
Technical Report 04-60-08 | School of Electrical Engineering and Computer Science,
Oregon State University, Corvallis, OR, USA, 21 June 2004

The Impact of Two Orthogonal Factors in
Interactive Fault Localization

Joseph R. Ruthruff, Margaret Burnett, and Gregg Rothermel
School of Electrical Engineering and Computer Science

Oregon State University
Corvallis, OR, 97331

[ruthruff, burnett, grother]@cs.orst.edu

ABSTRACT
End users develop more software than any other group of
programmers, using software authoring devices such as e-
mail �ltering editors, by-demonstration macro builders, and
spreadsheet environments. Despite this, there has been only
a little research on �nding ways to help these programmers
with the dependability of the software they create. We have
been working to address this problem in several ways, one
of which includes supporting end-user debugging activities
through fault localization techniques. Our preliminary stud-
ies have shown that some fault localization techniques can
provide end users with e�ective feedback; however, these
studies provide no guidance into the factors that impact
technique e�ectiveness. This paper presents the results of an
empirical study that examines the impact of two orthogonal
factors on the e�ectiveness of fault localization techniques.
Our results have implications for fault localization for end
users, and highlight the importance of separately evaluating
each factor in a fault localization technique.

Keywords
fault localization, debugging, end-user software engineering,
end-user programming

1. INTRODUCTION
A quiet revolution is occurring in the world of software.

Not too long ago, most software was developed primarily by
professional programmers, a large portion of whom had rea-
son to be interested in and understand software engineering
theory and practice. Today, however, end users write far
more software than professional programmers. It is esti-
mated that, by next year, 55 million end users, as compared
to only 2.75 million professional programmers [6], will be cre-
ating software applications such as multimedia simulations,
dynamic web pages, e-mail �ltering rules, and spreadsheets.
Is adequate support being provided to these end users?

The evidence suggests that it is not. Boehm and Basili ob-
serve that 40-50% of the software created by end-user pro-
grammers contains non-trivial faults [7]. These faults can
be serious, costing millions of dollars in some cases [13, 23].
A problem for the software engineering community then,

is to provide end users with better support for their soft-
ware development activities. For example, end-user pro-
grammers, like professional programmers, need strategies for
improving the quality of their software, such as testing and
anomaly detection methodologies to help them detect fail-

ures, and fault localization strategies to help them �nd the
causes of failures. The latter is our focus in this paper.
Software engineering researchers have invested consider-

able e�ort into bringing fault localization strategies to pro-
fessional programmers (e.g., [1, 9, 14, 16, 18, 21, 25, 27, 33]).
However, signi�cant di�erences exist between professional
and end-user software development, and these di�erences
have rami�cations for fault localization strategies.
A �rst class of di�erences is that, unlike professional pro-

grammers, end users rarely have knowledge of software en-
gineering theory and practice, and are unlikely to take the
time to acquire it. This impacts fault localization strategies
because, traditionally, such strategies often require at least
partial knowledge of such theory to either properly employ
the strategy or understand its feedback. For example, crit-
ical slicing [14] uses mutation-based testing, and end users
would be unlikely to understand|and therefore to trust|
the resulting feedback. (As [12] explains, understanding is
critical to trust, which in turn is critical to users actually
believing a system's output and acting upon it.)
A second class of di�erences pertains to the manner of in-

teraction between the software developer and the program-
ming environment. End-user programming environments
are usually modeless and interactive: users incrementally ex-
periment with their software and see how the results seem to
be working out after every change, using devices such as the
automatic recalculation feature of spreadsheets. Techniques
that perform batch processing (e.g., [1, 18]) are therefore at
best unsuited, and at worst incompatible, with these types
of interactive environments.
A third class of di�erences pertains to the amount of in-

formation available in professional and end-user software de-
velopment environments for fault localization. End users do
not usually have suites of organized test cases, so large bases
of information are rarely available for use by fault localiza-
tion techniques. Complicating the situation is the interac-
tive nature of end-user debugging: end users may observe a
failure and start the debugging process early|not just af-
ter some long batch of tests|at which time the system may
have very little information with which to provide feedback.
A fourth class of di�erences pertains to a common assump-

tion in software engineering devices created for professional
programmers: that the accuracy of the information (such as
testing information) provided to the devices is reliable. Ev-
idence shows that end users often make mistakes when per-
forming interactive testing and debugging [24]. (Professional
programmers are not perfect either, of course, but there is

1

reason to hope that their own understanding of testing and
their institution's testing processes render them less error-
prone than end users.) Unfortunately, many fault localiza-
tion techniques (e.g., [21]) cannot operate in the presence of
such unreliable information.
We have been working to bring fault localization support

to end users, in ways that accommodate the foregoing con-
siderations, as part of our end-user software engineering re-
search. Our previous work [24, 29] shows that our fault
localization support can e�ectively pinpoint program points
containing faults, and can help end users �nd faults by guid-
ing them into more e�ective debugging strategies. This work
suggested the possibility that there may be multiple, inde-
pendent factors of fault localization techniques that impact
technique e�ectiveness in the realm of end-user software de-
velopment. An understanding of these factors will be nec-
essary in order for future designers of end-user fault local-
ization techniques to build upon principled design choices
instead of ad hoc guesses.
We have therefore designed and conducted a controlled

experiment analyzing two factors involved in a fault local-
ization technique's ability to pinpoint the location of faults.
The factors we consider, information base and mapping, per-
tain to the information maintained by a technique to provide
fault localization feedback and how that technique maps the
information into such feedback, respectively.
This work makes three primary contributions. First, we

empirically investigate and provide data on the importance
of the two factors of information base and mapping. Second,
we provide data on three speci�c fault localization informa-
tion bases and three mappings. Third, we provide insights
into the way that fault localization e�ectiveness needs to be
measured, so as to inform others' evaluation work in end-
user fault localization techniques.

2. BACKGROUND: WYSIWYT
Our fault localization techniques are prototyped in the

spreadsheet paradigm, in conjunction with our \What You
See Is What You Test" (WYSIWYT) testing methodology
[28], so we briey describe that methodology here. Fig-
ure 1 presents an example of WYSIWYT in Forms/3 [10],
a spreadsheet language that utilizes \free-oating" cells in
addition to traditional spreadsheet grids.1 The underlying
assumption behind the WYSIWYT testing methodology is
that, as a user incrementally develops a spreadsheet, he
or she is also testing incrementally. Because the intended

1WYSIWYT has also been extended to the dataow [19]
and screen transition [8] paradigms.

audience is end users, all communication about testing is
performed through visual devices. In WYSIWYT, untested
cells that have non-constant formulas are given a red border
(light gray in this paper), indicating that the cell is untested.
(Cells whose formulas are simply constants do not partici-
pate in WYSIWYT devices, since the assumption is that
they do not need to be tested.) The borders of such cells
remain red until they become more \tested".
In order for cells to become more tested, tests must occur.

