
Oregon State University, TR 01-60-07, March 2001

- 1 -

FAR: An End-User Language to Support Cottage E-Services

Margaret Burnett Sudheer Kumar Chekka Rajeev Pandey
Oregon State University Oregon State University Hewlett-Packard
Corvallis, Oregon 97331 Corvallis, Oregon 97331 Corvallis, Oregon 97330

burnett@cs.orst.edu chekka@cs.orst.edu rajeev_pandey@hp.com

Abstract

E-commerce has begun to evolve beyond simple web
pages to more sophisticated ways of conducting e-business
transactions, such as through electronic advertising,
negotiation, and delivery. However, to participate in these
advances requires the skills of professional programmers,
and end-user owners of small businesses often cannot
justify this expense. In this paper, we present FAR, an
end-user language to offer and deliver e-services. The
novel aspects of FAR are its support of small e-services
and its multiparadigm approach to combining ideas from
spreadsheets and rule-based programming with drag-and-
drop web page layout devices.

1. Introduction

In recent years, e-commerce has opened new business
opportunities for both large and small businesses. Some
of the technology to take advantage of these opportunities
is relatively easy to master, even without the help of
professional programmers. For example, an end user can,
with the help of drag-and-drop tools, create web pages to
advertise products and services.

However, devices that support actually selling the
products and delivering the services (or a confirmation of
the services), such as JavaScript or Java applets for
creating dynamic web pages or Perl for dynamically
creating new web pages, are programmer oriented. These
devices are not accessible to end users, but even if they
were, the internet model of doing business is becoming
more sophisticated than even these devices can handle.
Recently, products such as Hewlett-Packard's e-speak [14]
have emerged, which provide software substrates to handle
the advertising of availability, negotiation, and
communication between businesses and customers.

We have been working to bring these kinds of
capabilities to end-user entrepreneurs and small business
owners who do not have a staff of professional
programmers to handle the existing programming devices.
Toward this end, we have created an end-user language
named FAR ("Formulas And Rules") for programming

just-in-time custom web pages. The prototype of FAR is
based upon e-speak middleware. FAR allows end users to
offer and deliver e-services without these users having
knowledge of the middleware protocols necessary to offer
such services. For example, an end user with a database of
information about flowers, stored on a PC and maintained
using PC software such as Access, could offer "flower
advisor" e-services as a cottage, for-profit, business.

FAR combines ideas from three paradigms: web page
layout, spreadsheets, and rules. In FAR, users lay out a
sample web page with various kinds of spreadsheet-like
cells or cell groups. The spreadsheet paradigm has been
demonstrated to be usable by end users, yet is a
computationally powerful paradigm, and is able to express
graphics as easily as textual values [7].

Spreadsheet formulas are "pull"-oriented: a cell
expresses its interest in other cells through references in
its formula, and updates cause it to "pull" in new
intermediate values for a new computation. In our
experience with the spreadsheet paradigm (via the visual
spreadsheet language Forms/3 [7]), we have noticed that
sometimes it seems more convenient to express
computations as "push" computations. For example,
whenever a button is pushed, we may want 15 cells to
change, in which case it may be more convenient to notify
the 15 cells all at once than for each of the 15 cells to
repeat the same predicate that watches the button's state.
From this observation, we decided to also support rule-
based programming in FAR.

In this paper, we present FAR. The new contributions
of FAR are:

• It is an end-user language that supports small
business owners to offer full-featured electronic
services.

• It integrates the spreadsheet paradigm with the rule-
based paradigm. Both paradigms are supported as
alternative views of the same logic, allowing the user
to switch between these two paradigms flexibly.

Oregon State University, TR 01-60-07, March 2001

- 2 -

2. Background and Related Work

2.1 Multiparadigm languages

A multiparadigm programming language is a language
that incorporates two or more of the conventional
programming paradigms [12], or a linguistic framework
that does not force the programmer into thinking or
working in only one model [3]. Two approaches have been
pursued in the creation of multiparadigm languages. One
is to add additional paradigms to an existing language to
permit users to utilize a new programming style without
learning a completely new language. For example, C++
extends C object-oriented programming features. The other
is to seek a true blending of paradigms in a new language.
Leda [4] exemplifies this approach.

