Technical Report 02-60-05, Oregon State University, Sept. 9, 2002

End-User Software Engineering with Assertions

Margaret Burnett, Curtis Cook, Omkar Pendse, Gregg Rothermel, Jay Summet
Oregon State University, Corvallis, Oregon, 97331 USA
{burnett, cook, pendse, grother, summet}@cs.orst.edu

Abstract creased ability to maintain and debug software. Assertions
rovide attractive opportunities for adding rigor to end-user
rogramming for two reasons. First, the use of assertions

There has been little research on end-user prograré
oes not demand an “all or nothing” approach; it is possible

development beyond the activity of programming. Devisin

ways to address additional activities related to end-Usef, anter one or two assertions and gain some value, without

program development may be critical, however, becausg,mmitting to entering a purportedly complete set of asser-

- . . fions. Second, assertions provide a way to make explicit a
written by end users contain faults. Toward this end, W&sar's mental model underlying a program, essentially,

havg begn ,}Norklng on ways to provide formal "SOftwarE.}lntegrating “specifications” with that program. Such
engineering” methodologies to end-user programmers. Thi§ecifications, integrated into end-user programs, could tap
paper descrlbgs an approach we have developed for sUpsiq a host of opportunities for harnessing other software
porting assertions in end-user software, focusing on thenqineering methodologies, such as test suite improvement,
spreadsheet paradigm. We also report the results of a coQyeification-based test generation, automated test oracle
trolled experiment, with 59 end-user subjects, to investigatganeration. or proofs of program properties.
the usefulness of this approach. Our rgsults show that the o ha\;e developed an approach for supporting asser-
end users were able to use the assertions to reason abgifns a5 a critical underpinning of our end-user software
their spreadsheets, and that doing so was tied 0 botf,gineering work. We have prototyped our approach in the
greater correctness and greater efficiency. spreadsheet paradigm. Our assertions provide pre- and post-
1] ducti condition Boolean expressions about the results of cell for-
- Introduction mula execution. The approach supports a variety of

End-user programming has become a widespreakglations, as well as composition via logical “and” and “or,”
phenomenon. For example, end users create and modify two concrete syntaxes. It is our hope that assertions will
spreadsheets, they author web pages with links and compleRable the user to identify and correct faulty formulas.
formatting specifications, and they create macros and In this paper, we first present our approach to integrating
Scripts_ A|th0ugh some of these programs are Sma”’ On@SSErtlonS into an environment whose goal IS to Support end-
shot calculations, many are much more serious, affectingser software engineering. We then use this environment to
significant financial decisions and business transaction&€mpirically explore the fundamental issues of whether end
Two recent NSF workshops have determined that end-usefers can use assertions in the context of an end-user soft-
programming is in need of serious attention [5]. The reason¥are engineering task, and whether and how their doing so
are compelling. The number of end-user programmers in thill help them improve the correctness of their programs.

U.S. alone is expected to reach 55 million by 2005, as com- :
pared to only 2.75 million professional programmers [5]2- Assertions for end users

Further, evidence abounds of the pervasiveness of errors in\ynaen creating a spreadsheet, the user has a mental model

the spf_tware that end users create [20], with signifjcant €CQ5 how it should operate. One approximation of this model
nomic impact. In one single example, a Texas oil and 93§ the formulas they enter, but unfortunately these formulas
firm lost millions of dollars through spreadsheet errors [19]. may contain inconsistencies or faults. These formulas, how-

To address this problem, we have been researching,er are only one representation of the user's model of the
methods for helping end users create more reliable soﬁwar&

. roblem and its solution: they contain information on how
Our gpproach draws aspects of thgoret|cally sound ”.‘etho) generate the desired result, but do not provide ways for
ologies, explored previously within the professionaly,e™ser to communicate other properties. Traditionally,
software engineering community, into the environments eNngsgertions in the form of preconditions, postconditions, and
users use to create software. We term the concept “end-Usglariants have fulfilled this need for professional
software engineering”; however, We.do not claim or attem rogrammers, providing a method for making explicit the
to turn end users into software engineers or ask them leafioperties the programmers expect of their program logic, to
traditional software engineering methodologies. Instead, the,

) . X ason about the integrity of their logic, and to catch excep-
methodollqg|es we emp!oy aim to be not 0“'Y, acqesmble, bions. our approach attempts to provide these same
also verifiably productive for end users with little or no

; | training in sof . . advantages to end-user programmers.
ormal fraining In software engineering. For professional software developers, the only widely

Assertions in the form of preconditions, postconditions,seq |anguage that natively supports assertions is Eiffel
and invariants provide professional programmers with in-

Technical Report 02-60-05, Oregon State University, Sept. 9, 2002

[15]. To allow programs in other languages to share at leapbrts all of the abstract syntax (but in the current prototype
some of the benefits of assertions, methods to add suppamplementation, value-expressions have been implemented
for assertions to languages such as C, C++ and Awk ha¥er only constants). The example is a representation of
been developed (e.g., [2, 29]). Applications of sucHoutput_temp, {{(to-closed, 0, 100)}, {(to-closed, 3.5556,
assertions to software engineering problems have prove#8.5556)}}). A thick dot is a data point in an ordinal
promising. For example, there has been research on derividgmain; it implements “=". The thick horizontal lines are
runtime consistency checks for Ada programs [23, 25]ranges in the domain, implementing “to-closed” when
Rosenblum has shown that these assertions can be effectaennected to dots. A range with no lower (upper) bound
at detecting runtime errors [22]. However, traditionalimplements “<=" (“>="). It is also possible to halve a dot,
approaches that employ assertions are aimed at professiomdlich changes from closed ranges to open ranges, “<="to
programmers, and are not geared toward end users. “<” and so on. Disconnected points and ranges represent
the or-assertions. Multiple assertions vertically in the same
2.1 An abstract syntax window represent the and-assertions.
The textual concrete syntax, depicted in Figure 2, is more

As in the above approaches, our assertions are COmpos(‘:?cgirnpact, and supports the same operators as the graphical

of _Boole;an expressions, and reason .about progra ptax. Or-assertions are represented with comma separators
variables’ values (spreadsheet cell values, in the spreadsh&
e

aradigm). Assertions are “owned” by a spreadsheet ce the same line (not shown), while and-assertions are rep-
gell X% aésertion is the ostconditionyof X’z formula. X's sented as assertions stacked up on the same cell, as in
" P y ' igure 2. There is also an “except” modifier that supports
postconditions are also preconditions to the formulas of

; . . ' e “open” versions of “to” (e.g., 0 to 10 except 10).
other cells that reference X in their formulas, either directly - system does not use the term “assertion” in commu-
or transitively through a network of references.

