, J. AND MYERS, B. 1993. Extending an existing user interface toolkit to support
gesture recognition. In Adjunct Proceedings INTERCHI °93 (Amsterdam, The Netherlands,
Apr. 24-29). ACM, New York, 91-92.

LAWRENCE, A., BADRE, A., AND STASKO, J. 1994. Empirically evaluating the use of anima-
tions to teach algorithms. In Proceedings of the 1994 IEEE Symposium on Visual Languages
(St. Louis, Mo., Oct. 4-7). IEEE Computer Society Press, Los Alamitos, Calif., 48—-54.

LEOPOLD, J. AND AMBLER, A. 1997. Keyboardless visual programming using voice, handwrit-
ing, and gesture. In Proceedings of the 1997 IEEE Symposium on Visual Languages (Capri,
Italy, Sept. 23-26). IEEE Computer Society Press, Los Alamitos, Calif., 28-35.

LeEwis, C. 1990. NoPumpG: Creating interactive graphics with spreadsheet machinery. In
Visual Programming Environments: Paradigms and Systems, E. Glinert, Ed. IEEE Com-
puter Society Press, Los Alamitos, Calif., 526 -546.

LieBERMAN, H. 1993. Mondrian: A teachable graphical editor. In Watch What I Do: Pro-
gramming by Demonstration, A. Cypher, Ed. MIT Press, Cambridge, Mass.

McCArTNEY, T., GoLDMAN, K., AND STAFF, D. 1995. EUPHORIA: End-user construction of
direct manipulation user interfaces for distributed applications. Softw. Concepts Tools 16, 4,
147-159.

MivasHITA, K., MATSUOKA, S., TAKAHASHI, S., YONEZAWA, A., AND KAMADA, T. 1992. Declara-
tive programming of graphical interfaces by visual examples. In Proceedings of the ACM
Symposium on User Interface Software and Technology (Monterey, Calif., Nov. 15-18). ACM,
New York, 107-116.

MiyasHITA, K., MATSUOKA, S., TAKAHASHI, S., AND YONEZAWA, A. 1994. Iterative generation of
graphical user interfaces by multiple visual examples. In Proceedings of the ACM Sympo-
sium on User Interface Software and Technology (Marina del Rey, Calif., Nov. 2—-4). ACM,
New York, 85-94.

Mobucno, F., CorBETT, A., AND MYERS, B. 1996. Evaluating program representation in a
demonstrational visual shell. In Empirical Studies of Programmers: Proceedings of the 6th
Workshop (Alexandria, Va., Jan.). Ablex, Norwood, N.J., 131-146.

MOHER, T., MAK, D., BLUMENTHAL, B., AND LEVENTHAL, L. 1993. Comparing the comprehen-
sibility of textual and graphical programs: The case of Petri nets. In Empirical Studies of
Programmers: Proceedings of the 5th Workshop (Palo Alto, Calif.). Ablex, Norwood, N.J.,
137-161.

ACM Transactions on Computer-Human Interaction, Vol. 5, No. 1, March 1998.

Graphical Definitions . 33

MyERs, B. 1991. Graphical techniques in a spreadsheet for specifying user interfaces. In
Proceedings of CHI ’91: Conference on Human Factors in Computing Systems (New Orleans,
La., Apr. 28—May 2). ACM, New York, 243-249.

MYERS, B., GUISE, D., DANNENBERG, R., VANDER ZANDEN, B., KOSBIE, D., PERVIN, E., MICKISH, A.,
AND MARCHAL, P. 1990. Garnet: Comprehensive support for graphical, highly interactive
user interfaces. Computer 23, 11 (Nov.). 71-85.

Narp1, B. 1993. A Small Matter of Programming: Perspectives on End User Computing.
MIT Press, Cambridge, Mass.

PanDEY, R. AND BURNETT, M. 1993. Is it easier to write matrix manipulation programs
visually or textually? An empirical study. In Proceedings of the 1993 IEEE Symposium on
Visual Languages (Bergen, Norway, Aug. 24-27). IEEE Computer Society Press, Los
Alamitos, Calif., 344-351.