An important difference between these approaches
hinges on access to the relevant paradigms. The first
allows for a "bridge" between constituent paradigms, with
usually explicit transitions from one paradigm to another.
The second strives for seamless transition from paradigm
to paradigm. FAR aims toward the second goal.

In the visual and end-user language communities, in
addition to combining various approaches with drag-and-
drop GUI layout, there has been some multiparadigm
work. Some of these languages are more like high-level
component builders than full languages, in that they allow
users to specify portions of programs in different
languages (e.g., [10, 19]), whereas others allow the user to
choose which paradigm to use within the same language
(e.g., [16, 20]). These works are about allowing the user
to choose a paradigm when writing a program snippet.
FAR supports this as well, but also allows the user to
switch flexibly among paradigms after the fact (i.e., for
later viewing and editing).

2.2 Spreadsheet languages

There have been several research spreadsheet languages.
The one that has influenced the development of FAR the
most is Forms/3 [6, 7, 8]. Like FAR, in Forms/3
spreadsheet-like cells or cell groups can be dragged off a
tool palette and placed wherever desired on a window, and
this placement determines the ultimate appearance of the
final "program" which, in the case of Forms/3, is a
spreadsheet. Another influence of Forms/3 upon FAR is
the fact that cell values do not have to be textual; cells'
formulas can result in graphical images which can in turn
referred to and operated upon, just as can numbers, text,
and so on. Unlike FAR, Forms/3 is not an end-user
language per se, although some portions of it have been
developed with end-user programming in mind. Other
fundamental differences are that Forms/3 is not a

multiparadigm language and Forms/3 cannot be used to
program e-commerce services. The spreadsheet language
Formulate [1, 2] is another spreadsheet language that was
born from the same roots as Forms/3. An influence of
Formulate on Forms/3 and on FAR is the way of
allowing multiple cells in a table to share the same
formula.

Several other spreadsheet-oriented research projects have
aimed at extending spreadsheet language functionality, but
through imperative devices or through connections to
other programming languages rather than through ordinary
formulas (e.g., [9, 15, 21]). FAR does not use these
devices.

2.3 Rule-based languages

FAR also incorporates the rule-based paradigm. Rule-
based programming was pioneered in the end-user
programming community by AgentSheets [17] and
KidSim/Cocoa/StageCast [13]. In both of these end-user
languages, the user specifies the rules by demonstrating a
postcondition on a precondition. The intended users are
children, and the problem domain is specification of
graphical simulations and games. An important difference
between these two languages is that in the KidSim family,
the only rules present are those that have been explicitly
entered by the user, although they can be collected into
"Jars" of similar objects that then follow the same rules.
On the other hand, in AgentSheets, graphical rule
analogies are supported [17] that allow users to generalize
a behavior, such as in different directions on the grid or
from one object to another (e.g., "Cars move on roads like
trains move on tracks"). FAR does not do either of these
kinds of generalizations, but does something different
regarding which objects follow the same rules. Another
difference is that in AgentSheets and KidSim, rules are
specified by demonstration, and in FAR they are not.

Altaira [18] is another rule-based language, and was
created especially for the domain of robot control. One
difference from FAR, AgentSheets, and the KidSim family
is that Altaira explicitly brings out the state-machine
nature of the rule-based paradigm. Another difference is
that, when multiple rules are enabled, all are fired,
according to a priority-based scheme. In contrast to this,
FAR's definition of rules prevents overlapping rules.

2.4 E-commerce through e-speak

The FAR prototype's ability to actually accomplish
electronic commerce comes about through its use of e-
speak. E-speak is a collection of software developed by
Hewlett-Packard that supports electronic negotiation,
including e-commerce. (It is freely available at
http://www.e-speak.hp.com.) Although e-speak has helped

Oregon State University, TR 01-60-07, March 2001

- 3 -

and influenced the way FAR is implemented, the end user
does not know about this association. We briefly
summarize the e-speak features that are necessary for
understanding of this paper.

 At the core of e-speak is the notion of an "e-speak
engine." An e-speak engine knows about services that
have been made available and about requests for services
and can also talk to other e-speak engines. To make
services available or to request services, service providers
or clients make Java calls or send XML documents to the
local engine. There is a very basic, built-in vocabulary
that is used in these conversations. In addition, it is
possible to make new, domain-specific vocabularies
available. For example, a service provider might decide
upon a new vocabulary devised especially for their
particular service, such as CML, an existing, standardized
vocabulary that has been devised for chemists
(http://www.xml-cml.org).