To illustrate the amount of power we have chosen tnicating with users. Instead, assertions are temoedds so

support with our assertions, we present them first via a?lamed because they guard the correctness of the cells. The

abstract syntax Aassertionon’ cell N is of the form: Usgr opens the guard tab above a ce!l to display the assertion

: : using the textual syntax, or double-clicks the tab to open the
(N, {and-assertiorig, where: . graphical window. Although both syntaxes represent
eachand-assertionis a set obr-assertions assertions as points and ranges, note that points and ranges,
each or-assertionis a set of ynary-relation value- jth the composition mechanisms just described, are enough
expressiof and pinary-relation value-expression- o express the entire abstract syntax.

pair) tuples, Note that although “and” and “or” are represented, they
eachunary-relationt {=, <, <=, >, >=}, are not explicit operators in the syntaxes. This is a deliberate
eachbinary-relationl {to-closed, to-open, to-openleft, choice, and is due to Pane et al.’s research, which showed

to-openright}, that end users are not successful at using “and” and “or”
eachvalue-expressions a valid formula expression in explicitly as logical operators [18].

the spreadsheet language, The textual concrete syntax we present here bears some
eachvalue-expression-pais twovalue-expressions resemblance to recent work on English-like notations for

For example, an assertion denoted using this syntax &rmal specifications. Although assertions and other forms
(N, {{(to-closed, 10, 20), (= 3)}, {= X2}}) means that N
must either be between 10 and 20 or equal to 3; and mL_
also equal the value of cell X2. TeRER el

This abstract syntax is powerful enough to support i Your Number Line —
large subset of trac?litional asrs)ertions that regson aboriﬁ valy| [Stese [Asmy wy Guera | | RO
of program variables. We also plan to eventually suppol & .l
inequality &) as a unary relation. This operator would be o | oo]
solely for convenience; it would not add power given the
relations already present, since&an be expressed as an or- i Hymber Lins
assertion composing < with >. This abstract syntax follow:

CNF (Conjunctive Normal Form): each cell's collection of 3_5:55 _23_5:55

and-assertions, which in turn compose or-assertions,
intended to evaluate to true, and hence a spreadshee Figure 1: Two (conflicting) assertions “and”ed on

assert_ion is simply an “and” composition of all cells’ the same cell.
assertions.
2.2 Concrete syntaxes for end users ﬂ
The abstract syntax just presented is not likely to be us: if!]---t-n 100
ful to end users. Thus, we have developed two concre (£, 00 100
syntaxes corresponding to it: one primarily graphical ani 40 il
one textual. The user can work in either or both as desired. _—
The graphical concrete syntax, depicted in Figure 1, suf L_EfiMidterm

Figure 2: Two assertions in the textual syntax.

Technical Report 02-60-05, Oregon State University, Sept. 9, 2002

of specification such as property patterns [9] are usuallgccur, there may be either a fault in the program (spread-
presented using rigorous mathematical notations or finitsheet formulas) or an error in the assertions.

state automata, there is work on expressing specifications in

more accessible notations (e.g., [16, 26]). For exampl€.4 Assertions in an end-user environment

Propel [26] is a multiple-view approach to properties that

includes an English-like representation. . o . ;

A central difference between that work and ours is tha'i!ons and more traditional approaches is th"?‘t ours 1S a com-
their properties and English-like syntax emphasiz onent of an integrated set of software engineering features
sequence. Our assertions have no temporal operators a(ii%ygned particularly for eqd users. It is not a separate tool,

Bd a user need not use it in an “all or nothing” manner.

cannot express sequence. This is appropriate becau tead. th iaht ent p " . diatel
reasoning about sequence is not a programmer responsibil fjtead, the user might enter a few assertions, immeciately
e their effects on the formulas entered so far, and then

in declarative paradigms that focus on data definition, such

as the spreadsheet paradigm, in which sequence rix%ply other forms of validation on other formulas. Feedback
automaticaﬁly derived frorr)n data de, endencies q about assertions is integrated with the variables (cells) to
P ' which they apply. For example, the assertions about cell