Tests can occur at any time|intermingled with editing for-
mulas, adding new formulas, and so on. The process is as
follows. Whenever a user notices a correct value, he or she
can place a checkmark (p) in the decision box at the cor-
ner of the cell he or she observes to be correct: this testing
decision constitutes a successful \test". Such checkmarks in-
crease the \testedness" of a cell, which is reected by adding
more blue to the cell's border (more black in this paper).
Further, because a correct value in a cell c depends on the
correctness of the cells contributing to c, these contributing
cells participate in c's test. WYSIWYT \testedness" col-
ors reect the use of a dataow test adequacy criterion that
measures the interrelationships in the source code that have
been covered by the users' tests. (Details of this criterion
are given in [28].)
In addition to providing feedback at the cell level, WYSI-

WYT gives the user feedback about testedness at two other
granularities. A percent testedness indicator provides test-
edness feedback at the program granularity. Testedness feed-
back is also available at a �ner granularity through dataow
arrows. In addition to displaying dataow relationships at
the cell level (in Figure 1, the user has triggered dataow
arrows for the Course Avg cell), arrows can be shown at the
subexpression level (not shown in Figure 1). The system also
provides testedness feedback through an intelligent explana-
tion system [36], implemented via \on-demand" tooltips.

3. CHARACTERISTICS OF INTERACTIVE
FAULT LOCALIZATION

Fault localization support attempts to help programmers
locate the causes of failures in two ways: (1) by indicating
the areas that should be searched for a fault, thereby reduc-
ing the search space; and (2) by indicating the areas most
likely to contain a fault, thereby prioritizing the sequence of
the search through this space.
In our prototype, which follows the spreadsheet paradigm

(although our fault localization approach is generalizable to
other paradigms, as discussed in [30]), WYSIWYT informa-
tion serves as a springboard for fault localization: instead

Figure 1: An example of WYSIWYT in the Forms/3 language.

2

of noticing that a cell's value is correct and placing a check-
mark, a user might notice that a cell's value is incorrect (a
failure) and place an \X-mark," as in Figure 2.
These X-marks trigger a fault likelihood calculation for

each cell that might have contributed to the failure. Fault
likelihood, updated for each appropriate cell after any test-
ing decision or formula edit, is represented by visually high-
lighting the interior of suspect cells in shades of red (gray in
this paper). This serves our �rst goal of reducing the user's
search space. As the fault likelihood of a cell grows, the sus-
pect cell is highlighted in increasingly darker shades of red
(gray). The darkest cells are estimated to be the most likely
to contain the fault, and are the best candidates for the user
to consider in trying to debug; this serves our second goal
of helping end users decide how to prioritize their search.
We have previously developed three techniques for realiz-

ing this support [29], which we briey summarize here.

� Test Count. When a user places an X-mark, this tech-
nique calculates fault likelihood from the number of
passed and failed tests for each cell, and highlights ap-
propriate cells based on these calculations.

� Blocking. This technique also uses the number of passed
and failed tests to calculate the fault likelihood of cells
after an X-mark is placed. However, a test t1 can
\block" another test t2 from a�ecting the fault like-
lihood of a cell c if all dataow from c to the cell in
which the t2 testing decision was made goes through
the cell in which the t1 testing decision was made.

� Nearest Consumers. Rather than using passed and
failed tests directly, when a user places an X-mark,
this technique visually highlights a cell c based on (1)
the average fault likelihood of the cells C0 directly con-
suming c's value, and (2) the current testing decisions
(X- and p marks) on both c and C0.

3.1 Two Factors in Fault Localization
Our previous empirical work [24, 29] showed that these

three fault localization techniques can provide e�ective feed-
back that is useful to end users. However, the work also
suggested that more than one independent factor may be
involved in determining technique e�ectiveness. This paper
investigates this possibility.
We observe that any fault localization approach that in-

cludes some form of reporting or feedback to a human is
composed of two orthogonal factors:

� Information Base: The information used by a tech-
nique to calculate fault likelihood. To abstract away
implementation details such as data structures or al-
gorithmic details, we use this term to refer to only the
type of information used and the circumstances under
which it is maintained.

� Mapping: How a technique maps the information base
into fault localization feedback.

For example, Tarantula [18], a fault localization tech-
nique for traditional programming languages, uses a set of
passed and failed tests as its information base. As its map-
ping, two mathematical formulas calculate (1) a color rep-
resenting each statement's participation in testing, and (2)
the technique's con�dence in the correctness of each color.

3.1.1 Information Bases
Each of our three techniques has a unique base of infor-

mation used to achieve the behavior described earlier.

� Test Count (I-TC). The information base of the Test
Count technique tracks, for each cell c, the set of passed
and failed tests that dynamically execute c. This infor-
mation base is similar to that used in Tarantula [18].
The size of this information base grows with respect
to both program and test suite size.

� Blocking (I-BL). There are two aspects to this infor-
mation base. Like I-TC, I-BL maintains a list of all
passing and failed tests for each cell. However, to
achieve the previously mentioned \blocking" behavior,
I-BL also tracks the dataow relationships between
each cell, using this information to allow tests, un-
der certain circumstances, to \block" other tests from
reaching certain cell. (See [29] for these speci�c cir-
cumstances.) This information base is similar to that
used in dicing [21]. Because of the necessary overhead
to track this information, I-BL is more computation-
ally expensive than I-TC.

� Nearest Consumers (I-NC). This base tracks only (1)
the current fault likelihood of every cell in the pro-
gram, and (2) the current testing decision for each cell
a�ected by the current test case so as to adjust for

Figure 2: The user notices an incorrect value in Exam Avg|the value is obviously too high|and places an
X-mark in the cell's decision box. All cells that could have dynamically contributed to this incorrect value
have been highlighted in shades of red (gray in this paper), with darker shades corresponding to increased
fault likelihood. (This example uses the Nearest Consumers technique.)

3

trends in testing decisions. Since each of these com-
ponents requires only constant space, the information
base grows with respect to program size only. This
\discount" information base is more modest than most
other fault localization techniques in the literature.

Note that, because the context is interactive fault local-
ization, each of these information bases is immediately up-
dated whenever any action is taken by a user that a�ects
the contents of the base, potentially interfering with the
environment's interactivity. One reason to compare these
information bases then is to learn whether it is possible for
a modest version such as I-NC to compete in e�ectiveness
with the other two more extensive information bases.

