
Interactive Fault Localization Techniques in a
Spreadsheet Environment

Joseph R. Ruthruff, Student Member, IEEE, Margaret Burnett, Senior Member, IEEE, and

Gregg Rothermel, Member, IEEE

Abstract—End-user programmers develop more software than any other group of programmers, using software authoring devices

such as multimedia simulation builders, e-mail filtering editors, by-demonstration macro builders, and spreadsheet environments.

Despite this, there has been only a little research on finding ways to help these programmers with the dependability of the software

they create. We have been working to address this problem in several ways, one of which includes supporting end-user debugging

activities through interactive fault localization techniques. This paper investigates fault localization techniques in the spreadsheet

domain, the most common type of end-user programming environment. We investigate a technique previously described in the

research literature and two new techniques. We present the results of an empirical study to examine the impact of two individual

factors on the effectiveness of fault localization techniques. Our results reveal several insights into the contributions such techniques

can make to the end-user debugging process and highlight key issues of interest to researchers and practitioners who may design and

evaluate future fault localization techniques.

Index Terms—Fault localization, debugging, end-user software engineering, spreadsheets, end-user programming.

�

1 INTRODUCTION

NOT long ago, most software was developed by
“professional” programmers, a large portion of whom

had reason to be interested in and understand software
engineering theory and practice. Today, however, end-user
programmers, who often have no reason to be interested in
or understand such theory and practice, write far more
software than professional programmers. In fact, Scaffidi
et al. [59] estimate that there were 80 million end-user
programmers in American workplaces in 2005 and that this
number will rise to 90 million by 2012, as compared to
fewer than 3 million professional programmers [59].1 The
software created by these end users is highly diverse,
including multimedia simulations, dynamic web pages,
e-mail filtering rules, and spreadsheets.

Unfortunately, there is reason to believe that end users

do not have adequate programming support. For example,

Boehm and Basili [9] observe that 40-50 percent of the

software created by end users contains nontrivial faults.

There is research [8], [42], [43] revealing that spreadsheets,

the most common type of software developed by end users,

often contain faults. These faults can be serious, costing
millions of dollars in some cases (e.g., [29], [42], [50]).
Perhaps even more disturbing, spreadsheet developers
often express unwarranted confidence in the quality of
these programs [20], [43].

A problem for the software engineering community,
then, is to provide end users with better support for their
software development activities. For example, end users,
like professional programmers, need strategies for improv-
ing the dependability of their software, such as testing and
anomaly detection methodologies to help them detect
failures, and fault localization techniques to help them find
the causes of failures. Fault localization techniques for end-
user programmers are the aspect of interest in this paper.

Software engineering researchers have long recognized
the importance of fault localization strategies and have
invested considerable effort into bringing fault localization
techniques to professional programmers (e.g., [3], [11], [19],
[22], [28], [31], [38], [46], [49], [63]) and similar efforts,
directed at the needs of end users, could be worthwhile.
However, significant differences exist between professional
and end-user software development [54] and these differ-
ences have ramifications for fault localization techniques by
acting as constraints on the types of strategies suitable for
end users. Four differences of particular interest to this
work are:

1. the fact that end users rarely have knowledge of
software engineering theory and practices, which
can be necessary to use fault localization techniques
or understand their feedback,

2. the modeless and interactive nature of most end-
user programming environments, which prevents a
batch processing of information by techniques before
displaying fault localization feedback,

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 32, NO. 4, APRIL 2006 213

. J.R. Ruthruff and G. Rothermel are with the Department of Computer
Science and Engineering, University of Nebraska-Lincoln, Lincoln, NE
68588. E-mail: {ruthruff, grother}@cse.unl.edu.

. M. Burnett is with the School of Electrical Engineering and Computer
Science, Oregon State University, Corvallis, OR 97331.
E-mail: burnett@eecs.orst.edu.

Manuscript received 19 July 2005; revised 29 Nov. 2005; accepted 30 Jan.
2006; published online 27 Apr. 2006.
Recommended for acceptance by J. Offutt.
For information on obtaining reprints of this article, please send e-mail to:
tse@computer.org, and reference IEEECS Log Number TSE-0201-0705.

1. Scaffidi et al. [59] identify specific “end-user subpopulations” such as
“Managerial and Professional,” “Technical, Sales, Administration,” “Ser-
vice,” and so on. They derived their numbers using recent Bureau of Labor
Statistics data and projections.

0098-5589/06/$20.00 � 2006 IEEE Published by the IEEE Computer Society

3. a lack of organized testing infrastructures in end-
user software development, thereby limiting the
usefulness of techniques that require large bases of
information to operate effectively, and

4. the unreliability of information used by techniques,
which has been observed in previous studies
involving end users [33], [34], [57], but has rarely
been considered in fault localization techniques
designed for professional programmers.

To date, little research has sought to bring fault
localization strategies specifically to end-user programmers,
especially in the context of these four differences. In prior
work [57], we presented a fault localization technique for
spreadsheet users that considers these differences. How-
ever, this technique maintains a large base of information
with which to provide fault localization feedback and, thus,
the costs of this technique may be too great as spreadsheet
size increases. We therefore present algorithms for two new
techniques for spreadsheet users that were designed with
these cost concerns in mind.