U_EffMidterm appear at the top of that cell, as already
shown in Figure 2. If the two assertions about cell
We currently support two sources of assertiddser U_EffMidterm were in conflict, their icons would be circled
assertionsare assertions that the user enters explicitly, onm red. If the cell's value did not satisfy its assertions, the
of which appears in Figure 2 next to the stick fig@gstem- value would be circled.
generated assertions are assertionssuliing from Microsoft Excel, a popular commercial spreadsheet
propagating assertions through formulas in the direction application, has a data validation feature integrated into the
dataflow (using straightforward logic and interval arith-environment that bears a surface-level similarity to the
metic), one of which appears in the figure next to the comassetions in our environment. Excel, however, does not
puter icon. (Details of propagation are described in [27].) support propagation of assertions to other cells, does not
Other researchers have developed methods for generatiagtomatically display assertions, and does not maintain the
program assertions without requiring programmer input as display of assertion violations when changes are made. That
source. Daikon [10] generates invariant assertions by exteis, the data validation feature is primarily an optional data
sive examination of a program’s behavior over a large tegintry check that can be invoked from time to time by the
suite. DIDUCE [12] deduces invariant assertions and usasser. This is quite different from our approach, because our
them to check program correctness. DIDUCE has a trainingssetions combine into a network that is the basis of an
phase, in which it considers all behaviors correct and relaxever-present reasoning system that gives continuous and up-
invariants to encompass them, and then a checking phasesdate visual feedback.
which reports violations to the invariants inferred in the In addition to the integration of assertion feedback with
training phase. Raz et al.’s approach to semantic anomallge program source code (formulas) and values, in our pro-
detection [21] uses off-the-shelf unsupervised learning antype environment there is also testing feedback integrated
statistical techniques, including a variant of Daikon, to infein the same fine-grained way via our already incorporated
invariants about incoming data arriving from online datsspreadsheet testing methodology known as WYSIWYT
feeds, and their empirical work shows effectiveness. RecefitWhat You See is What You Test”) [11, 24]. The
work that can be described as inferring assertions related ¥8YSIWYT methodology implements a dataflow test ade-
correctness of end-user programs involves automatiguacy criterion. The criterion for complete “testedness”
detection of errors through outlier analysis [17]. Thisunder this methodology is that each executable definition-
approach, which is similar in principle to that of Raz et al.use (du) association in the spreadsheet be exercised by test
has been developed in the domain of programming-bydata in such a way that the du-association contributes
demonstration for text processing. (directly or indirectly) to the display of a value that is subse-
An advantage of these researchers’ inferential approachgsently pronounced correct (validated) by the user. Users
is that they can relieve the programmer of having to conjurean convey to the system that a cell’s value is correct for the
up and explicitly insert assertions. A disadvantage is that trepreadsheet’s inputs by checking the checkbox in the upper
assertions must be “guessed,” and some of the guesses cayht corner of that cell. This results in a change of cell
be incorrect. The impact of incorrect guesses on end usetsorder color, which is used to represent the testedness status
trust and willingness to work with assertions is an issue thatf a cell. Red means untested, shades of purple mean
requires exploration. We have not yet explored this issue ipartially tested, and blue means fully tested. There is also a
our research. “percent tested” indicator at the top of the spreadsheet that
Because of multiple sources of assertions (currently twajisplays information about the spreadsheet as a whole.
potentially more), our approach provides the following threeThese devices are always kept up-to-date. For example,
ways for assertions to potentially help users detect faultsvhen a formula is entered or modified, the cell border turns
(1) there might be multiple assertions on the cell that do noed because the cell is untested; borders of cells that refer-
agree, termed aassertion conflict(2) the value in the cell ence the modified cell also turn red. Because a principle of
might not satisfy the cell's assertion(s), termedaue our end-user software engineering approach is that the asser-
violation, or (3) inspection of a system-generated assertiotions be integrated with testing support, the investigation of
might “look wrong” to the user. When any of these eventgssertions in this paper is in the context of WYSIWYT.

An important difference between our approach to asser-

2.3 Assertion sources’ potential impact

-3-

Technical Report 02-60-05, Oregon State University, Sept. 9, 2002

2.5 Example 75 (“something between zero and 100”), and then set the

. _formula in cell a to “input_cell * 9/5” and the formula in cell
We close this section by presenting a simple illustration ;, «y 4 307

of our prototype assertion mechanism in the context of the At this point, the assertion on cell b had a range from 32
Forms/3 research spreadsheet language [6]. Figure 3(@) 212 Because the user combined two computation steps in
shows a portion of a Forms/3 spreadsheet which converty a's formula (multiplication and division), the correct
temperatures in degrees Fahrenheit to degrees Celsius. ue appeared in cell b, but not in the output_cell (which
input_temp cell has a constant value of 200 in its formulgti” had the formula “b /'9,.)_ The user now chose to deal

and is displaying the same value. There is a user assertigi the assertion conflict on the output_cell, and clicked on

on this cell that limits the value of the cell to between ?’%he uard icon to view the details in the araphical svntax
and 212. The formulas of the a, b, and output_temp cel J grap y -

. ; - , S Seeing that the Forms/3 assertion specified 3.5556 to
each perform one step in the conversion, first subtracting 3% 556 the user stated “There’s got to be something wrong
from the original value, then multiplying by five and finally \ith the formula” and edited output_cell's formula, making
dividing by nine. The a and b cells have assertions generatgd, eference to cell b. This resulted in the value of

by the system (as indicated by the computer icon) which re; 10+ cell being correct, although a conflict still existed
flect the propagation of the user assertion on the input_te

)) ERanged the user assertion to agree, which removed the final
agreement was determined by propagating the user assertiQihjict. Finally, the user tested by trying 93.3333, the
on the input_temp cell through the formulas and comparingyigina| output value, to see if it resulted in approximately
it with the user assertion on _the output_temp ceII.. , 00, the original input value. The results were as desired,

Suppose a user has decided to change the direction of 4 the yser checked off the cell to notify the system of the

conversion and make it convert from degrees Celsius {0 dggision that the value was correct, as shown in Figure 3(c).
grees Fahrenheit. A summary follows of the behavior shown

by an end user in this situation in a think-aloud study we Experiment

conducted early in our design of the approach [28]. The

quotes are from a recording of the subject's commentary. Our initial think-aloud study provided early insights into
First, the user changed the assertion on the input_cell five end users’ use and understanding of assertions, but did

range from 0 to 100. This caused several red violation ovaRot statistically evaluate effectiveness. Thus, to ingat#i

to appear, as in Figure 3(b), because the values in input_cedmpirically whether and how this approach to asmes

a, b, and output_cell were now out of range and the assévould increase users’ effectiveness at eliminating faults, we

tion on output_cell was now in conflict with the previously conducted a controlled experiment involving 59 subjects to

specified assertion for that cell. The user decided “that’'s Oknvestigate the following research questions:

for now,” and changed the value in input_cell from 200 to

ES B b
hlmtoziz | Floto 100 4lote 100 |
200 2007 23.3333
input_termp E input_termp E input_temp E
zo0 200 23.3333
o] [lze] afzie]
=0 to 180 Elﬂto 180
168 [167.99994 [
= |EE = = =
imput_temp - 32 input_temp - 32 imput_temp * X5
] =]
gﬂto 00 Bl 32 to 212
240 [N 199. 99934 [
b Hide b E s
mide | f* 5 B a+ 32
F|0to 100 |32 to 212
lJEJIUto1UU Bl 32 to 212
23.3333 | 192.22924 [/
output_temp [mide | output_temp (mide output_temp E
b/ 2 b/ 9 };
(a) (b) (©)

Figure 3: Example at three points in the modification task.