We have simplified the explanation of e-speak here,
omitting details such as advertising services, finding
vocabularies, etc., but these concepts are not necessary to
understand FAR, either by the readers of this paper or by
FAR's intended users.

3. Introduction to FAR

As we have said, FAR is an end-user visual language
to allow end users to offer e-services. This means it is
aimed at end-user businesses, not at customers.

During its design, we evaluated FAR using the
Representation Design Benchmarks [23], a design-time
evaluation tool for visual programming languages that is
based on Cognitive Dimensions [11]. (See [5] for details
of this evaluation.) Part of the evaluation process with
Representation Design Benchmarks is to explicitly state
the prerequisites required of the audience for which the
language is intended. This has a bit more accountability
than a simple "prediction" of what users will understand,
because each assumption the language designer wishes to
make about audience capabilities must now be paired with
an explicit prerequisite. Thus, the more optimistic the
language design team wishes to be about audience
capabilities, the more prerequisites they must enumerate.
For FAR, the audience prerequisites are some familiarity
with browsers, spreadsheet formulas, and database
productivity tools such as Access.

To briefly overview FAR, suppose a gardener wants to
offer a service that creates a dynamic web page whose
contents are to be custom-constructed by retrieving
appropriate material from the gardener's PC database. The
way the gardener uses FAR to create this service is by
laying out a sample web page via direct manipulation,
specifying rules and/or spreadsheet-like formulas for

dynamically filling in parts of the page based on an
incoming query, as in Figure 1. The user specifies as part
of these formulas and/or rules the way to retrieve the
necessary information about the flower in order to deliver
the requested service, such as by looking up the necessary
information in an Access database on the user's PC.
When the user has completed the creation of the sample
web page with its rules and formulas, pushing a button
advertises and makes the services available until the user
stops making them available.

Some fundamental differences between these
capabilities as versus drag-and-drop authoring tools to
create a web page are:

• Although the services can be made available for free,
part of the querying protocol can include a credit card
number, allowing the user to charge for these custom-
advice pages.

• FAR is used to specify how to dynamically create
web pages on the fly, in some ways similar to the
server-side processing available to programmers via
cgi scripts, such as for retrieving information from
local databases.

• Unlike search engines, the web page produced in
response to a query always answers precisely the
question the customer is asking, and allows a variety
of relationships, not just string matching. For
example, the figure lists flowering plant sets costing
less than $25, and then recommends the lowest-priced
one. Asking that query using a standard search engine
(Google) yielded "about 98,000" web pages, the first
30 of which did not satisfy the query. (We got tired
after looking at 30.). Other search engines we tried
(Ask Jeeves and AltaVista) fared similarly or worse.

3.1 Programming the flower advisor with drag-
and-drop, cells, and formulas

The gardener's process of creating the flower advisor e-
service using FAR begins with a blank web page set in a
larger workspace. Using drag and drop, the gardener can
layout the sample web page by placing objects (cells and
tables) in the white web page section of the workspace.
For example, the three pictures, textual phrases, and even
the line in the middle of the web page section are cells,
and at the bottom of the web page section are two tables.
Cells database , field , relation , and value are
instances of a special type of cells called "query cells," and
are temporary placeholders for values that will eventually
arrive in incoming queries. All cells have attributes such
as size, font, color, visibility of names and of borders and
of the cell as a whole, which are set by direct
manipulation and through pop-up cell attribute menus.

The above mechanisms are static in the sense that their

Oregon State University, TR 01-60-07, March 2001

- 4 -

effects on the web page are the same when the web page is
delivered as they are when it is specified. The aspect that
happens dynamically (at web page delivery time) is the
system's choosing of appropriate content for these objects.
The gardener specifies this aspect using formulas and/or
rules to govern the behavior of all the objects in the web
page section. These formulas and rules are evaluated as
soon as the gardener enters them to provide immediate
visual feedback, and are again used at web page delivery
time to compute the up-to-date values to be delivered to
the customer.