Our preliminary, formative investigations [53], [57] into
the effectiveness of this fault localization support show that
it can help pinpoint the location of faults and can help end
users find faults by leading them to employ more effective
debugging strategies. However, our results also show that,
at times, this support can be ineffective. Analysis of the
cases in which the support was not effective suggests that
there are actually two distinct factors involved in the design
of a fault localization technique that could impact the
technique’s performance.

We have therefore designed and conducted a controlled
experiment analyzing the role of these two factors in fault
localization techniques. The first factor—information base—
refers to the type of information stored and maintained by a
technique in order to provide feedback and is commonly
the subject of the research literature on fault localization.
The second factor—mapping—refers to the way in which a
technique maps the information into feedback, including
both the calculation of this feedback using the information
base and displaying the feedback in a manner that is
compatible with the surrounding environment. Compared
to the information base factor, this mapping factor has
received scant attention in the research literature. Further,
in our search of the literature, we find no previous work
that has separated the impact of these two factors on a fault
localization technique’s effectiveness.

This work makes five primary contributions. The first
contribution is a presentation of three unique fault localiza-
tion techniques for spreadsheet users—two of which are
presented for the first time in detail in this paper—that are

designed to accommodate the previously mentioned differ-
ences between professional and end-user programming.
The second contribution is a decomposition of fault
localization techniques into two separate factors—informa-
tion base and mapping—for the purposes of both their
design and their evaluation. The third contribution is an
experiment investigating the impact of both the information
base and mapping factors on the effectiveness of fault
localization techniques. Our results indicate that each factor
significantly impacts technique effectiveness; thus, both
must be considered when developing fault localization
techniques. Furthermore, our experiment’s design sheds
insight into how interactive fault localization techniques
should be evaluated in general. The fourth contribution
involves adding to the end-user software engineering
literature by providing empirical data on three fault
localization information bases and three mappings that
can be used in fault localization techniques for spreadsheet
users. The fifth contribution is a corroboration of the
growing body of evidence that end users make mistakes
when performing interactive testing and debugging tasks,
which has implications for the types of techniques that may
be suitable for end-user programmers.

The remainder of this paper is organized as follows:
Section 2 describes the end-user software engineering
devices with which our fault localization techniques are
integrated and discusses other related work; Section 3
presents three fault localization techniques for spreadsheet
environments with algorithms and complexity analyses;
Section 4 decomposes our techniques into the two factors of
information base and mapping and discusses the role of
these two factors in fault localization techniques in general;
Section 5 describes the experiment to investigate the impact
of these two factors; and Section 6 concludes.

2 BACKGROUND

2.1 The WYSIWYT Testing Methodology

Our end-user software engineering research [14] aims to
provide software development support to end-user pro-
grammers. One component in this strategy is the “What
You See Is What You Test” (WYSIWYT) testing methodol-
ogy [15], [51]. Our fault localization techniques are proto-
typed in the spreadsheet paradigm, in conjunction with the
WYSIWYT testing methodology, so we briefly describe that
methodology here.

Fig. 1 presents an example of WYSIWYT in Forms/3 [12],
a spreadsheet language utilizing “free-floating” cells in

214 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 32, NO. 4, APRIL 2006

Fig. 1. An example of WYSIWYT in the Forms/3 spreadsheet environment.

addition to traditional spreadsheet grids. Forms/3 is a
research prototype that captures the essence of the spread-
sheet paradigm. It does not have all the features of
commercial systems such as Excel, but those systems do
not have testing and debugging support to the extent
available in Forms/3. Instead, Excel has heuristics that
warn of some types of errors. Both systems also have
arrows that point out dataflow. (We describe WYSIWYT’s
dataflow arrows shortly.)

WYSIWYT’s underlying assumption is that, as a user
incrementally develops a spreadsheet, he or she is also
testing incrementally. Because the intended audience is end
users, all communication is performed through visual
devices. In WYSIWYT, untested cells that have nonconstant
formulas are given a red border (light gray in this paper). (It
is assumed that cells whose formulas are simply constants
do not need to be tested.) For example, in Fig. 1, the
Course_Grade cell has never been tested; hence, its border
is red (light gray). The borders of such cells remain red until
they become more “tested.”

Tests can occur at any time—intermingled with formula
edits, formula additions, and so on. The process is as
follows: Whenever a user notices a correct value, he or she
can place a checkmark (

p
) in the decision box at the corner

of the cell he or she observes to be correct: This testing
decision completes a successful “test.” Such checkmarks can
increase the “testedness” of cells, which is reflected by
adding more blue to cell borders (more black in this paper).
For example, in Fig. 1, the Course_Avg cell has been given
a checkmark, which is enough to fully test this cell, thereby
changing its border from red to blue (light gray to black).
Further, because a correct value in a cell c depends on the
correctness of the cells contributing to c, these contributing
cells participate in c’s test. Consequently, in this example,
the border of cell Final_Percentage also turns blue
(black).2

WYSIWYT testedness colors reflect the use of a dataflow
test adequacy criterion [37], [40], [47], which we term du-
adequacy and define as follows: A definition is a point in the
source code where a variable (cell) is assigned a value and a
use is a point where a variable’s value is used. A definition-
use pair, or du-pair, is a pair consisting of a definition of a
variable and a use of that variable. A du-adequate test suite,
which is based on the notion of an output-influencing

all-definition-use-pairs-adequate test suite [23], is a test suite
that exercises each du-pair in such a manner that it
participates (dynamically) in the production of an output
explicitly validated by the user.