Technical Report 02-60-05, Oregon State University, Sept. 9, 2002

Will assertions users be more effective debuggers? already present, because the approach is for an incremental,

Will users understand assertions? interactive environment, in which assertions are likely to be

Will assertions help users judge the correctness of theientered and dealt with incrementally. Other than the button,
programs (spreadsheets)? no other assertion editing devices were available. Once an

We decided to isolate as much as possible the assertigfisertion had been entered via the button, it was propagated
effects (dependent) variables from that of choosing wheth@nd displayed as described in Section 2. .
to enter assertions, which is also a dependent variable. The At the end of each task, subjects were given a post-task
effectiveness results could have been confounded if we al§'€stionnaire which included questions assessing their
required subjects to choose to master assertion entry. EPmpréiension and attitudes about the features they had
largely eliminating this choice as a factor, we gained highised, and also questions in which they self-rated their per-
assurance that assertions would be present in the taskdfmance. Besides the questionnaire responses, data
which is what enabled us to measure effectiveness and otHBfluded the subjects’ actions, which were electronically
effects of assertions. We return to this point in Section 5.~ captured in transcript files, and their final spreadsheets.

3.1 Procedures 3.2 Subjects

The experiment was conducted in a Windows computer The subjects were non-computer science students who
lab. The subjects were seated one per computer. Prior §@d little or no programming experience. The 59 subjects
running the experiment, we conducted a four-subject pilot/€re randomly divided into two groups: 30 in the Treatment
study to test the experimental procedures and materials. ~ 9roup and 29 in the Control group. Of the 59 subjects, 23

At the beginning of the experiment, the subjects werd/eére business students, 22 came from a wide range of
asked to fill out a background questionnaire. The sessictfi€nces (such as psychology, biology, geography, phar-
continued with a 35-minute tutorial to familiarize subjectsMacy, and animal science), and the remaining 14 came from
with the environment, in which they worked on two spread? variety of other non-computer science majors. The average
sheets along with the instructor. Subjects worked in ident{Self-reported) GPA of the Control group was lower than
cal end-user software engineering environments, except thi@t of the Treatment group but there was no statistically
the Treatment group (two sessions) had the assertions feédgnificant difference. Roughly 60% of the subjects had a
ture in their environment whereas the Control group (twdittle programming experience, due to the fact that it is
sessions) did not. To reduce memorization skills as a factofommon these days for business and science students to
a quick-reference sheet listing the environment's featured@ve taken a high school or college class in programming.
was provided to the subjects. The sheet remained with themfatistical tests on subject data showed no significant
throughout the experiment, and they were allowed to takgfferences betwee;n the Treatment group and Control group
notes on it. To ensure that both groups had equal timi8 any of these attributes.
familiarizing themselves with their environments, we bal-
anced the time spent presenting assertions to the Treatméng Problems

group by providing additional testing practice time to the Tpe debugging problems were Grades (Figure 4) and
Control subjects.. . .) Weekly Pay (not shown). Subjects were given a written
After the tutorial, subjects began their experimental taskgescription of each spreadsheet. The description explained
of debugging a grades spreadsheet (20 minutes) andyf functionality of the spreadsheet, and included the ranges
payroll spreadsheet (15 minutesfhe use of two of valid values for some of the cells, so that all subjects
spreadsheets reduced the chances of obscuring the resylis|d have exactly the same information about the spread-
because of any one spreadsheet’s particular characteristigheets, regardless of whether their environmealuded
The tasks necessarily involved time limits, to make sur@ssertions. The subjects were instructed to “test the spread-
subjects would work on both spreadsheets, and to remowgeet thoroughly to ensure that it does not contain errors and
possible peer influence of some subjects leaving early. TRgorks according to the spreadsheet description. Also if you
time limits were drawn from times we observed to b&pcounter any errors in the spreadsheet, fix them.”
required by the pilot study’s subjects. The experiment was The Grades spreadsheet (24 cells) calculates the grades
counterbalanced with respect to problem to prevent learning two students, one graduate and the other undergraduate,
effects from affecting the results: all subjects worked botkyith gifferent grading criteria. There are 11 faults in seven
problems, but half of each group debugged the problems {y|is of this spreadsheet. The Grades spreadsheet was laid
the opposite order. i , out such that it required scrolling, to ensure that all
Initially, no assertions were on display for either prob-zssertions and assertion conflicts would necessarily be
lem. The Trea}tment subjgcts' scenario was that a Previoygsiple at any one time. The Weekly Pay spreadsheet (19
user had devised assertions for some of the cells, whiGlpis) calculates the weekly pay and income tax withholding
subjects could use by clicking that cell’s “see user guardpf 5 salesperson. There are seven faults in five cells of this
button. Clicking this button had the same effect as if a he'l%preadsheet.
ful user hapl _immedi.ately typed in a user assertion for that Tq tacilitate comparing the impact of assertions with
cell, but eliminated issues of users having to learn how t@natever other mechanisms subjects might use to identify
enter assertions, or choosing to go to that much trouble. Wg,g correct faults, we devised assertions that would expose
decided on this procedure, instead of having the assertiogg|y some of the faults. To avoid biasing results against the

Technical Report 02-60-05, Oregon State University, Sept. 9, 2002

Control group, we included assertions only for cells whossimple typographical errors or wrong cell references in the
ranges were explicitly stated on the problem description. Inell formulas. Mistakes in reasoning were classified as
choosing which ranges to state, we included all ranges thbttgical faults. Logical faults in spreadsheets are more
could be clearly justified without a calculator. Via thedifficult than mechanical faults to detect and correct, and
button, all Grades cells had user assertions available, whidmission faults are the most difficult [1]. An omission fault

could expose only 8 of the 11 faults. For Weekly Pay, usés information that has never been entered into the formulas.