3.1.2 Mappings
In light of the unreliable nature of end-user testing, each

of our mappings incorporate a \robustness" feature (labeled
\Property 1" in [29]) that ensures that any cell that might
have contributed to the computation of an incorrect value
(failure) will be assigned some positive fault likelihood. This
property was deemed to be integral to the design of any
fault localization technique for end users to ensure that, if
there had been even one correctly placed X-mark involving a
cell, ensuing incorrect testing decisions could not completely
remove the cell from a user's search space.
Many mappings are possible, but it would not be feasible

to compare them all. Further, doing so is not warranted
until we learn whether mapping is important to a technique's
e�ectiveness. Thus, we use the three particular mappings
from our past empirical work as a vehicle for investigating
the importance of mapping as an independent factor.

� Test Count (M-TC). The Test Count technique's map-
ping ensures that the fault likelihood of a cell c is di-
rectly proportional to the number of c's failed tests,
and inversely proportional to the number of c's passed
tests. It has the characteristic of mapping information
bases to four fault likelihood values, and begins by as-
signing c the lowest fault likelihood if it contributes to
a single failure (X-mark), thereby allowing fault likeli-
hood to build with further failures.

� Blocking (M-BL). This mapping is similar to M-TC, ex-
cept that it supports the blocking features of I-BL. It
also supports �ve, rather than four, fault likelihood
values, and begins by assigning c the second lowest
fault likelihood value so as to be able to build but also
to reduce a cell's fault likelihood value when a test
blocks fault likelihood propagation to it.

� Nearest Consumers (M-NC). This mapping computes an
adjusted average of the fault likelihood of the cells to
which c directly contributes. This calculated mean is
adjusted based on trends in current testing decisions
(readers are referred to [29] for details). It also sup-
ports �ve values, and begins by assigning c the third
fault likelihood value so as to allow viability of increas-
ing or decreasing fault likelihood values as the cell's
neighbors' fault likelihoods increase and decrease.

Although these mappings come from di�erent techniques,
all have two characteristics: (1) some number of fault likeli-
hood values, and (2) an \initial" value. Later in this paper,
when we refer to applying a mapping to an information base,
we refer to applying these two characteristics. Note that we

do not attempt to tease apart the inuences these character-
istics might have, but simply consider them an atomic unit
to learn whether mapping in general can have an impact.

3.2 Evaluation of Interactive Techniques
Many traditional fault localization techniques report feed-

back only at the end of a batch processing of information.
This point of maximal system reasoning potential|when
the system has its best (and only) chance of producing cor-
rect feedback|is therefore the appropriate point to measure
these techniques.
Given the interactive nature of end-user environments,

however, debugging, and therefore fault localization use, oc-
cur not just at the end of testing, but throughout the testing
process. Measuring technique e�ectiveness only at the end
of testing would thus ignore most of the reporting being
done by the interactive technique.
Ideally then, we should measure at every point at which

a user receives feedback. However, it is not statistically vi-
able to measure at all feedback points, because not every
point will be reached by enough subjects to allow compari-
son. Therefore, in this paper, we measured at the following
points:

� First X-mark. When a failure is �rst reported by users
(in our environment, signaled by an X-mark), they im-
mediately receive fault localization feedback. We term
this the beginning of a debugging session. (X-marks
initiate such sessions only when no other session is al-
ready in progress.) Because this point marks the �rst
(and perhaps only) opportunity for techniques to pro-
vide feedback, we measure technique e�ectiveness here.

� Second X-mark. The second X-mark's computations
are based on more information than the �rst X-mark,
so measuring at this point helps to gauge e�ectiveness
trends over time. For the same reason, we measured at
the third X-marks, fourth X-marks, and so on, but the
participants in our experiment kept their debugging
very incremental, which caused almost all debugging
sessions to consist of two or fewer X-marks. Thus, this
paper does no analysis beyond the second X-mark.

� Last Test. When users �nd the cause of the failure
(a fault), they often immediately try to �x it. This
point includes at least one X-mark and any number
of checkmarks, and denotes the end of a debugging
session. As such, it is the feedback point at which fault
localization has the most information available to it,
so technique e�ectiveness is also measured here. Once
a user edits the \source code" (formula), downstream
fault localization information becomes obsolete, and is
discarded.

We note that the need to evaluate at such points is not
speci�c to our particular experiment. Rather, any interac-
tive fault localization technique must be evaluated on the
basis of multiple feedback points because without doing so,
the experiment would be omitting most of the data reported
by the technique.

4. EXPERIMENT
How important is each factor of a fault localization tech-

nique to the e�ectiveness of that technique? Given the evi-
dence of mistakes in interactive end-user testing, how well do
di�erent information bases handle unreliable information?

4

To shed some insight into these questions, we conducted an
experiment investigating the following research questions:

RQ1: How do di�erences in information bases a�ect the ef-
fectiveness of a fault localization technique?

RQ2: How do di�erences in mappings a�ect the e�ectiveness
of a fault localization technique?

RQ3: How does inaccurate information a�ect information
bases and technique e�ectiveness?

One reason to investigate RQ1 is that the three informa-
tion bases are markedly di�erent in cost. If there is no dif-
ference in their e�ectiveness, we can safely choose the least
expensive; and if there is a di�erence in their e�ectiveness,
that information tells us which one to pursue.
Previous fault localization research often evaluates tech-

niques as a whole, without considering the speci�c factors
that contribute to observed results. We devised RQ2 be-
cause we suspected that mapping alone could be an impor-
tant factor to technique e�ectiveness.
Our third research question was inspired by the unreli-

ability in interactive end-user testing, which we have seen
in previous empirical work [24]. We focus this question on
information bases because it is speci�cally the information
base that is corrupted by such mistakes.

4.1 Design
In formulating our experiment, we considered three pos-

sible methodologies for gathering sources of data. The �rst
possible methodology was to follow the classic human-subjects
approach: gather participants for each possible mapping and
information base combination and compare technique e�ec-
tiveness across groups. This methodology has the advantage
of eliciting test suites from real end users, but it has two
drawbacks. First, given the nine possible combinations of
information bases and mappings (techniques), it would re-
quire a very large number of subjects for proper statistical
comparison. Second, and most importantly, each technique
would be given di�ering testing actions, thereby making it
impossible to ensure that di�erences in test suites were not
confounding any results.
A second possible methodology was to follow a classic test

suite generation approach: generate hypothetical test suites
according to some criterion, and select (randomly or accord-
ing to other criteria) from these test suites to simulate end
users' testing actions. We could then run each selected test
suite under each technique, and compare e�ectiveness. This
methodology features the tight controls we sought, but the
test suites could not be tied to our ultimate users, and may
not be representative of real end-user testing actions.

We chose instead to adopt a third methodology that draws
upon advantages from both of the above, while avoiding
their drawbacks. We obtained actual testing actions from
real end users, and then uniformly applied these actions
across all mapping and information base combinations. The
test suites, as de�ned by the testing actions that the end
users performed, were the subjects of our experiment. These
test suites were sampled according to the methods outlined
in Section 3.2.