In addition to providing feedback at the cell level,
WYSIWYT provides users with feedback about testedness
at two other granularities. A “percent testedness” indicator
provides testedness feedback at the spreadsheet granularity
by showing a bar that fills and changes color from red to
blue (following the same colorization continuum as cell
borders) as the overall testedness of the spreadsheet
increases; in Fig. 1, the spreadsheet is 44 percent tested.
Testedness feedback is also available at a finer granularity
through the colors of dataflow arrows, which can be shown
at the cell level (in Fig. 1, the user has triggered dataflow
arrows for the Course_Avg cell) or at the subexpression
level (shown in Fig. 2). The system also provides testedness
feedback through an intelligent explanation system [67],
implemented via “on-demand” tooltips that display the
testedness of any specified cell or dataflow relationship. In
Fig. 1, the user has chosen to examine a black arrow leading
into Course_Avg, which shows that the relationship
between Quiz_Avg and Course_Avg is 100 percent tested.

WYSIWYT’s purpose is to help identify failures and it
has been empirically shown to be useful to both program-
mers and end users [36], [52]; however, it does not, by itself,
explicitly support a debugging effort to localize the fault(s)
causing an observed failure. Providing this debugging
support is the aim of our fault localization techniques,
which build on our WYSIWYT methodology. We describe
these fault localization techniques in Section 3.

2.2 Related Work

Most fault localization research has been based on program
slicing [66] and dicing [16], [38] techniques; Tip [62] surveys
much of this work. In general, a program slice relative to a
variable v at a program point p is the set of all statements in
the program that affect the value of v at p. Our fault
localization techniques draw from information gleaned via
dynamic program slicing [2], [35] and make use of that
information using heuristics inspired by dicing.

2.2.1 Fault Localization for Professional Programmers

There has been a great deal of work on fault localization
strategies for professional programmers (e.g., [3], [11], [19],
[22], [28], [31], [38], [46], [49], [63]). For example, Agrawal
et al. [3] present a technique, implemented as a tool called
�slice, for locating faults in traditional programming

RUTHRUFF ET AL.: INTERACTIVE FAULT LOCALIZATION TECHNIQUES IN A SPREADSHEET ENVIRONMENT 215

2. For color blind users, WYSIWYT displays red colors in light gray, blue
colors in black, and “intermediate” colors between red and blue along a
light-gray-to-black continuum.

Fig. 2. An example of dataflow arrows at the subexpression level.

languages using execution traces from tests. This technique
is based on displaying dices of the program relative to one
failing test and a set of passing tests. Jones et al. [31]
describe a similar approach implemented as a tool called
TARANTULA. Unlike �slice, TARANTULA utilizes informa-
tion from all passing and failing tests, coloring statements
based on the likelihood that each statement is faulty
according to its ratio of failing tests to passing tests. Francel
and Rugaber [28] use execution traces to build a directed
graph that models the propagation of values and then use
output values to narrow the region that should be
examined. Using a faulty “run” and a larger number of
correct runs, Renieris and Reiss [49] propose a fault
localization technique that compares a faulty run with the
correct run that most resembles that faulty run and reports
“suspicious” areas of the program based on this compar-
ison. Two ways that our methods differ from all of these
approaches are that our methods 1) are targeted at end
users and 2) are interactive and incremental at the
granularity of revising fault likelihood estimations imme-
diately after each single program edit.

Pan and Spafford [41] developed a family of 20 heuristics
appropriate for automated fault localization. These heur-
istics are based on the program statements exercised by
passing and failing tests. Our strategies relate to three
heuristics that involve 1) the set of all program points
exercised by failed tests, 2) program points that are
exercised by a large number of failed tests, and 3) cells
that are exercised by failing tests and that are not exercised
by passing tests.

Approaches similar to fault localization have been
considered in domains other than software engineering.
For example, in the domain of systems engineering, Failure
Mode Effect Analysis (FMEA) [61] is a methodological
approach to help engineers identify and propagate the
effect of failure modes in products and processes. In the
programming language domain, the propagation of type
information in local type inference [45] has similarities to
our fault localization techniques, especially the Nearest
Consumers Technique in Section 3.2.2.

2.2.2 Fault Localization for End-User Programmers

Although work aimed specifically at aiding end users with
debugging is beginning to emerge, fault localization
support for end users remains scarce. Focusing specifically
on fault localization, Ayalew and Mittermeir [7] present a
method of “fault tracing” for spreadsheet programs based
on “interval testing” and slicing. This strategy reduces the
search domain after it detects a failure and selects a single
cell as the “most influential faulty.” Woodstein [64], [65] is a
Web interface agent that assists e-commerce debugging by
allowing users to directly interact with Web pages. Users
can invoke an inspector that converts Web page data into
buttons, which the user can manipulate to traverse
transactions. Ko and Myers [34] present a type of fault
localization via the Whyline, an “interrogative debugging”
technique. Users pose questions in the form of “Why
did. . . ” or “Why didn’t. . . ” that the Whyline answers by
displaying visualizations of the program. This work builds
on their model of programming errors [33], which classifies
errors and their causes. Our approach differs from the first

strategy by allowing users to interactively improve feed-
back by providing the system with additional information
and from all these strategies through the incorporation of a
robustness feature built into our techniques (described in
Section 3).