assertions able to expose 3 of the 7 faults were available. We drew from this research by including faults from
each category in each problem. However, the precise dis-
3.4 Fault types tinctions between logical and mechanical are not clear for

. . some types of faults in end-user programming. For example,
A”WO.Od [1]. classmed. f?”'ts In spreadsheets Sywhen é/c?mputing an average, dgesgdividinggby the Wropng
mechanical, I_oglcal and omission faults, and this scheme Kumber mean the subject typed it wrong, or that they are
also U.SEd. In Panko; work [20]. Under Allwqc_)d S confused about computing averages? In our think-aloud
categorization, mechanical faults were further classified a3 dies we have collected data in which end-user subjects
made exactly this error
for both of these
reasons. Thus, we
combined the first two
categories into one and
then, to be sure cover-
_ age of both would be
. o achieved, included
|] | several different sub-

- ~ types under it: incor-
w [b a0 [E—‘ rect references (which
LI_Surm_1 stend ’;ﬂ—" L_HW3 BTl =_Sur_1stznd iﬁ [&] R Allwood would clas-
| wan |0 | ¢ EV1 + 6_HUZ o Slfy as mechainal),
incorrect constants. or
B) an omitted chaacter
AR il £ m (could be either logical
UETO el | BEMW [mloy | or mechanical), icor-
| _Eaif‘lgi;i’:?gﬂl:’;“% rect operators or
[e sun_tevand + 6z /2 | application of oper-
' ' ators (which Allwood
U Midterrnt Jauef[5] | W_Migterm2 Jese] ot o_Midtzrm E O_Midtermz [aus] }/;OU Id ClaSSIfy as
- - o gical), and an extra
—— 1 i i subexpression (logi-
cal). We also included
=} faults from the third
an 7 a0 il . .
category, omission
faults. Table 1 shows a
summary of the
] spreadsheets’ faults.
Another classifi-
cation scheme we have
found to be useful in
our previous research
; H - involves two fault
| - types: reference faults,
G_LecAtended G_ECfward [mas o] .
E;ﬁ;ﬂecattenﬂeﬂ » LB chen 5 WhICh are faul'ts . of
|ease o incorrect or missing
B & & 5 references, and non-
57,33 vl b [l 58 [D [reference faults, which
_Toissore R taiseor [zl] are all other faults. In
[1 U_EEEHUHU Midtern1?0.30 |+ 0.40°U Final | 6 EfEHV+ B EEEMidterm j*0.30 + 0.40 *G_Final "&" this Study, the omis-
' e F Ciemiieee - 1o | | Sions and incorrect
ey eateare > Shshen O references are refer-
ence faults (7 in total),
and the remaining
types are non-

] |

ST

| (0 sm_1stzna + 1 FW2) 3

LTI
40 40 40 ao

UI_Eftviidterrn [aaa] o] G_Eftidterm [me o

E (T_Midcerml+U_Midrerni) /2 (F_Midrernl+G Midrecnz /Z)

UJ_Final G_Final

Figure 4: The Grades Spreadsheet.

-6-

Technical Report 02-60-05, Oregon State University, Sept. 9, 2002

reference faults (11 in total). Both the Treatment and Control subjects corrected nearly
The faults not exposed by assertions were distributedqual percentages of the faults they identified (Table 3).
across all of Table 1's categories, and were also assignedTihat is, when they found the faults, they generally
proportion to the reference/ non-reference categorization. succeeded at correcting them. In fact, in the Grades problem
the percents corrected once identified were exactly the same
4. Results for subjects with assertions as for those without assertions,
. . and the difference was very small in the Weekly Pay
4.1 Debugging effectiveness problem. This suggests that the assertion advantages in
4.1.1 Accuracy by subject groupWe chose to analyze the identifying faults were enough to produce the eventual
act of identifying a fault separately from the act ofadvantages in correcting them.
correcting it. The reason was that there is little information)))
in the literature about end users’ abilities to correct a fauff-1-2 Accuracy by fault type.Did assertions especially
even if they have managed to identify it, a gap we hope tB€lP With any particular type of faults? Fisher's Exact Test
help fill. For cells containing exactly one fault, we defined sshowed that the Treatment group identified significantly
fault to have beeidentifiedif the subject changed the for- More instances on seven of the 18 faults, but they were not
mula containing the fault and to have beemrectedif the a}ll of the same type. In fact, these faults covered four of the
changes resulted in a correct formula. When a cell containdty® types of faults we seeded (recall Table 1): three were
two faults, we partitioned the formula into two disjoint OP€rator or operator application faults, two were incorrect
subexpressions, one containing each fault. Then if thgonstants, one was an omission, and one was an incorrect
particular fault's subexpression was changed (or changégference. Thus, according to Allwood’s classification
correctly), the fault was defined to be identified (orscheme, assertions contributed to effectiveness across a

corrected). For example, in cell U_EffHW the original for-Wide range of faults.

mula in the cell is Considering instead the reference/non-reference
(U_Sumist2nd+U_HW?2)/3 classificaion of faults reveals an interesting attribute of

and the correct formula is assertions’ effectiveness: subjects in the Treatment group
(U_Sumist2nd+U_HW3)/2 were significantly more effective at identifying and

The two faults are adding U_HW?2 instead of U Hw3correcting non-reference faults in both problems (Grades
and dividing by 3 instead of 2. The two parts to the formulgorrected: F=9.67, df=1, p=.0029; Weekly Pay corrected:
are the sum and the division. Hence a subject would He=8-26, df=1, p=.0057). There was also significance for
credited with identifying (correcting) the fault in the sum if reference faults on one of the problems (Grades corrected:
the sum subexpression was changed (changed correctly) dng4-67, df=1, p=.0348; Weekly Pay corrected: F=3.72,
credited with identifying (correcting) the fault in the df=1, p=.0506). In contrast to this, previous empirical work
division if the divisor was changed (changed correctly). regarding the effectiveness of the WYSIWYT testing