4.2 Participants
To obtain the necessary test suites as subjects, we re-

cruited 20 business major participants. We chose business
majors because spreadsheets are commonly developed in
business environments. We required participants to be ex-
perienced with spreadsheets because we did not want the
learning of basic spreadsheet functionality to be a variable.
In order for participants to include the use of a fault lo-

calization technique in their testing actions, some technique
had to be incorporated into the environment for use by the
participants. Because of their successes in the earlier empir-
ical work [24, 29], we chose to incorporate the I-TC infor-
mation base with the M-BL mapping into the environment
described in Sections 2 and 3. We then applied the testing
actions collected using this technique across all information
base and mapping combinations.

4.3 Materials
The experiment utilized two spreadsheet programs, Grade-

book and Payroll (shown in Figures 2 and 3, respectively).
To make our programs representative of real end-user spread-
sheets, Gradebook was derived from an Excel spreadsheet of
an (end-user) instructor, which we ported into an equivalent
Forms/3 spreadsheet. Payroll was a spreadsheet designed
by two Forms/3 researchers from a payroll description from
a real company.
These spreadsheets were seeded with �ve faults created by

real end users. To obtain these faults, we provided three sep-
arate end users with the following: (1) a \template" spread-
sheet for each program with cells and cell names, but no
cell formulas; and (2) a description of how each spreadsheet
should work, which included sample values and correct re-
sults for some cells. Each person was given as much time as
he or she needed to design the spreadsheet using the tem-
plate and the description.
From the collection of faults left in these end users' �nal

spreadsheets, we chose �ve according to Allwood's classi-
�cation system [3]. Under Allwood's system, mechanical
faults include simple typographical errors or wrong cell ref-

Figure 3: The Payroll task.

5

erences. Logical faults are mistakes in reasoning and are
more diÆcult to correct than mechanical faults. An omis-
sion fault is information that has never been entered into
a cell formula, and is the most diÆcult to correct [3]. We
seeded Gradebook with three mechanical faults, one logical
fault, and one omission fault, and Payroll with two me-
chanical faults, two logical faults, and one omission fault.
Payroll was intended to be the more diÆcult program due
to its larger size, greater level of dataow and intertwined
dataow relationships, and more diÆcult faults.

4.4 Procedure
After completing a background questionnaire, participants

were given a brief tutorial to familiarize them with the en-
vironment. The tutorial taught use of WYSIWYT (check-
marks and associated feedback), but did not include any de-
bugging or testing strategy content. We also did not teach
use of fault localization; rather, participants were introduced
to the mechanics of placing X-marks and given time to ex-
plore any aspects of the feedback that they found interesting.
After the tutorial, participants were given the Gradebook

and Payroll programs (tasks) with instructions to test and
correct any errors found in the programs. The experiment
was counterbalanced with respect to task order so as to
distribute learning e�ects evenly. The tasks necessarily in-
volved time limits|set at 20 minutes for Gradebook and
30 minutes for Payroll|to ensure participants worked on
both spreadsheets, and to remove possible peer inuence of
some participants leaving early. To obtain the participants'
testing actions during these two tasks, the actions by each
participant were recorded into electronic transcripts.

4.5 Measures For Evaluation
For this experiment, we de�ne e�ectiveness as a tech-

nique's ability to correctly and visually di�erentiate the cor-
rect cells in a spreadsheet from those cells that actually con-
tain faults. We measured e�ectiveness as the visual separa-
tion between the faulty cells and the correct cells of each
spreadsheet, which is the result of subtracting the average
fault likelihood of the colored faulty cells from the average
fault likelihood of the colored correct cells. (Subtraction is
used instead of calculating a ratio because the color choices
form an ordinal, not a ratio, scale.) Positive e�ectiveness is
preferable, and a greater e�ectiveness means a better dis-
tinction between faulty and non-faulty cells. Our metric
was designed to consider colored cells only, because those
are the cells that are intended to draw the user's attention.
This e�ectiveness metric is the dependent variable of our ex-
periment, and is employed at every feedback point outlined
in Section 3.2.

4.6 Threats to Validity
Any controlled experiment is subject to threats to validity,

and these must be considered in order to assess the meaning
and impact of results. (See [37] for a general discussion of
validity evaluation and a threats classi�cation.)

4.6.1 Threats to Internal Validity
The speci�c types of faults seeded in a program can a�ect

fault localization results. To reduce this threat, as described
in Section 4.3, we selected faults according to Allwood's clas-
si�cation scheme [3] to ensure that di�erent types of faults
were included.

As mentioned in Section 4.2, in order to apply the same
test suites uniformly across all techniques, we had to obtain
suites using a single information base and mapping, and we
chose the I-TC information base and M-BL mapping. It is
possible that the speci�c actions taken by participants, in
response to fault localization feedback, would have varied
had a di�erent information base or mapping been chosen.
This tradeo� was necessary in order to obtain uniform test
suites, as we have already explained.

4.6.2 Threats to Construct Validity
The e�ectiveness metric considers only the cells colored

by a technique. This ignores search space size (i.e., the
number of colored cells) because cells that are not visually
highlighted are not considered by the e�ectiveness metric;
including such cells would reward techniques that do not
highlight colored cells. In this experiment, however, search
space size was not an issue, since all combinations of infor-
mation bases and mappings create an identical search space
for any testing situation|only the fault likelihood values of
speci�c cells di�er across information bases and mappings.
Still, it is possible that other metrics could better measure

how well techniques provide fault localization feedback. To
reduce this threat, we cross-checked our results with the
e�ectiveness metric used in [29] (which does consider the
number of non-highlighted cells) and found the same trends
and results as we report in Section 5. (We do not report
these results due to space constraints.)

4.6.3 Threats to External Validity
Program representativeness is an issue facing our experi-

ment. If the programs used in our experiment did not mimic
those that real end users create, our results may not general-
ize. To reduce this threat, we selected \real-world" spread-
sheets from a real end-user instructor and a real payroll
description. The ability to generalize our results may also
be limited by our selection of faults. We attempted to ad-
dress this issue by seeding \real-world" faults into our tasks
using the procedures outlined in Section 4.3. Finally, our ex-
periment was conducted in the Forms/3 research language
[10]. However, end users may debug di�erently in a di�er-
ent language. All of these external validity concerns can
be addressed only through repeated studies, using di�erent
programs, faults, and languages.

5. RESULTS

5.1 RQ1: Information Base
To investigate the di�erent information bases' impact on

technique e�ectiveness in isolation from the mapping fac-
tor, we compared the information bases' e�ectiveness three
times, once under each mapping. The comparisons were
done at each feedback point described in Section 3.2.
As a statistical vehicle for our analyses, we state the fol-

lowing (null) hypotheses:

H1: There is no di�erence in the e�ectiveness of the three
information bases with the M-TC mapping.