There is other work that can help end users find faults.
S2 [58] provides a visual auditing feature in Excel 7.0:
Similar groups of cells are recognized and shaded based
upon formula similarity and are then connected with
arrows to show dataflow. Clermont and Mittermeir [17],
[18] define methods for aggregating cells based on various
properties in order to find structure in spreadsheets.
Igarashi et al. [30] present comprehension devices that can
aid spreadsheet users in dataflow visualization and editing
tasks and finding faults. There is also recent work to
automatically detect certain kinds of errors, such as errors
in spreadsheet units [1], [6], [24] and types [4]. Our
approach differs from these approaches by harnessing the
relationship between testing and debugging to provide
explicit fault localization feedback.

There has also been work to help end users detect
failures. Statistical outlier finding [39] and anomaly detec-
tion [48] use statistical analysis and interactive techniques to
direct end-user programmers’ attention to potentially
problematic areas during automation tasks. Also, the
assertions approach in Forms/3 automatically detects fail-
ures in spreadsheet cells and has been shown empirically to
help end-user programmers correct errors [13], [67].

3 THREE INTERACTIVE FAULT LOCALIZATION

TECHNIQUES

This section describes our approach to fault localization for
end users. We begin by presenting an overview of our fault
localization approach, including the goals of our design. We
then present three fault localization techniques, along with
accompanying algorithms and complexity analyses.

3.1 Overview and Goals

Fault localization support generally attempts to help
programmers locate the causes of failures in two ways:
1) by indicating the areas in a program that the user should
search when attempting to locate a fault, thereby reducing
the user’s search space from the entire program to a small
subset, and 2) by indicating the areas in this search space
that are most likely to contain a fault, thereby prioritizing the
sequence of the user’s search through this space.

In our particular prototype, which follows the spread-
sheet paradigm, WYSIWYT serves as a springboard for fault
localization: Instead of noticing that a cell’s value is correct
and placing a checkmark, a user might notice that a cell’s
value is incorrect (a failure) and place an “X-mark.”
X-marks trigger a fault likelihood estimation for each cell
(with a nonconstant formula) that might have contributed
to the failure. As its name suggests, fault likelihood
estimates the possibility that a fault resides in the formula
of a cell. In this paper, fault likelihood estimations are in the
form of categorical levels such as “Low,” “Medium,” and
“High.” (Quantitative ranges such as 0-100 percent are not
used because our techniques can never be 100 percent
certain that a fault does, or does not, reside in a cell’s

216 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 32, NO. 4, APRIL 2006

formula.) Fault likelihood, updated for each affected cell
after any testing decision or formula edit, is represented by
visually highlighting the interior of suspect cells in shades
of red (gray in this article).3 This serves as our first goal of
fault localization: reducing the user’s search space.

Fault likelihood grows as additional X-marks are placed
on spreadsheet cells. As the fault likelihood of a particular
cell grows, the suspect cell is highlighted in increasingly
darker shades of red (gray). The darkest cells are estimated
to be the most likely to contain the fault and are the best
candidates for the user to consider in trying to debug.
(Similarly, as fault likelihood shrinks due to fewer X-marks
or additional checkmarks, suspect cells are highlighted in
lighter shades of red or gray.) This serves our second goal of
fault localization: helping end users prioritize their search.

For example, suppose that, after working a while, the user
has worked the Gradebook program to the stage shown in
Fig. 3a. At that point, the user notices that values of the
Exam_Avg and Midterm1_Perc cells are incorrect: The
values are obviously too high. Upon spotting these failures,
the user places X-marks in the two cells, triggering fault
likelihood estimations for all cells whose values dynamically
contributed to the values in Exam_Avg and Midterm1_

Perc.4 The results of these fault likelihood estimations are
communicated to the user by highlighting the interiors of cells

suspected of containing faults (i.e., with nonzero estimated

fault likelihood) in red (gray). The cells deemed by the system
most likely to contain the fault (i.e., have higher estimated
fault likelihood) are highlighted the darkest. An example is

shown in Fig. 3b. The Midterm1_Perc has an estimated
fault likelihood of “High” (indicated by the darkest high-

lighting), Midterm_Avg, and Exam_Avg cells have an
estimated fault likelihood of “Medium” (indicated by a
medium highlighting), and the Curved_Midterm3 and

Final_Percentage cells have an estimated fault likelihood
of “Very Low” (indicated by the lightest highlighting). The
testedness borders of the cells with nonzero fault likelihood

have faded to draw visual attention to the fault likelihood
component of the cell.5

3.2 Three Fault Localization Techniques

Computing exact fault likelihood values for cells in order to

display these fault localization colors, of course, is not
possible. Instead, we combine heuristics with deductions
made by analyzing the source code (formulas) and the

user’s tests to estimate fault likelihood. Because these
techniques are meant for highly interactive visual environ-
ments, the computational costs of the techniques are

especially important.
We now describe the algorithms for three fault localiza-

tion techniques, including the information used by each

RUTHRUFF ET AL.: INTERACTIVE FAULT LOCALIZATION TECHNIQUES IN A SPREADSHEET ENVIRONMENT 217

Fig. 3. (a) A Gradebook program at an early stage of testing. (b) The user notices incorrect values in Exam_Avg and Midterm1_Perc—the values

are obviously too high—and places an X-mark in each cell’s decision box. The user then hovers over the resulting dark highlighting in

Midterm1_Perc to see an explanation of what the dark highlighting indicates.