We now state the following (null) hypotheses asmethodology (which is based on a dataflow adequacy

statistical vehicles for investigating the accuracy question: Cfiterion) on detecting faults has revealed that WYSIWYT’s

H1: Identify: There will be no difference between theaolvantage has been primarily in identifying and correcting

Treat t , d Control ; ber of fault reference faults [7].
idr:rii?e%n group's and L.ontrol group's humber ot 1aulls - gince poth groups’ subjects had WYSIWYT available to

them, which is strong on reference faults, it is not surprising
H2: Correctness: There will be no difference between thenhat the reference fault improvement brought by assertions
Treatment group’s and Control group’s number of faultswas significant on only one problem. The more interesting
corrected. result is that assertions helped so significantly with non-
The faults identified and corrected are summarized iReference faults, suggesting that the addition of assertions
Table 2. A two-factor analysis of variance with repeated

measures on the problem (Grades and Weekly Pay) a " Tgple 2: Mean number of faults identified and

group (Control and Treatment) showed that the Treatme corrected.
subjects both identified significantly more faults (F=16.59 Identified Corrected
df=1, p=.0001) and corrected significantly more faults
(F:11.$4,df:1,) p=.0011) than didgthe Corslltrol subjects Grades (11 faults)
Thus, hypotheses H1 and H2 must both be rejected Control >.69 4.83
' : Treatment 8.07 6.83
Weekly Pay (7 faults)
Table 1: Classifications of seeded faults. Control 4.97 4.59
Omission Logical and Mechanical Treatment 5.90 5.70
Ref. | Const] Oper-| Extra
or ator | subexpr Table 3: Percent of identified faults that were
char. eventually corrected.
Grades 2 2 3 3 1 Grades Weekly Pay
Weekly 1 2 2 2 0 Control (n=29) 84.8% 92.4%
Pay Treatment (n=30) 84.8% 96.6%

Technical Report 02-60-05, Oregon State University, Sept. 9, 2002

into the environment fills a need not met effectively by theleatures reasonably well. The last question, in which they

dataflow testing methodology alone. were required to fill in the result of propagating cellA’s
assertion (0 to 5) through cellB’s formula (cellA + 10), was
4.1.3 Debugging speed the most difficult for them, but 53% answered it correctly

H3: Speed: There will be no difference between thé10 to 15). An additional 23% answered “0 to 15.” The fact
Treatment group’s and Control group’s speed inthat this additional 23% were correct on the upper limit
correcting the faults. seems to indicate that they had a rough, but imperfect, idea

We partitioned the task time into 5-minute blocks—thedf how propagation worked. . . .
first 5 minutes, second 5 minutes, and so on—and counted One strong indicator that the subjects believed their
the number of faults that had been corrected by the end Bpderstanding was “good enough” for reliance upon
each partition. Since subjects were given more time ofssertions can be found in their ratings. Subjects rated t.he
Grades than on Weekly Pay, there are four partitions tdrelpfulness of three assertion features and a_llso two testing
Grades and three for Weekly Pay. Each block in the stacigatures. Treatment subjects rated the assertion conflicts the
in Figure 5 covers a 5-minute time period (first 5-minutéMost helpful of all the features. On a scale of 1 to 5 (not
period at the bottom, etc.), and the data value in it is th@elpful to very helpful), their ratings for the assertion
number of faults identified/corrected during that timeconflicts averaged 4.4 (median 5). See Table 5.
period. As the figure shows, the Treatment subjects .
identified and corrected faults faster in each of the 5-minut&-3 Judging correctness

blocks. The Treatment subjects’ advantage began very early. after the subjects had completed the experimental tasks,
The correctness differences were significant for the Weeklye asked them to what extent they believed they had
Pay problem at the 5-minute mark (identified F=3.70, df=1nanaged to identify and to correct all the faults. In the prac-
p=.0595; corrected F=4.19, df=1, p=.0453), and the subjecfge of software development, it is often this question that
were significantly more effective at identifying and the developer uses to decide whether the software is ready to
correcting faults during the first 5 minutes for the Gradegse. For this reason, helping users make reasonable
problem (identified F=13.04, df=1, p=.0006; correctedjyggments in answer to this question can be important in
F=15.67, df=1, p=.0002). Thus, H3 is rejected. preventing software from going into use prematurely.

. . The questionnaire asked them to rate on a 1 (“not
4.2 Did the users understand assertions? confident”) to 5 (“very confident”) scale, for each problem,

Assertions had significant positive impacts on subjectshow confident they were that they had identified and
abilities to remove the faults, but to what extent did theyorrected all the faults. The issue relevant to the
understand what the assertions meant? At least sorgfectiveness of assertions is to what extent these self-
understanding is important, because research in on-line trd&tings were correlated with correctness. To this end, we
has shown that users must believe they understand t§@mpared self-ratings to actual performance.
system’s reasoning, at least roughly, in order to trust its
results enough to use them effectively [4, 8]. Table 4: Percentage of correct responses given

To help assess the subjects’ understanding, we aske by Treatment subjects. (Correct responses are
several questions about the meanings of the differen shown in parentheses.)
devices in the context of a two-cell example spreadsheet|Question % correct
The results, which are summarized in Table 4, imply that thel What does the red oval on cellA mean? (T} 93%
Treatment subjects understood the meaning of the assertiofvalue is outside the valid range.)
What does the little stick figure in the cellA] 83%
guard mean? (The user supplied the guard.)
Why is there a stick figure and a computer| 87%

’ ! on cellB’s guard? (The guard was supplied
8 by both Forms/3 and by the user.)
7 157 What does the red oval on the cellB guard| 63%
6 | 130 mean? (The user and Forms/3 disagree or
e 187 the valid range(s) for this cell.)
~ L2 Given the formula in cellB and the guard of 53%
4 148 cellA, what do you think Forms/3 says are
3 = | m the valid range(s) for cellB? (10 to 15)
2 2 15
1 1 240 1 223 . ’ i
155 (11128 Table 5: Subjects’ helpfulness ratings.
0 : Assertion“Tested”| System- U o
@ e T conflicts | border |generate ser "
. . N - _~lassertion| tested
Figure 5: Average faults identified by each group colors |assertions
(Ci, Ti) and corrected (Cc, Tc). Left graph: Grades. Control N/A 4.2 N/A N/A 2.9
Right graph: Weekly Pay. Treatment| 4.4 4.3 4.2 4.0 3.6