H2: There is no di�erence in the e�ectiveness of the three
information bases with the M-BL mapping.

H3: There is no di�erence in the e�ectiveness of the three
information bases with the M-NC mapping.

6

Tables 1(a){1(c) show the results. We used the Friedman
test to statistically analyze the data. This test is an alter-
native to the repeated measures ANOVA when the assump-
tion of normality or equality is not met. (We did not run
Friedman tests on the Second X-mark data due to the small
sample sizes.) Table 1(a) shows no signi�cant di�erences
in information base e�ectiveness at the 0.05 level under use
of the M-TC mapping, so H1 cannot be rejected. However,
Table 1(b) shows marginal signi�cance (0.10) at the First
X-mark for the Payroll task and 0.01 signi�cance by the
Last Test. Di�erences were even more pronounced in Table
1(c). Therefore, we reject H2 and H3.
As the table shows, the I-NC information base, which is

the basis of the inexpensive Nearest Consumers technique
[29], showed the highest average e�ectiveness at almost every
point measured. Implications of this will be discussed in
Section 6.

5.2 RQ2: Mapping
How important is mapping alone to technique e�ective-

ness? The table in Section 5.1 above is suggestive in this
regard. To statistically consider whether this factor had a
signi�cant impact on e�ectiveness, we used the Friedman
test to compare the mappings' e�ectiveness under each in-
formation base.

H4: There is no di�erence in the e�ectiveness of the I-TC

information base with di�erent mappings.
H5: There is no di�erence in the e�ectiveness of the I-BL

information base with di�erent mappings.
H6: There is no di�erence in the e�ectiveness of the I-NC

information base with di�erent mappings.

As Tables 2(a){2(c) show, there were signi�cant di�er-
ences in technique e�ectiveness among the di�erent map-
pings. The di�erences were almost always signi�cant at the

0.05 level, and often signi�cant at the 0.01 level. Clearly,
H4, H5, and H6 must all be rejected.

5.3 RQ3: Robustness
As our �rst step, to investigate the pervasiveness of mis-

takes, we counted the number of incorrect testing decisions
made in each subject (end-user test suite). In the context
of our environment, this is either a WYSIWYT checkmark
(
p
), signifying a correct value, placed in a cell that really

has an incorrect value, or an X-mark, signifying an incor-
rect value (a failure), placed in a cell that really has a correct
value. In the Gradebook task, 8.99% of the checkmarks and
5.95% of the X-marks were incorrect. This trend continued
in Payroll, where 20.62% of the checkmarks and 3.33% of
the X-marks were incorrect.
Given that such mistakes corrupt information bases, how

did these mistakes impact an information base's e�ect on
technique e�ectiveness? To investigate this, we measured ef-
fectiveness at each First X-mark, Second X-mark, and Last
Test that was in the context of at least one incorrect test-
ing decision. We isolated information bases using the same
procedure as Section 5.1.

H7: There is no di�erence in the e�ectiveness of the three
information bases when feedback is provided in the
context of mistakes.

Although we ran comparisons under all three mappings,
due to space constraints, we show only those measurements
under the M-NC mapping, since M-NC was the superior map-
ping in Section 5.2. (The information bases under the other
mappings show the same general trend.)
As Table 3 shows, at the last test of debugging sessions,

the di�erences in each information base's e�ectiveness were
marginally signi�cant for Payroll, and signi�cant (at the
0.01 level) for Gradebook. Therefore, we reject H7. More

First X-mark
I-TC I-BL I-NC

Gradebook 0.39 0.26 0.39
(p = 0:8948) (0.50) (0.62) (0.50)
(n = 18)
Payroll 0.00 -0.17 0.04
(p = 0:1211) (0.00) (0.40) (0.08)
(n = 13)

Second X-mark
I-TC I-BL I-NC

Gradebook 0.00 0.16 0.00
(p = n=a) (1.00) (0.76) (1.00)
(n = 3)
Payroll 0.15 0.01 0.18
(p = n=a) (0.46) (0.12) (0.49)
(n = 5)

Last Test
I-TC I-BL I-NC

Gradebook -0.06 0.00 -0.04
(p = 0:4389) (0.54) (0.49) (0.51)
(n = 18)
Payroll 0.13 -0.12 0.21
(p = 0:0608) (0.28) (0.48) (0.50)
(n = 13)

(a) Information bases with M-TC

First X-mark
I-TC I-BL I-NC

Gradebook 0.83 0.86 0.94
(p = 0:7165) (0.84) (1.00) (0.92)
(n = 18)
Payroll 0.29 0.35 0.49
(p = 0:1000) (0.42) (0.33) (0.40)
(n = 13)

Second X-mark
I-TC I-BL I-NC

Gradebook 0.33 0.50 0.50
(p = n=a) (2.08) (1.80) (1.80)
(n = 3)
Payroll 0.37 0.36 0.56
(p = n=a) (0.95) (0.60) (0.83)
(n = 5)

Last Test
I-TC I-BL I-NC

Gradebook 0.26 0.33 0.38
(p = 0:4464) (1.12) (1.06) (1.03)
(n = 18)
Payroll 0.30 0.60 0.77
(p = 0:0128) (0.60) (0.53) (0.66)
(n = 13)

(b) Information bases with M-BL

First X-mark
I-TC I-BL I-NC

Gradebook 1.14 1.39 1.50
(p = 0:0923) (1.32) (1.37) (1.39)
(n = 18)
Payroll 0.69 0.54 0.93
(p = 0:0695) (0.78) (0.65) (0.80)
(n = 13)

Second X-mark
I-TC I-BL I-NC

Gradebook 0.50 0.83 1.00
(p = n=a) (2.78) (2.57) (2.65)
(n = 3)
Payroll 0.69 0.54 0.94
(p = n=a) (1.17) (1.05) (1.22)
(n = 5)

Last Test
I-TC I-BL I-NC

Gradebook 0.27 0.76 0.79
(p = 0:0022) (1.52) (1.48) (1.61)
(n = 18)
Payroll 0.65 0.83 1.27
(p = 0:0199) (0.86) (0.88) (0.95)
(n = 13)

(c) Information bases with M-NC

Table 1: Isolating the information base factor. The mean (standard deviation) e�ectiveness comparing the
three information bases with the same mapping are shown. The information base with the greatest average
e�ectiveness is shown in bold. The \p" denotes p-values of the Friedman tests, and \n" denotes the number
of subjects measured at each point.