PETRE, M. 1995. Why looking isn’t always seeing: Readership skills and graphical program-
ming. Commun. ACM 38, 6 (June), 33—44.

REPENNING, A. AND AMBACH, J. 1996. Tactile programming: A unified manipulation para-
digm supporting program comprehension, composition and sharing. In Proceedings of the
1996 IEEE Symposium on Visual Languages (Boulder, Colo., Sept. 3—6). IEEE Computer
Society Press, Los Alamitos, Calif., 102-109.

SHNEIDERMAN, B. 1983. Direct manipulation: A step beyond programming languages. Com-
puter 16, 8 (Aug.), 57-69.

SMEDLEY, T., Cox, P., AND BYRNE, S. 1996. Expanding the utility of spreadsheets through
the integration of visual programming and user interface objects. In Proceedings of Ad-
vanced Visual Interfaces 96 (Gubbio, Italy, May 27-29). ACM, New York, 148-155.

SmitH, D., CYPHER, A., AND SPOHRER, J. 1994. KidSim: Programming agents without a
programming language. Commun. ACM 37, 7 (July), 54—-67.

STASKO, J., BADRE, A., AND LEwis, C. 1993. Do algorithm animations assist learning? An
empirical study and analysis. In Proceedings of INTERCHI ’93 (Amsterdam, The Nether-
lands, Apr. 24-29). ACM, New York, 61-66.

VANDER ZANDEN, B. AND MYERS, B. 1995. Demonstrational and constraint-based technolo-
gies for pictorially specifying application objects and behaviors. ACM Trans. Comput. Hum.
Interact. 2, 4 (Dec.), 308-356.

VAN ZEE, P., BURNETT, M., AND CHESIRE, M. 1996. Retire Superman: Handling exceptions
seamlessly in declarative visual programming languages. In Proceedings of the 1996 IEEE
Symposium on Visual Languages (Boulder, Colo., Sept. 3—6). IEEE Computer Society Press,
Los Alamitos, Calif., 222-230.

WHITLEY, K. 1997. Visual programming languages and the empirical evidence for and
against. J. Vis. Lang. Comput. 8, 1 (Feb.), 109-142.

WiLcox, E., ATwooD, J., BURNETT, M., CADIZ, J., AND COOK, C. 1997. Does continuous visual
feedback aid debugging in direct-manipulation programming systems? In Proceedings of
CHI ’97: Conference on Human Factors in Computing Systems (Atlanta, Ga., Mar. 22-27).
ACM, New York, 258-265.

WILDE, N. aAND LEwrs, C. 1990. Spreadsheet-based interactive graphics: From prototype to
tool. In Proceedings of the CHI ’90 Conference on Human Factors in Computing Systems
(Seattle, Wash., Apr. 1-5). ACM, New York, 153-159.

WIiLDE, N. 1993. A WYSIWYC (what you see is what you compute) spreadsheet. In Proceed-
ings of the 1993 IEEE Symposium on Visual Languages (Bergen, Norway, Aug. 24-27).
IEEE Computer Society Press, Los Alamitos, Calif., 72-76.

YANG, S. AND BURNETT, M. 1994. From concrete forms to generalized abstractions through
perspective-oriented analysis of logical relationships. In Proceedings of the 1994 IEEE
Symposium on Visual Languages (St. Louis, Mo., Oct. 4-7). IEEE Computer Society Press,
Los Alamitos, Calif., 6-14.

YANG, S., BURNETT, M., DEKOVEN, E., AND ZLOOF, M. 1997. Representation design bench-
marks: A design-time aid for VPL navigable static representations. J. Vis. Lang. Comput. 8,
5/6 (Oct./Dec.), 563-599.

Received August 1997; revised December 1997; accepted January 1998

ACM Transactions on Computer-Human Interaction, Vol. 5, No. 1, March 1998.