Technical Report 02-60-05, Oregon State University, Sept. 9, 2002

H4: Self ratings of correctness: There will be no differenceand gave them time to practice doing so. In their work on
between Control versus Treatment subjects’ self-ratingthe same problems as for the experiment reported here, 25
as predictors of correctness (number of faults in theof the 30 subjects (83%) did choose to enter assertions, and
spreadsheets at the end of the experiment). once they entered one they entered more, averaging 18

Regression analysis is the appropriate test for a predicti@SSertions per subject. Further, 96% of the assertions they
question of this type. The results for correcting the faults aréntéred were the same as assertions we provided in the
shown in Table 6; the results for identifying the faults (no€XPeriment reported here.
shown) are similar. The regression coefficient is the slope (é(..
the least squares fitting of the ratings against the faults th 1N1reats to validity

were corrected. As the table shows, the Treatment group we attempted to address threats to internal validity for
gave self-ratings that were statistically significant predictorgyis study by randomly distributing subjects among the
of actual performance, with regression coefficients that Werlgroups and statistically checking the distribution for
significantly different from zero for both problems. (This significant differences, by including two problems and
was true also for identifying the faults.) The Control group’s;ounterbalancing them, by distributing the seeded faults
self-ratings, on the other hand, were ineffective agmong a variety of fault types, by equalizing training time,
predictors, and their regression coefficients were nofng by selecting problems from familiar domains.
significantly different from zero. In fact, for one problem, aAs’in most controlled experiments, however, threats to
the regression coefficient is slightly negative, indicating thagyternal validity are more difficult to address given the need
the Control group’s predictions had a slight tendency to bg control all other factors. For example, the spreadsheets
th_eoppositeof their actual performance. Clearly, H4 is geq may seem rather simple, but most subjects did not
rejected. o . achieve 100% correctness of their formulas, indicating that
This result is important. It is a well known and robustine spreadsheets were not too simple for the amount of time
result from behavioral science that humans argjyen. Also, although the prototype and experiment included
overconfident about the work they do, and that this tendenynly constants as assertion operands, we do not view this as
is extremely resilient. In the spreadshee.t literature thig threat to validity, because the assertions are fairly
tendency has leme known as overconfidence. Such powerful even with this restriction. However, the faults we
overconfidence .has been vy|dely r_eported in many;sed to seed the spreadsheets may not have been
spreadsheet studies (surveyed in [20]), in the Forms/3 enVispresentative of formula faults in real-world spreadsheets.
ronment [30], and in studies of software professionals [14]. "The fact that the experiment included explicit time limits
Although overconfidence of spreadsheet accuracy has prg- 5 threat to external validity. Explicit time limits were
viously been reduced to some extent by the WYSIWYTyecessary to eliminate the internal threat of subjects
testing methodology, the reductions have not been sufﬁmeg{opping only because other subjects were finishing and
to correlate in a statistically significant way with accuracyleaying. In the real world, the amount of time available for
[13]. The improved level of judgment associated Withjepygging is constrained by time pressures, but explicit time
assertions thus fills a gap in end-user programming, whicfmits do not ideally simulate these time pressures.
could prevent some of their software from going into The short tutorial prior to the experiment included an

production use too early. informal explanation of how system-generated assertions are
. ion: Will . 5 created through propagation, but no such explanation would
5. Discussion: Will users enter assertions® be likely in the real world. We are working on including the

We have explained that we designed our experiment tgssential information about assertions in a network of
isolate effectiveness of assertions when they were preseffntext-sensitive ¥planaions [3]. The pilot study we
and thus while subjects had a choice as to whether amgentioned in the previous section included an early version
which assertions were present, they did not have to actualf Such a system. The pilot subjects seemed to understand
enter them. Therefore, in a follow-up pilot experiment, wedssertions enough to use them effectively, but further
focused specifically on the question of users choosing tBmpirical work after the explanation system is complete is
enter assertions via the concrete syntaxes of Section 2. figauired to follow up on this issue.
the follow-up pilot, assertions were not explained or eve lusi
mentioned in the tutorial. Instead, the tutorial instructed - Conclusion

users to explore the environment in any way they wished, \we have presented an approach for supporting assertions
in end-user software, focusing on the spreadsheet paradigm.

Table 6: Self-ratings as correctness predictors. Our assertions provide pre- and postcondition expressions
Regressio] t df | Significancé about the results of cell executions, and can be generated by
coeff. the user or the system. The concrete syntaxes by which
Grades assetions are represented look to users like simple points
Control 0.168 1.434 | 27 p = .1645 anql ranges, but thes;e syntaxes are suffi(_:ient to express an
Treatment! 0.210 2188 | 28 p = .0375 entire abstract assertion syntax of sgbstantlal power.
Weekly Pay To evaluate our appr_oach empirically, we conducted a
Control .0.038 | -0261| 27 p=.7963 pontrolled experiment with 59 end-user subjects. The most
Treatment| 0.477 | 2.165| 28 | p=.0394| Importantresults were:

Technical Report 02-60-05, Oregon State University, Sept. 9, 2002

» Assertions did indeed help end users debug more effeft1] Fisher, M., Cao, M., Rothermel, G., Cook, C., and Burnett, M.
tively and more efficiently. Automated test case generation for spreadshéstsConf.