We focus first on formulas, deferring our discussion of
rules. The reason for the use of formulas is to allow end
users with spreadsheet skills to reapply these skills to
specify the logic of their just-in-time web pages. (Recall
that a prerequisite for using FAR is previous spreadsheet
experience.) The FAR prototype supports some of the
usual spreadsheet operators, and also if , image , and
whose operators. For example, "if x=3 then 10 "
returns 10 if x is 3, and otherwise the cell's value is "no

value" (blank). As another example, the formula shown
for the picture cell (the picture of tulips mid-left in
Figure 1) returns the image stored at the result of the
argument, which is the value of table(2,7) .

Tables are groups of cells that are allowed to share
common formulas, similar to the grids/matrices of
Forms/3 [7, 8], Formulate [1, 22], and the shared formulas
of the Lotus spreadsheet system. For example, the
Thumbnails table has been partitioned into two parts: the
top cell and all the others. The top cell's formula is a
string that sets the column heading value to "Thumbs,"
and the remaining cells' formula (shared) is "image

table(thisrow, 6) ", which produces the thumbnail
images stored at the path locations listed in column 6 of
table .

Alternatively, a table can have a single formula
defining it as a whole. For example, the whose operator
fills in an entire table with the result of a query, such as
the formula for the table named table . This formula (not

Figure 1: Snapshot of the flower advisor e-service in FAR as it is being created by the gardener. Everything shown in the
web page area is a cell or table of cells, including the blocks of text, images, and so on.

Oregon State University, TR 01-60-07, March 2001

- 5 -

shown) is a group of references to the query cells along the
top of the page, which currently evaluates to "flowers

whose Price less than 25 ". The whose operator is
automatically generated when the user presses the "Use
Query" button in the formula window.

When the gardener is finished setting up formulas
dependent on entries in table , some of the columns are
made invisible, such as those giving filenames of images,
so that they will not actually appear on the web pages that
are ultimately delivered to customers.

3.2 Tying an incoming query to local PC
information

The gardener's FAR program needs to retrieve data from
a PC database, which the gardener has previously created
using some widely used software package such as Access.
To set up a relationship with this database, the gardener
clicks on the database button in the tool palette in Figure
1, and chooses the appropriate database. Once this is
done, any cells and tables on the page can refer in their
formulas to elements of the database. For example, as
explained above, the table at the bottom of the sample
web page being laid out by the gardener is referring to a
subset of the database, namely the elements of the database
that have the desired price.

Near the top of the sample web page are the query
cells, labeled database , field , relation , and value .
The gardener placed these query cells using the query
button on the tool palette. The query consists of several
cells to individually hold each element of a future query
against the database the gardener selected. As with other
cells, the user can give query cells formulas, so as to have
a sample query to work with while creating the sample
web page. In the figure, the gardener has given the query
cells formulas with sample values in them by selecting
items from the drop-down menus that reflect the structure
of the selected database. Alternatively, the formulas can
also be specified by simply typing something in, as the
gardener did with the query cell named value . As
demonstrated above, other cells' formulas can refer to query
cells just as they can refer to any other kind of cell.

The reason a "real" query that eventually arrives from a
customer will use the same names the gardener used to
label the query cells is due to the e-speak abstraction of
"vocabularies." For example, the query cells in the figure
reflect the vocabulary to be used by customers to request
the gardener's e-service. In the e-speak world, an e-service
such as the customized flower advisor being created here,
is registered and advertised in the e-speak electronic
community with an accompanying vocabulary, so that
customers interested in the service can make use of it. A
vocabulary is a set of terms for defining a service. The

FAR runtime system can automatically generate a new
vocabulary based on the cell names the user has used to
label the elements. The vocabulary is automatically made
public as part of the advertisement of the service, and these
functions are automatically performed by the FAR system.
Thus, users of FAR (cottage business owners such as the
gardener) are only naively aware of this vocabulary and
generation of this vocabulary, since it is automatically
taken care by the system.

Conversations about e-speak vocabularies are conducted
by transmitting and receiving XML documents, and hence
FAR makes use of XML for this purpose. As described in
the preceding paragraph, a service can provide its own
(new) vocabulary, or it can make use of standardized
vocabularies that have been created by standards
organizations for particular types of businesses. Given an
existing vocabulary of interest, the FAR system
automatically generates a query template to match that
vocabulary, from which the user can then delete elements
that are not to be part of the service offered, and can then
proceed with providing sample formulas for the remaining
elements.