7

First X-mark
M-TC M-BL M-NC

Gradebook 0.39 0.83 1.15
(p = 0:0031) (0.50) (0.84) (1.32)
(n = 18)
Payroll 0.00 0.29 0.69
(p = 0:0060) (0.00) (0.42) (0.78)
(n = 13)

Second X-mark
M-TC M-BL M-NC

Gradebook 0.00 0.33 0.50
(p = n=a) (1.00) (2.08) (2.78)
(n = 3)
Payroll 0.15 0.37 0.69
(p = n=a) (0.46) (0.95) (1.17)
(n = 5)

Last Test
M-TC M-BL M-NC

Gradebook -0.06 0.26 0.27
(p = 0:1180) (0.54) (1.12) (1.52)
(n = 18)
Payroll 0.13 0.30 0.65
(p = 0:1220) (0.28) (0.60) (0.86)
(n = 13)

(a) Mappings with I-TC

First X-mark
M-TC M-BL M-NC

Gradebook 0.26 0.86 1.39
(p = 0:0004) (0.62) (1.00) (1.37)
(n = 18)
Payroll -0.17 0.35 0.54
(p = 0:0016) (0.40) (0.33) (0.65)
(n = 13)

Second X-mark
M-TC M-BL M-NC

Gradebook 0.16 0.50 0.83
(p = n=a) (0.76) (1.80) (2.57)
(n = 3)
Payroll 0.01 0.36 0.54
(p = n=a) (0.12) (0.60) (1.05)
(n = 5)

Last Test
M-TC M-BL M-NC

Gradebook 0.00 0.33 0.76
(p = 0:0424) (0.49) (1.06) (1.48)
(n = 18)
Payroll -0.12 0.60 0.83
(p = 0:0001) (0.48) (0.53) (0.88)
(n = 13)

(b) Mappings with I-BL

First X-mark
M-TC M-BL M-NC

Gradebook 0.39 0.94 1.50
(p = 0:0001) (0.50) (0.92) (1.39)
(n = 18)
Payroll 0.04 0.49 0.93
(p = 0:0005) (0.08) (0.40) (0.80)
(n = 13)

Second X-mark
M-TC M-BL M-NC

Gradebook 0.00 0.50 1.00
(p = n=a) (1.00) (1.80) (2.65)
(n = 3)
Payroll 0.18 0.56 0.94
(p = n=a) (0.49) (0.83) (1.22)
(n = 5)

Last Test
M-TC M-BL M-NC

Gradebook -0.04 0.38 0.79
(p = 0:0045) (0.51) (1.03) (1.61)
(n = 18)
Payroll 0.21 0.77 1.27
(p = 0:0036) (0.50) (0.66) (0.95)
(n = 13)

(c) Mappings with I-NC

Table 2: The mean (standard deviation) e�ectiveness comparing the mappings under each information base.

important though, perhaps due to the help of our robust-
ness feature, all three information bases were able to provide
e�ective feedback (indicated by positive values in the table)
in most cases, even in the presence of user mistakes. (As one
would expect, the mistakes did appear to have an impact
on technique e�ectiveness. Although there was almost no
change in e�ectiveness at the First X-mark feedback point
due to incorrect testing decisions, by the Last Test feedback
point, many e�ectiveness measures were adversely a�ected.)
The I-NC information base usually showed the highest av-

erage e�ectiveness in the context of these testing mistakes.
We discuss possible reasons for this superior robustness in
Section 6.

First X-mark
I-TC I-BL I-NC

Gradebook 1.10 1.42 1.56
(p = 0:1251) (1.27) (1.48) (1.38)
(n = 13)
Payroll 0.68 0.45 0.95
(p = 0:1095) (0.79) (0.55) (0.80)
(n = 10)

Second X-mark
I-TC I-BL I-NC

Gradebook 0.50 0.83 1.00
(p = n=a) (2.78) (2.57) (2.65)
(n = 3)
Payroll 1.28 0.85 1.24
(p = n=a) (1.00) (1.20) (1.52)
(n = 3)

Last Test
I-TC I-BL I-NC

Gradebook -0.11 0.58 0.59
(p = 0:0024) (1.36) (1.57) (1.65)
(n = 13)
Payroll 0.70 0.67 1.16
(p = 0:0665) (0.84) (0.71) (0.94)
(n = 10)

Table 3: The e�ectiveness of the information bases
with mapping M-NC for feedback points that were in
the context of at least one incorrect testing decision.

6. DISCUSSION
The results regarding RQ1 showed that the information

base factor can make a signi�cant di�erence in technique ef-
fectiveness. This result is in keeping with tradition. We also
found that the information bases' di�erences in e�ective-
ness were most pronounced at the end of debugging sessions,
most likely due to the increased testing information available
at the end of a session, allowing the techniques a greater op-
portunity to di�erentiate themselves from each other. How-
ever, note that e�ectiveness did not always get better as de-
bugging sessions progressed|in the case of Gradebook, all
nine information bases and mappings consistently got worse.
We believe this may relate to the mistakes the users made
in their testing, a point we will return to shortly.
Another surprise was the superior e�ectiveness of the I-NC

information base. The �rst surprising element in this result
is the fact that this information base is the least computa-
tionally expensive of the three we compared. The second
surprising element in this result is that the I-NC informa-
tion base is the information base least like those of many
traditional fault localization techniques, which tend to use
counts of passed and failed tests (as does I-TC) or dicing-like
approaches (as does I-BL) to generate feedback.
Turning to RQ2, the role of mapping in the fault local-

ization techniques' performance was quite pronounced. The
signi�cant di�erences occurred despite only small distinc-
tions among the three mappings (described in Section 3.1.2).
This result has two implications. First, regarding the de-

sign of fault localization techniques, our results suggest that
because mapping plays such a critical role, great care should
be exercised in selecting what mapping to include in a fault
localization technique. The second concerns the evaluation
of fault localization techniques. Since the information base
and mapping factors had signi�cant, independent roles in the
techniques' e�ectiveness, our results suggest that evaluating
each factor separately is necessary in order to obtain accu-
rate information as to the e�ectiveness of a fault localization
technique.

8

One result of RQ3 was that the end-user test suites con-
tained quite a few mistakes, which corroborates previous
�ndings [24]. The e�ects of these mistakes were far-reaching
too|although they numbered just under 25% of the tests,
they a�ected 74% of the debugging sessions, underlining the
seriousness with which this issue should be regarded. We
hypothesize that these mistakes caused the drop in the ef-
fectiveness of fault localization feedback in Gradebook as de-
bugging sessions progressed, while the larger size of Payroll
may have diluted the impact of these mistakes.
Given its \modest" nature, we were surprised that the

I-NC information base continued to generally provide the
most e�ective fault localization feedback even in the pres-
ence of mistakes. The reason for this may be tied to the
non-traditional nature of the I-NC information base. Un-
like I-TC and I-BL, I-NC does not contain sets of passed
and failed tests, which our results indicate are often cor-
rupted by end-user mistakes. Instead, I-NC reasons using
only (1) testing decisions made about the current test case,
combined with (2) previous fault likelihood calculations, in-
cluding trends observed in the relationships of X-marks to
checkmarks. This emphasis on recent testing decisions al-
lows the e�ects of past mistakes to recede more quickly than
is possible in the other two information bases.