3. For color-blind users, as with WYSIWYT, the colors representing the
fault likelihood of cells are displayed along a light-gray-to-black continuum.

4. In fact, in Fig. 3, the fault is an incorrect mathematical operation in the
Midterm1_Perc formula (not shown in the figure).

5. Recent work [56] has suggested that certain facets of debugging may
be improved by not fading these borders.

technique for making deductions, the algorithms each
technique uses or maintains in drawing further inferences
from these deductions, and how much each technique’s
reasoning costs. In these descriptions, we use producer-
consumer terminology to keep dataflow relationships clear,
that is, a producer of a cell c contributes to c’s value and a
consumer of c uses c’s value. Using slicing terminology [66],
producers are all the cells in c’s backward slice and
consumers are all the cells in c’s forward slice. c is said to
participate in a test (or to have a test) if the user has made a
testing decision (with an X-mark or checkmark) on c or any
of c’s consumers.

3.2.1 The Blocking Technique

The Blocking Technique considers the dataflow relation-

ships existing in the testing decisions that reach a cell c—

hereafter, we refer to such reaching decisions as unblocked—

and whether tests are blocked from c by one or more other

tests. It leverages these dataflow relationships with the

testing information to estimate the likelihood that each cell

in a program contains faults. Specifically, the technique

observes the number of passed and failed tests that reach c

(i.e., are not blocked from c by one or more other tests). This

is accomplished by maintaining, for each cell c, 1) informa-

tion on the tests to which that cell contributes and

2) dataflow information to determine which of those tests

are blocked and unblocked from the cell. Program dicing

[16], [38] uses an approach that is similar to our Blocking

Technique.
Fig. 4 demonstrates the Blocking Technique on the

Gradebook spreadsheet from Section 3.1. The two failures,
noted with X-marks by the user, have contributed to fault
likelihood estimations for the Midterm1_Perc, Exam_

Avg, and Midterm_Avg cells. However, the strategically
placed checkmarks on Final_Percentage and Curved_

Midterm3 block most of the effects of these X-marks,
causing those two cells to be assigned a lower fault
likelihood. (In addition, had the Midterm1_Perc or
Exam_Avg cells had consumers with checkmarks for the
current set of input values, then the X-marks in these two
cells would have blocked the effects of these checkmarks.)

There are three basic interactions the user can perform
that could potentially trigger action by the Blocking
Technique. The interactions are: 1) Users might change a
constant cell’s value (analogous to changing test cases by
running the program with a different input value), 2) users
might place an X-mark or checkmark in a cell’s testing
decision box (analogous to adding another test), or 3) users

might add to or modify a nonconstant cell’s formula
(analogous to changing the program’s logic).6

Changing Test Cases. Suppose that the user changes a

constant cell’s value and n nonconstant spreadsheet cells

are affected. Any testing decisions on these n cells would

have to be removed, although the effects of these decisions

on fault likelihood information are preserved. (Testing

decisions are also removed when a cell is affected by a

change in the spreadsheet’s program logic.) The cost of

removing testing decisions on n cells is therefore OðnÞ.
However, this cost is no more than that of the cell traversal

that is already required by most spreadsheet evaluation

engines to update the values of affected cells. Furthermore,

the Blocking Technique can be implemented to piggy-back

off of the evaluation engine’s cell traversal to remove the

testing decisions on affected cells while their values are

being updated. This would result in only one OðnÞ pass

over the affected cells, rather than two OðnÞ passes.
Making a Testing Decision. When X-marks or check-

marks are placed by the user, the Blocking Technique
must perform maintenance on its data structures to
account for the testing decision that was placed or
removed, as well as to determine which tests are blocked
or unblocked by other tests. To do this, the technique’s
algorithm (see Algorithm 1) makes three passes over the
dynamic backward slice of the cell in which a testing
decision was made. The first two of these three passes are
responsible for updating data structures. The third pass,
which is explained in Section 3.2.1, is responsible for
mapping the information base of the technique into a fault
likelihood level for each cell in updateGUIList and
updating the user interface accordingly.

Algorithm 1 The MarkPlaced subroutine for the Blocking

Technique’s algorithm and the accompanying BuildCell

List subroutine and UpdateBlockingInfo function.

MarkPlaced is called when a testing decision is made on

or removed from a cell. (“by Ref” indicates parameters

passed by reference.)

1: procedure MarkPlaced (markedCell, aTest)

2: let markedCell’s current testing decision be aTest
3: BuildCellList(markedCell, topoCellList

by Ref)

4: remove first element from topoCellList

218 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 32, NO. 4, APRIL 2006

Fig. 4. The Gradebook program with the Blocking Technique.