3.3 Rules

Rules can be viewed as a network of constraints, but
the expressive power tends to favor the predicate: a single
rule will often include one predicate and all the desired
effects (a "push" expression). Spreadsheet formulas also
can be viewed as a network of constraints, but with the
expressive power favoring the consequent: a cell's value is
expressed in terms of a combination of all the different
predicates that affect it (a "pull" expression). FAR
leverages the common denominator by allowing the end
user to opportunistically switch between these two
programming paradigms at any point. The way this is
done is that every cell with a matching predicate is
automatically defined to be a participant in the same rule.

3.3.1 What is a matching predicate?

A cell C with an if -expression "if predicate then

consequent-expression" can be described by the tuple (C,
predicate, consequent-expression), where C's value will be
consequent-expression if predicate is satisfied, and
otherwise will be the value "no value" (displays as blank).
A group TC of table cells with a whose-expression
"database whose field relation-operator value" can similarly
be described as {(Cij, predicate, consequent-expressionij) |
Cij ∈ TC}, where predicate = database.field relation-
operator value, and Cij 's value will be consequent-
expressioni (the j'th field in the i'th database entry that
matches predicate). Any cell that does not have an if - or
whose-expression has the predicate "always." Using the

Oregon State University, TR 01-60-07, March 2001

- 6 -

above terms, all cells with the same predicate in the above
definitions are participants in the same rule. This rule can
be described as (predicate, {C, consequent-expression}), for
all C with predicate predicate.

3.3.2 Using rules

When the user selects a cell, its rule is automatically
displayed in the Rules section. For example, in Figure
2(a), the user has selected cell subtotal (indicated by the
black selection bar just above it). It has the same
predicate ("always") as 10 other cells, and the rule
involving all of these cells is displayed. The "whenever"
label shows the predicate, and the "then/and" labels show
the consequents for every cell affected by this predicate.
The user can choose to edit the rule (predicate,
consequents, or both) or any of these cells' formulas; the
effects of the edit are propagated throughout the display so
that the formulas and rules remain consistent. In other
words, formulas and rules are alternative views of the same
information, and either view can be edited at will.

3.3.3 An example

As Figure 2 indicates, the gardener has decided to
expand the flower advice program. The gardener now has
included some query cells allowing a customer to not only
buy flower advice, but also to buy flowers according to the
recommendation, if desired. If the customer does not
provide quantity information, the sample values (such as 0
for qty) will remain unchanged in the gardener's FAR
program, and the gardener wants the program to operate as
before. However, there is a problem: under that
circumstance, the labels and zero values for subtotal ,
tax , total , ship to , etc., will all display, which will
look amateurish on a flower advice web page to be
delivered back to a customer who never intended to buy
physical flowers, only flower advice.

To solve this problem, the gardener needs to change the
formula for several cells so that they show values only
when the qty cell is greater than 0. This can be
programmed in a tedious manner by adding a predicate to
every relevant formula individually ("if (qty > 0) then

... "), but without rules, all those duplicated predicates

(a) (b)
Figure 2: The flower advice example has been expanded, and the separator bar has been dragged upwards to make more
room for the rules to be visible. (a) The gardener has added cells allowing a customer to purchase the recommended
flowers if desired. The predicate of all these cells is initially "always". (b) The gardener changes the predicate, and the
results are immediately reflected in the web page section. Since qty is currently 0, the predicate is false, and the cells'
values are currently "no-value" (displays as blank).

Oregon State University, TR 01-60-07, March 2001

- 7 -

would introduce a maintenance problem. Expressing these
semantics with a single rule solves these difficulties.

To do this, the gardener selects any one of the cells to
be changed, such as subtotal . From this, all the cells
having the same predicate are shown in the Rules section
(at this point the predicate would be "always "). This is
the point at which Figure 2(a) was captured. The gardener
de-selects the cells that are not desired to be changed, and
then changes the predicate "always " to "qty > 0 " as in
Figure 2(b). This also changes the formulas in the selected
cells to "if (qty > 0) then ... ", so the gardener can
view and/or further edit these cells in either a rule-oriented
way or a formula-oriented way. As a result, the non-
applicable labels and values disappear.

3.4 The runtime system

When the user makes the service available by pressing
the "Go Public" button, the runtime system is started.
When it is first started, it connects to the e-speak
community, and registers and advertises the service and the
vocabulary to be used in retrieving the service.