7. RELATED WORK
Most fault localization research has been based on pro-

gram slicing [35] and dicing [21] techniques; see [32] for a
survey of this work. Our fault localization techniques draw
from information gleaned via program slicing, and make use
of that information using heuristics inspired by dicing.
There has been a great deal of work on fault localization

strategies for professional programmers (e.g., [1, 9, 14, 16,
18, 21, 25, 27, 33]). For example, Agrawal et al. [1] present a
technique, implemented as a tool called �slice, for locating
faults in traditional programming languages using execu-
tion traces from tests. This technique is based on displaying
dices of the program relative to one failing test and a set of
passing tests. Jones et al. [18] describe a similar approach
implemented as a tool called Tarantula. Unlike �slice,
Tarantula utilizes information from all passing and fail-
ing tests, coloring statements based on the likelihood that
each statement is faulty according to its ratio of failing tests
to passing tests. Francel and Rugaber [16] use execution
traces to build a directed graph that models the propaga-
tion of values, and then use output values to narrow the
region that should be examined. Using a faulty \run" and
a larger number of correct runs, Renieris and Reiss [27] pro-
pose a fault localization technique that compares a faulty
run with the correct run that most resembles that faulty
run, and reports \suspicious" areas of the program based
on this comparison.
Although work aimed speci�cally at aiding end users with

debugging is beginning to emerge, fault localization support
for end users remains scarce. Focusing speci�cally on fault
localization, Ayalew and Mittermeir [5] present a method of
\fault tracing" for spreadsheets based on \interval testing"
and slicing. This strategy reduces the search domain after it
detects a failure, and selects a single cell as the \most inu-
ential faulty". Woodstein [34] is a software agent that assists
e-commerce debugging. Ko and Myers [20] present a type of
fault localization via the Whyline, an \interrogative debug-
ging" technique. Users pose questions in the form of \Why

did. . . " or \Why didn't. . . " that the Whyline answers by
displaying visualizations of the program. Our approach dif-
fers from the �rst strategy by allowing users to interactively
improve feedback by providing the system with additional
information, and from all these strategies through the incor-
poration of a robustness feature.
These is other work that can help end users �nd faults.

S2 [31] provides a visual auditing feature in Excel 7.0: sim-
ilar groups of cells are recognized and shaded based upon
formula similarity, and are then connected with arrows to
show dataow. Igarashi et al. [17] present comprehension
devices that can aid spreadsheet users in dataow visual-
ization and editing tasks, and �nding faults. There is also
recent work to automatically detect certain kinds of errors,
such as errors in spreadsheet units [4, 15] and types [2].
There has also been work to help end users detect failures.

Statistical outlier �nding [22] and anomaly detection [26]
use statistical analysis and interactive techniques to direct
end-user programmers' attention to potentially problematic
areas during automation tasks. Finally, the assertions ap-
proach in Forms/3 automatically detects failures in spread-
sheet cells, and has been shown empirically to help end-user
programmers correct errors [11, 36].

8. CONCLUSIONS
Despite the growing number of end-user software develop-

ers, to date, relatively little research has sought to address
the dependability issues that arise for end-user software. We
are working on ways to bring software engineering method-
ologies to bear upon this problem, focusing in this paper on
fault localization for end-user programmers.
This paper separately considers two factors that make up

fault localization techniques|information base and mapping|
and investigates their impact on technique e�ectiveness. The
new contributions resulting from this work are:

� We show why traditional measures for fault localiza-
tion e�ectiveness, which are based on the points of
maximal system reasoning potential, are unsuitable
in evaluating e�ectiveness in interactive environments,
and present a set of measures that is instead based on
the location of user feedback points.

� Of the three information bases compared, I-NC|which
is the one least like those of many traditional fault lo-
calization techniques and also is the one least expen-
sive in time and space|was the most e�ective of our
three information bases, even in the presence of cor-
rupt testing information.

� The results clearly indicated the need to evaluate the
factor of information base separately from the factor
of mapping. As our results show, even (seemingly)
trivial changes in the mapping can result in signi�cant
di�erences in a technique's e�ectiveness, but these dif-
ferences would improperly be attributed to the tech-
nique as a whole if mapping had not been evaluated
separately from information base.

� The empirical results show that robustness is central in
end-user fault localization, with 74% of the debugging
sessions done in the context of at least one incorrect
testing decision. The results further show that, given
robustness features, it is possible for a technique to
maintain at least some positive e�ectiveness.

All four of the above �ndings run counter to prior research

9

in fault localization aimed at professional programmers. As
these results show, a number of traditional assumptions from
this prior work are not appropriate for fault localization in
end-user software environments.

9. ACKNOWLEDGMENTS
This work was supported in part by the EUSES Consor-

tium via NSF grant ITR-0325273.

10. REFERENCES
[1] H. Agrawal, J. Horgan, S. London, and W. Wong.

Fault localization using execution slices and dataow
tests. In Proceedings of the IEEE Sixth International
Symposium on Software Reliability Engineering, pages
143{151, Toulouse, France, October 1995.

[2] Y. Ahmad, T. Antoniu, and S. Goldwater. A type
system for statically detecting spreadsheet errors. In
Proceedings of the IEEE Conference on Automated
Software Engineering, October 2003.

[3] C. Allwood. Error detection processes in statistical
problem solving. Cognitive Science, 8(4):413{437,
1984.

[4] T. Antoniu, P. Steckler, S. Krishnamurthi,
E. Neuwirth, and M. Felleisen. Validating the unit
correctness of spreadsheet programs. In Proceedings of
the 26th International Conference on Software
Engineering, pages 439{448, Edinburgh, Scotland,
May 23{28, 2004.

[5] Y. Ayalew and R. Mittermeir. Spreadsheet debugging.
In Proceedings of the European Spreadsheet Risks
Interest Group, Dublin, Ireland, July 24{25, 2003.

[6] B. Boehm, C. Abts, A. Brown, and S. Chulani.
Software Cost Estimation with COCOMO II. Prentice
Hall PTR, Upper Saddle River, NJ, 2000.

[7] B. Boehm and V. Basili. Software defect reduction top
10 list. Computer, 34(1):135{137, January 2001.