6. Variations on these interactions also trigger activity. For example,
removing a test (e.g., removing a checkmark) constitutes a change in the
testing information base of the system, thereby requiring the same type of
action as if a test had been added. However, we will ignore these variations
because they are obvious and do not add materially to this discussion.

5: let updateGUIList = UpdateBlockingInfo

(topoCellList, markedCell, aTest)

6: estimate fault likelihood and update user interface for

every cell in updateGUIList

7: end procedure

8:

9: procedure BuildCellList(aCell, topoCellList

by Ref)

10: if aCell has not yet been visited by BuildCellList
then

11: for all aUpwardCell that dynamically affect aCell

do

12: BuildCellList(aUpwardCell, topoCellList

by Ref)

13: end for

14: add aCell to beginning of topoCellList

15: end if

16: end procedure

17:

18: function UpdateBlockingInfo(topoCellList,

markedCell, aTest)

19: add markedCell to updateGUIList

20: if aTest was added to markedCell by user then

21: record that aTest blocks all tests reaching

markedCell, and add aTest to markedCell
22: else

23: {aTest was removed}

24: unblock tests formerly blocked by aTest and

remove aTest from markedCell

25: end if

26: propagate markedCell’s tests to create dynamically

affecting cells’ workLists

27: for all sortedCell in topoCellList do

28: add sortedCell to updateGUIList

29: if sortedCell currently has a testing decision (i.e.,

an X-mark or checkmark) then

30: make any test in sortedCell’s workList that is

new to sortedCell a blocked test if that test

is blocked by sortedCell’s testing decision

31: end if

32: copy sortedCell’s workList changes to
sortedCell’s tests

33: propagate sortedCell’s workList changes to the

workLists of affecting cells

34: end for

35: return updateGUIList

36: end function

The job of BuildCellList is to build a “cells-to-

process” list in topological order. It performs a recursive

depth-first search on the dynamic backward slice of the cell

marked with the aTest testing decision. In doing so, it

visits (in topological order) the cells in the dynamic

backward slice, adding them into the topoCellList,

which is returned to MarkPlaced. The cell on which the

aTest testing decision was made (i.e., the cell actually

marked by the user) is the first element in the stack. This

first element is not needed by UpdateBlockingInfo, so it

is discarded in line 4.

UpdateBlockingInfo is responsible for maintaining
the “blocking” characteristics of the Blocking Technique. Its
job is to propagate the testing decision to the cellList

returned by BuildCellList and to track whether that
decision is blocked by (or blocks) another testing decision.
This is done by using a (temporary) workList for each cell.
A workList tracks the “blocking” changes being made to
its respective cell due to this new testing decision.7

The blocked and unblocked tests for markedCell are
propagated to the workList of each cell dynamically
affecting markedCell in line 26. Lines 27-31 process the
topologicalcellList containing the dynamic back-
ward slice that was previously created in BuildCellList.
The workList of each cell in this list with a testing decision
is checked for newly propagated tests that may be blocked
by the cell’s current testing decision. When this is complete,
the changes are applied to each cell’s information base in
line 32 and propagated to affecting cells in line 33. One of
the implementation details in these data structures is that,
when marks are blocked, the number of paths in which they
are blocked is also tracked. This characteristic is used to
determine when a testing decision is no longer blocked by
any other testing decisions.

Let c be a cell in which a mark was placed, let p be the
number of c’s producers (cells in c’s dynamic backward
slice), let e be the number of edges in the graph consisting of
c’s dynamic backward slice, and let m be the total number
of testing decisions (X-marks and checkmarks) in the
program’s history. In the MarkPlaced algorithm, Build
CellList (line 3) is simply a depth-first search and,
therefore, has Oðpþ eÞ runtime complexity. Update

BlockingInfo (line 5) iterates over the p producing cells
to propagate tests to the worklists of the producing cells
using the e edges,and then to process those worklists. When
propagating tests to worklists (line 26), insertion and
removal operations are performed on sets of blocked and
unblocked tests. These operations consist of inserting (or
removing) the dataflow paths from one testing decision in
m to potentially all other decisions in m. Because as many as
m tests could be propagated to a workList and require m
insertions or removals of dataflow paths, the worst-case
performance of these operations is Oðm2Þ. As a result, the
second pass of this algorithm has a worst-case runtime
complexity of Oððpþ eÞ �m2Þ. The third pass updates the
user interface for all p cells, thereby having a complexity of
OðpÞ. The runtime complexity of making a testing decision
is dominated by the second pass. Therefore, the worst-case
runtime complexity of making a testing decision is
Oððpþ eÞ �m2Þ.

Changing the Spreadsheet Logic. When the user edits a
nonconstant formula or changes a constant formula into a
nonconstant formula, the spreadsheet’s logic is changed. In
this case, the NewFormula algorithm, which is outlined in
Algorithm 2, is invoked. This algorithm requires the cell in
which the edit was made and the cell’s new formula. It is
responsible for removing the effects of all testing decisions

RUTHRUFF ET AL.: INTERACTIVE FAULT LOCALIZATION TECHNIQUES IN A SPREADSHEET ENVIRONMENT 219

7. Temporary worklists are used, rather than propagating markCell’s
tests straight to an affecting cell’s information base of tests, for efficiency
reasons. This strategy allows the technique to process only those tests
from markedCell and not all the tests of every sortedCell in
topoCellList.

to which the cell contributes. As before, the actual fault

likelihood estimation for each applicable cell is made when

the user interface for those cells is updated (in line 8).