Customers discover the gardener's service and request it
through e-speak. No special features are required of FAR
to make this happen. The fact that the customer needs to
know the query terminology is taken care of by using
vocabularies, as we have already described. At this point,
the FAR engine simply goes to sleep until a query arrives
from a customer via the e-speak engine's connection with
the rest of the e-speak community.

When a query arrives, the query cells in the sample web
page are updated with this query from the customer. For
example, if the query was a request for a flower that starts
growing in September, the table of flower choices at the
bottom of the page will be different, and the
recommendation cells at the top will contain a different
value. This activity is all done automatically in
background mode, and does not generate screen activity on
the gardener's screen.

FAR is evaluated lazily, subject to the constraint that
every object on the screen is always kept up-to-date. When
a formula needs another object's value, the latter's value is
demanded. This strategy amounts to about the same thing
as eager evaluation during the programming process, since
everything is on the screen at that point. However, when
the program is later invoked to satisfy a customer request,
the lazy evaluator strategy allows omitting computations
that are not necessary for the particular request. Efficiency
of serving customer requests matters to the gardener, since
the program can become active anytime a query
electronically arrives, regardless of whether the gardener is
using the PC for other purposes at the same time.

When evaluation is complete, the web page's current

values and formatting information are electronically
delivered to the customer in the form of an XML
document based on the flower-based vocabulary. Since our
language deals with providing services (not purchasing
services), FAR does not control what the customer does
with this XML document. However, in our prototype
implementation, query results are delivered as an XML
document to which an XSL (Extensible Stylesheet
Language) is attached. Style sheets describe how
documents are represented, and using style sheets with
structured documents like XML documents, some
browsers (such as Internet Explorer) automatically display
XML documents according to the stylesheets.

4. Current Status and Future Work

Our research prototype of FAR implements all of the
features described in this paper except the ability to make
cells entirely invisible, relative referencing in a formula,
making use of an existing vocabulary, and deselecting
objects in a rule. The prototype is written in Java and runs
on PCs. It currently allows database interfacing only to
Access databases, although the language could easily allow
access to other popular PC software as well. FAR
programs are stored in XML format.

FAR is a new project, and there are many issues left
unaddressed. Perhaps the most pronounced is the fact that,
although we have used early evaluation devices such as
representation benchmarks [23] and cognitive dimensions
[11] to help guide the design of this language [5], there
have been no experiments involving human users to point
out mismatches with the intended audience.

Another interesting opportunity for future work arises
from the fact that the goal of FAR has been only to
support the e-business owners, not the customers. As
such, we have assumed the presence of client-side software
that helps customers discover appropriate e-speak
vocabularies, services, etc., and to request such services.
These subtasks and others, such as automatically deciding
which services to request and what to do with the
information that is ultimately delivered, might be well-
served by a client-side end-user language, and we are
considering ways to proceed in this direction.

5. Conclusion

FAR is an end-user language for small e-business
owners. It supports these users in devising, advertising,
communicating about, and delivering electronic services.

FAR is a three-paradigm language that draws upon
demonstratedly usable paradigms for end users—drag and
drop layout, spreadsheets, and rule-based. The advantage of
combining the spreadsheet paradigm with the rule-based
paradigm is that it allows the user to express

Oregon State University, TR 01-60-07, March 2001

- 8 -

computations either in a "pull"-oriented way or a "push"-
oriented way. That is, the user can encapsulate all the
logic affecting a cell in that cell's formula, or alternatively
can encapsulate all logic about what the cell affects in a
rule.

The combination of these paradigms is not simply a
matter of supporting both paradigms and deciding for the
user which is best. The choice is left to the user, and can
be made before or after writing code. This is because the
use of the rule-based paradigm is as an alternative view of
the logic expressed by spreadsheet formulas. (In other
words, if the user chooses to view them as such,
spreadsheet formulas are an alternative view of the logic
expressed by rules and vice versa.) Thus, the user can
opportunistically switch from one paradigm to the other.

Acknowledgments

We thank the members of the Visual Programming
Research Group at Oregon State University for their
feedback and help with the implementation. This work
was supported in part by Hewlett-Packard.