« The effectiveness boost applied across a wide range of _Soft. Eng.Orlando, FL, May 2002, 141-151. _
fault types. Moreover, assertions were extremel)llz] Hangal, S. and Lam, M. Tracking down software bugs using

. :) automatic anomaly detectioint. Conf. Soft. Eng.Orlando,
effective with non-reference faults, a class that had not FL. May 2002, 291-301.

been amenable to detection by our dataflow testingle)] Krishna. V.. Cook C.. Keller. D.. Cantrell. J.. Wallace. C

methodology for end users.) Burnett, M., Rothermel, G. Incorporating incremental
* Assertions clearly combated the well established ten- yajidation and impact analysis into spreadsheet maintenance:

dency of end users toward overconfidence, by signifi- an empirical study|EEE Int. Conf. Soft. Maintenance
cantly improving their ability to judge whether they had Florence, Italy, Nov. 2001, 72-81.

done enough to ensure the correctness of the[fi4] Leventhal, L., Teasley, B., and Rohiman, D. Analyses of
spreadsheets. factors related to positive test bias in software testimg.J.
Perhaps the most surprising result of all is that end users Human-Computer Studietl, 1994, 717-749.

not only understood assertions, they actually liked therd1®] Meyer, B. Applying “Design by ContractComputer25(10),

They rated assertion conflicts as being more helpful thaHG] :\Dmcé?lgeerl 1%92'32';1'\/ and Rowe, N. Natural-language

any other featqre, and in a follow-up pilot,_ if subjects dis- processing support for developing policy-governed software
covered assertions, they chose to enter quite a few of them. systems, Int. Conf. Technology for Object-Oriented

The facts that they understood and liked assertions are | anguages and Systen®anta Barbara, CA, 2001.
critical outcomes because of their importance in determining7] Miller, R. and Myers, B. Outlier finding: focusing user
whether end users will ultimately use assertions in the real attention on possible errordCM Symp. User Interface

world. Software and Technologiov. 2001.
[18] Pane, J., Ratanamahatan, C., and Myers, B. Studying the
Acknowledgments language and structure in non-programmers’ solutions to

programming problemsint. J. Human-Computer Studies
We thank the members of the Visual Programming 54(2), Feb. 2001, 237-264.
Research Group for their feedback and help. This work wd§9] Panko, R. Finding spreadsheet errors: most spreadsheet

supported in part by NSF under ITR-0082265. models have design flaws that may lead to long-term
miscalculation]nformation WeekMay 1995, 100-100.
References [20] Panko, R. What we know about spreadsheet erdor&nd

User ComputingSpring 1998, 15-21.
[1] Allwood, C. Error detection processes in statistical problem21] Raz, O., Koopman, P., and Shaw, M. Semantic anomaly
solving.Cognitive Scienc8(4), 1984, 413-437. detection in online data sourceBt. Conf. Soft. Eng.
[2] Auguston, M., Banerjee, S., Mamnani, M., Nabi, G., Reinfelds, Orlando, FL, May 2002, 302-312.
J., Sarkans, U., and Strnad, I. A debugger and assertid@2] Rosenblum, D. A practical approach to programming with

checker for the Awk programming languadet. Conf. Soft. assertionslEEE Trans. Soft. EngJan. 1995, 19-31.
Eng, 1996. [23] Rosenblum,D., Sankar, S. and.uckham, D.Concurrent

[3] Beckwith, L., Burnett, M., and Cook, C. Reasoning about runtime checking of Annotated Ada program€onf.
many-to-many requirement relationships in spreadshiefs Foundations Soft. Technology and Theoretical Computer
Symp. Human-Centric Lang. EnviroArlington, VA, Sept. Science (LNCS 2410Y, Springer-Verlag, Dec. 1986, 10-35.
2002, 149-157 [24] Rothermel, G., Burnett, M., Li, L., DuPuis, C., Sheretov, A. A

[4] Belkin, N. Helping people find what they don’t kno@pmm. methodology for testing spreadshe®&§M Trans. Soft. Eng.
ACM 41(8), Aug. 2000, 58-61 and MethodologyJan. 2001, 110-147.

[5] Boehm, B. and Basili,, V. Gaining intellectual control of [25] Sankar, S., Mandal, M. Concurrent runtime monitoring of for-
software developmen§omputer33(5), May 2000, 27-33. mally specified program&omputer Mar. 1993, 32-41.

[6] Burnett, M., Atwood, J., Djang, R., Gottfried, HReichwein, [26] Smith, R., Avrunin, G., Clarke, L., Osterweil, L. Propel: an
J., Yang, S. Forms/3: a first-order visual language fooz® approach supporting property elucidatidnt. Conf. Soft.
the boundaries of the spreadsheet paradignfunctional Eng, Orlando, FL, May 2002, 11-21.

Programming Mar. 2001, 155-206. [27] Summet, J. and Burnett, M. End-user assertions: propagating

[7] Cook, C., Rothermel, K., Burnett, M., Adams, T., Rothermel, their implications, TR 02-60-04, Oregon State Univ., 2002.
G., Sheretov, A., Cort, F., Reichwein, J. Does a visua[28] Wallace, C., Cook, C., Summet, J., and Burnett, M. Asser-
“testedness” methodology aid debugging? TR #99-60-07, tions in end-user software engineering: a think-aloud study
Oregon State Univ., rev. March 2001. (Tech Note),IEEE Symp. Human-Centric Lang. Envirpn.
[8] Corritore, C., Kracher, B., and Wiedenbeck, S. Trust in the Arlington, VA, Sept. 2002, 63-65.
online environmentHCI International, Vol. 1 New Orleans, [29] Welch, D., String, S. An exception-based assertion mechan-

LA, Aug. 2001, 1548-1552. ism for C++.J. Obj. Oriented Progl11(4), 1998, 50-60.

[9] Dwyer, M., Avrunin, G., and Corbett, J. Patterns in property[30] Wilcox, E., Atwood, J., Burnett, M., Cadiz, J., and Cook, C.
specifications for finite-state verificatiomt. Conf. Soft. Eng. Does continuous visual feedback aid debugging necth
Los Angeles, CA, May 1999, 411-420. manipulation programming systemg@CM Conf. Human

[10] Ernst, M., Cockrell, J., Griswold, W., and Notkin, D. Factors in Computing SystenMar. 1997, 258-265.

Dynamically discovering likely program invariants to support
program evolution|nt. Conf. Soft. Eng.Los Angeles, CA,
May 1999, 213-224.

-10 -