Algorithm 2 The NewFormula routine for the Blocking

Technique and the accompanying UndoTestEffects

function.

1: procedure NewFormula (editedCell)

2: if editedCell contributes to any blocked or

unblocked tests then

3: let allEditedCellTests be all the testing

decisions affecting editedCell

4: for all aTest in allEditedCellTests do

5: call UndoTestEffects(aMarkedCell,

editedCell, allEditedCellTests),

where aMarkedCell is the cell where aTest

was made, and add returned lists to

updateGUIList

6: end for

7: end if

8: estimate fault likelihood and update user interface for

every cell in updateGUIList

9: end procedure

10:

11: function UndoTestEffects(aMarkedCell,

editedCell, allEditedCellTests)
12: if aMarkedCell has already been visited in this pass

then

13: return null

14: end if

15: add aMarkedCell to updateGUIList

16: if aMarkedCell currently has a testing decision

aTest in allEditedCellTests then

17: remove aTest from aMarkedCell

18: end if

19: if aMarkedCell was affected by editedCell then

20: remove all tests from aMarkedCell reaching

editedCell and remove WYSIWYT

testedness on aMarkedCell from these tests

21: end if

22: call UndoTestEffects(aCellToUpdate,

editedCell, allEditedCellTests) for all
aCellToUpdate statically affecting

aMarkedCell and add returned lists to

updateGUIList

23: return updateGUIList

24: end function

In Algorithm 2, the UndoTestEffects function uses

line 22 to perform a recursive, depth-first search on the cells

that statically affect aMarkedCell, where aMarkedCell is

a cell on which a testing decision was made that affects the

editedCell that was given the new formula. UndoTest

Effects removes all testing decisions to which the

editedCell contributes in line 17, as well as the effects

of those decisions on affecting cells in line 20. (Obviously,

the algorithm does not remove the effects of a testing

decision that was placed on a value that was not affected by

the edited cell.) For efficiency, this depth-first search avoids

visiting the same cell’s formula data structure twice during
a single invocation of NewFormula.

Let p be the number of cells in c’s static backward slice.
Also, let e be the number of edges in the dataflow
multigraph8 consisting of c’s static backward slice and let
m be the total number of testing decisions (X-marks and
checkmarks) in the program’s history. The algorithm
performs a depth-first search on the cells that are statically
affected by the edited cell. Because the algorithm avoids
visiting cells more than once, only p cells are visited. For
each of these cells, at least one removal operation must be
performed on sets of lists of tests (see line 17). This
operation has a worst-case runtime complexity of Oðm2Þ.
Also, the UndoTestEffects function visits the incoming
edges in the dataflow multigraph for c. The final runtime
complexity of the NewFormula algorithm is therefore
Oðeþ p �m2Þ.

Mapping Information to Estimated Fault Likelihood.
The Blocking Technique maps its base of information
into fault localization feedback as follows: Let
NumBlockedFailedTestsðcÞ (NBFT) be the number of
cell c’s consumers that are marked incorrect, but are
blocked by a value marked correct along the dataflow path
from c to the value marked failed. Furthermore, let
NumUnblockedFailedTestsðcÞ (NUFT) be the result of
subtracting NBFT from the number of c’s consumers.
Finally, let NumBlockedPassedTestsðcÞ (NBPT) and
NumUnblockedPassedTestsðcÞ (NUPT) have definitions
similar to those above.

If c has no failed tests, the fault likelihood of c is
estimated to be “None.” If c has failed tests but none are
reachable (i.e., unblocked), then c’s fault likelihood is
estimated to be “Very Low.” This property ensures that
every cell that might have contributed to the computation of
an incorrect value will be assigned some nonzero fault
likelihood. This reduces the chance that the user will
become frustrated searching for a fault that is not in any of
the highlighted cells, which could ultimately lead to a loss
of a user’s trust in the system. The property also acts as a
robustness feature by ensuring that (possibly incorrect)
checkmarks do not bring the fault likelihood of a faulty cell
to zero.

If the previous two conditions do not hold, the Blocking
Technique maps this testing information into an estimated
fault likelihood for c using (1):

fault likelihoodðcÞ ¼ maxð1; 2 �NUFT �NUPT Þ: ð1Þ

This estimated fault likelihood is transformed into a “0-5”
fault likelihood level using the scheme presented in Table 1.9

We evaluate the effectiveness of this mapping in Section 5.
The formula in (1) was chosen to ensure that, as the

NUFT of c increases, the fault likelihood of c increases, that
is, fault likelihood is proportional to the number of
unblocked X-marks in which c has participated. In contrast,
as the NUPT of c increases, the fault likelihood of c
decreases, that is, fault likelihood is inversely proportional

220 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 32, NO. 4, APRIL 2006

8. The edges are those of a multigraph because a cell can be referenced
multiple times in a formula.

9. Note that the “Very Low” fault likelihood level is not included in
Table 1. Rather, that level is reserved exclusively for the previously
mentioned robustness feature.

to the number of unblocked checkmarks in which c has
participated. (NUFT was given a higher weight than
NUPT to prevent an equal number of X-marks and
checkmarks from canceling each other out.) Also, if c or
any of its consumers have at least one failed test, then the
fault likelihood of c will be greater than zero. This is
because the technique assigns c “Very Low” fault likelihood
if none of these failed tests are reachable and, otherwise,
uses (1), which ensures a fault likelihood greater than zero
through its “max” operation.