References
1 . A. Ambler, The Formulate Visual Programming

Language, Dr. Dobb's Journal, August 1999, 21-28.
2 . A. Ambler and A. Broman, Formulate Solution to the

Visual Programming Challenge, Journal of Visual
Languages and Computing 9(2), April 1998, 171-209.

3 . T. Budd, Blending Imperative and Relational
Programming, IEEE Software 8(1), 1991, 58-65.

4 . T. Budd, Multiparadigm Programming in Leda, Addison-
Wesley, Reading, MA, 1995.

5 . M. Burnett and S. Chekka, FAR: An End-User WYSIWYG
Programming Language for E-speak: Interim Report, TR
00-60-10, Oregon State University, October 2000.

6 . M. Burnett and H. Gottfried, Graphical definitions:
Expanding spreadsheet languages through direct
manipulation and gestures, ACM Transactions on
Computer-Human Interaction 5(1), March 1998, 1-33.

7. M. Burnett, J. Atwood, R. Djang, H. Gottfried, J .
Reichwein, and S. Yang, Forms/3: A First-Order Visual
Language to Explore the Boundaries of the Spreadsheet
Paradigm, Journal of Functional Programming, (to
appear).

8 . M. Burnett, N. Cao, J. Atwood, Time in Grid-Oriented
VPLs: Just Another Dimension? Proceedings of IEEE
Symposium on Visual Languages, Seattle, WA,
September 10-13, 2000, 137-144.

9 . E. Chi, J. Riedl, P. Barry, and J. Konstan, Principles for
Information Visualization Spreadsheets, IEEE Computer
Graphics and Applications, July/August 1998.

10. C. DiNucci, Tolerant (Parallel) Programming with F-Nets
and Software Cabling, Proceedings of the Workshop on
Software Engineering for Parallel and Distributed
Systems (PDSE'97), Boston, MA, May 1997, 198-209.

11. T. Green and M. Petre, Usability Analysis of Visual
Programming Environments: A 'Cognitive Dimensions'
Framework, Journal of Visual Languages and Computing

7(2), June 1996, 131-174.
12. B. Hailpern, Multiparadigm Languages and

Environments, IEEE Software 3(1), January 6-9,1986.
13. N. Heger, A. Cypher, and D. Smith, Cocoa at the Visual

Programming Challenge 1997, Journal of Visual
Languages and Computing 9(2), April 1998, 151-169.

14. Hewlett-Packard, E-speak Architectural Specification,
Hewlett Packard Developer Release X.03.03.00,
September 2000.

15. S. Hudson, User Interface Specification Using an
Enhanced Spreadsheet Model, ACM Transactions on
Graphics 13(4), July 1994, 209-239.

16 M. Münch, A. Schürr, A. Winter, Integrity Constraints in
the multi-paradigm language PROGRES. IEEE
Symposium on Visual Languages, Halifax, Canada,
August 1998, 84-85.

17. C. Perrone and A. Repenning, Graphical Rewrite Rule
Analogies: Avoiding the Inherit or Copy & Paste Reuse
Dilemma, Proceedings of IEEE Symposium on Visual
Languages, Halifax, Canada, September 1-4, 1998, 40-
46.

18. J. Pfeiffer Jr., Altaira: A Rule-based Visual Language for
Small Mobile Robots, Journal of Visual Languages and
Computing 9(2), April 1998, 127-150.

19 W. Piersol, Object Oriented Spreadsheets: The Analytic
Spreadsheet Package, Proceedings of ACM OOPSLA,
September 1986, 385-390.

20. S. Shiffer and J. Fröhlich, Concepts and Architecture of
Vista -- a Multiparadigm Programming Environment,
IEEE Symposium on Visual Languages, St. Louis, MO,
Oct. 4-7, 1994, 40-47.

21. T. Smedley, P. Cox, and S. Byrne, Expanding the Utility
of Spreadsheets Through the Integration of Visual
Programming and User Interface Objects, Advanced
Visual Interfaces '96, Gubbio, Italy, May 27-29, 1996,
148-155.

22. G. Wang and A. Ambler, Solving display-based prob-
lems, IEEE Symposium on Visual Languages, Boulder,
Colorado, September 1996, 122-129.

23. S. Yang, M. Burnett, E. DeKoven, and M. Zloof,
Representation Design Benchmarks: A Design-Time Aid
for VPL Navigable Static Representations, Journal o f
Visual Languages and Computing, October/December
1997.