[8] D. Brown, M. Burnett, G. Rothermel, H. Fujita, and
F. Negoro. Generalizing WYSIWYT visual testing to
screen transition languages. In Proceedings of the
IEEE Symposium on Human-Centric Computing
Languages and Environments, pages 203{210,
Auckland, New Zealand, October 28{31, 2003.

[9] P. Bunus and P. Fritzson. Semi-automatic fault
localization and behavior veri�cation for physical
system simulation models. In Proceedings of the
International Conference on Automated Software
Engineering, pages 253{258, Montreal, Quebec,
October 6{10, 2003.

[10] M. Burnett, J. Atwood, R. Djang, H. Gottfried,
J. Reichwein, and S. Yang. Forms/3: A �rst-order
visual language to explore the boundaries of the
spreadsheet paradigm. Journal of Functional
Programming, 11(2):155{206, March 2001.

[11] M. Burnett, C. Cook, O. Pendse, G. Rothermel,
J. Summet, and C. Wallace. End-user software
engineering with assertions in the spreadsheet
paradigm. In Proceedings of the 25th International
Conference on Software Engineering, pages 93{103,
Portland, OR, May 3{10, 2003.

[12] C. Corritore, B. Kracher, and S. Wiedenbeck. Trust in
the online environment. In HCI International,

volume 1, pages 1548{1552, New Orleans, LA, August
2001.

[13] D. Cullen. Excel snafu costs �rm $24m. The Register,
June 19, 2003. http://www.the-
register.co.uk/content/67/31298.html.

[14] R. DeMillo, H. Pan, and E. Spa�ord. Critical slicing
for software fault localization. In Proceedings of the
International Symposium on Software Testing and
Analysis, pages 121{134, San Diego, CA, January
8{10 1996.

[15] M. Erwig and M. Burnett. Adding apples and oranges.
In Proceedings of the International Symposium on
Practical Aspects of Declarative Languages, January
2002.

[16] M. Francel and S. Rugaber. Fault localization using
execution traces. In Proceedings of the ACM 30th

Annual Southeast Regional Conference, pages 69{76,
Raleigh, North Carolina, 1992.

[17] T. Igarashi, J. Mackinlay, B.-W. Chang, and
P. Zellweger. Fluid visualization of spreadsheet
structures. In Proceedings of the IEEE Symposium on
Visual Languages, pages 118{125, 1998.

[18] J. Jones, M. Harrold, and J. Stasko. Visualization of
test information to assist fault localization. In
Proceedings of the 24th International Conference on
Software Engineering, pages 467{477, Orlando,
Florida, May 19{25, 2002.

[19] M. Karam and T. Smedley. A testing methodology for
a dataow based visual programming language. In
Proceedings of the IEEE Symposium on

Human-Centric Computing Languages and
Environments, pages 280{287, Stresa, Italy, September
5{7, 2001.

[20] A. Ko and B. Myers. Designing the Whyline: A
debugging interface for asking questions about
program failures. In Proceedings of the ACM
Conference on Human Factors in Computing Systems,
page (to appear), Vienna, Austria, April 24{29, 2004.

[21] J. Lyle and M. Weiser. Automatic program bug
location by program slicing. In Proceedings of the 2nd

International Conference on Computers and
Applications, pages 877{883, 1987.

[22] R. Miller and B. Myers. Outlier �nding: Focusing user
attention on possible errors. In Proceedings of the
ACM Symposium on User Interface Software and
Technology, pages 81{90, November 2001.

[23] R. Panko. Finding spreadsheet errors: Most
spreadsheet errors have design aws that may lead to
long-term miscalculation. Information Week, page
100, May 1995.

[24] S. Prabhakararao, C. Cook, J. Ruthru�, E. Creswick,
M. Main, M. Durham, and M. Burnett. Strategies and
behaviors of end-user programmers with interactive
fault localization. In Proceedings of the IEEE
Symposium on Human-Centric Computing Languages
and Environments, pages 15{22, Auckland, New
Zealand, October 28{31, 2003.

[25] B. Pytlik, M. Renieris, S. Krishnamurthi, and
S. Reiss. Automated fault localization using potential
invariants. In Proceedings of the International

Workshop on Automated and Algorithmic Debugging,
September 2003.

10

[26] O. Raz, P. Koopman, and M. Shaw. Semantic anomaly
detection on online data sources. In Proceedings of the
International Conference on Software Engineering,
pages 302{312, Orlando, FL, May 2002.

[27] M. Renieris and S. Reiss. Fault localization with
nearest neighbor queries. In Proceedings of the 18th

IEEE International Conference on Automated
Software Engineering, pages 30{39, Montreal, Canada,
October 6{10 2003.

[28] G. Rothermel, M. Burnett, L. Li, C. Dupuis, and
A. Sheretov. A methodology for testing spreadsheets.
ACM Transactions on Software Engineering and
Methodology, 10(1):110{147, January 2001.

[29] J. Ruthru�, E. Creswick, M. Burnett, C. Cook,
S. Prabhakararao, M. Fisher II, and M. Main.
End-user software visualizations for fault localization.
In Proceedings of the ACM Symposium on Software
Visualization, pages 123{132, San Diego, CA, June
11{13, 2003.

[30] J. Ruthru�, S. Prabhakararao, J. Reichwein, C. Cook,
E. Creswick, and M. Burnett. Interactive, visual fault
localization support for end-user programmers.
Journal of Visual Languages and Computing, August
2004 (to appear).

[31] J. Sajanieme. Modeling spreadsheet audit: A rigorous
approach to automatic visualization. Journal on
Visual Languages and Computing, 11(1):49{82, 2000.

[32] F. Tip. A survey of program slicing techniques.
Journal on Programming Languages, 3(3):121{189,
1995.

[33] J. Voas. Software testability measurement for
assertion placement and fault localization. In
Proceedings of the 2nd International Workshop on
Automated and Algorithmic Debugging, pages
133{144, St. Malo, France, 1995.

[34] E. Wagner and H. Lieberman. Supporting user
hypotheses in problem diagnosis on the web and
elsewhere. In Proceedings of the International
Conference on Intelligent User Interfaces, pages
30{37, 2004.

[35] M. Weiser. Program slicing. IEEE Transactions on

Software Engineering, 10(4):352{357, July 1984.

[36] A. Wilson, M. Burnett, L. Beckwith, O. Granatir,
L. Casburn, C. Cook, M. Durham, and G. Rothermel.
Harnessing curiosity to increase correctness in
end-user programming. In Proceedings of the ACM
Conference on Human Factors in Computing Systems,
pages 305{312, Fort Lauderdale, FL, April 5{10, 2003.

[37] C. Wohlin, P. Runeson, M. Host, B. Regnell, and
A. Wesslen. Experimentation in Software Engineering.
Kluwer Academic Publishers, Boston, MA, 2000.

11