3.2.2 The Nearest Consumers Technique

In interactive end-user programming environments, fault
localization feedback can be invoked during any interactive
testing or debugging activity. These interactive activities
may occur for very large spreadsheets, potentially making
responsiveness an issue. For example, one corpus of
spreadsheets assembled from the Internet found spread-
sheets having as many as 26,434 formulas with references to
other cells [26]. In these types of situations, the cost of fault
localization techniques, such as the Blocking Technique,
during these interactive activities may be too great to
maintain the responsiveness required as program size
increases.

We designed the Nearest Consumers Technique with
this concern in mind. It is a greedy technique that considers
only the direct consumers of a cell c (those connected with c
directly by a dataflow edge). Accessing only neighboring
consumers is the first way this technique keeps costs down.

The fault likelihood of c is estimated solely from the
X-marks and checkmarks currently placed on cells and the
average fault likelihood of c’s direct consumers (if any).
Cell c’s producers are then updated using the same
calculations. However, all of these calculations use the
testing decisions for only the current input values (i.e., the
current test case). The technique does not utilize any
historical information regarding previous testing decisions.
This use of only current information is the second way this
technique keeps costs down.

The Nearest Consumers Technique was used to create
Fig. 3 on the same spreadsheet as in previous examples. In
approximating the blocking behavior of the Blocking
Technique, the fault likelihood of the Final_Percentage
and Curved_Midterm3 cells has been estimated as “Very
Low.” However, the Exam_Avg and Midterm_Avg cells
contribute to a single X-mark in Exam_Avg and have an
estimated fault likelihood of “Medium.” In addition,
Midterm1_Perc contributes to the Exam_Avg X-mark as

well as the X-mark in its own cell, and has an estimated
fault likelihood of “High.” Both the bottom of Fig. 3 and
Fig. 4 show that the Final_Percentage and Curved_

Midterm3 cells have the lowest estimated fault likelihood
of all cells, while the other three cells have higher estimated
fault likelihood. However, notice that these differences
between the former two cells and the latter three cells have
been exaggerated by the Nearest Consumers Technique at
the bottom of Fig. 3. Clearly, the Nearest Consumers
Technique does not always compute the same results as
the Blocking Technique.

Changing Test Cases. Just as with the Blocking Technique,
when a user changes a constant cell’s value, all of the affected
testing decisions on cells are removed. The Nearest Con-
sumers Technique removes these testing decisions as the
spreadsheet environment updates cell values, thereby add-
ing only Oð1Þ overhead to this interaction.

Making a Testing Decision. When a testing decision is
made, the Nearest Consumers Technique attempts to
loosely mimic the Blocking Technique at a low cost using
the algorithm outlined in Algorithm 3. Nearest Consumers
begins by computing the numerical fault likelihood of cell c.
In line 8 in the MarkPlaced_Helper subroutine, this
numerical value is the average fault likelihood of c’s direct
consumers. This value is then mapped to a discrete fault
likelihood level in line 9, as outlined in Table 2. Note that,
unlike the Blocking Technique, the fault likelihood of cells is
estimated early in the algorithm rather than immediately
before the user interface is updated. This is because the
algorithms of the Blocking Technique are primarily de-
signed around updating the technique’s information base
and estimating fault likelihood should be done only after
these information bases are updated. In contrast, Nearest
Consumers relies on the fault likelihood of other cells
previously visited by the technique and, so, this estimation
for each cell should occur immediately.

Algorithm 3 The MarkPlaced subroutine for the Nearest

Consumers Technique. MarkPlaced_Helper performs a

breadth-first search of the producing cells of markedCell.

1: procedure MarkPlaced (markedCell, aTest)

2: let markedCell’s current testing decision be aTest

3: call MarkPlaced_Helper(markedCell, false,
false)

4: update the user interface for markedCell and all of

markedCell’s producers

5: end procedure

6:

RUTHRUFF ET AL.: INTERACTIVE FAULT LOCALIZATION TECHNIQUES IN A SPREADSHEET ENVIRONMENT 221

TABLE 1
The Mapping Used by the Blocking Technique to Transform

Numerical Values to Discrete Fault Likelihood Levels

The level of 1 (not shown in this table) corresponds to the “Very Low”
fault likelihood used by the robustness feature.

TABLE 2
The Mapping Used by the Nearest Consumers Technique to

Transform Numerical Values to Discrete Fault Likelihood Levels

7: procedure MarkPlaced_Helper (aCell,
retainHighFL?, retainLowFL?)

8: let aCell’s fault likelihood be the average fault

likelihood of its direct consumers

9: map the numeric fault likelihood of aCell to a fault

likelihood level

10: call AdjustFaultLikelihood(aCell,

retainHighFL? by ref, retainLowFL?

by ref)
11: set retainHighFL? to true if aCell currently has

an “X-mark” testing decision

12: set retainLowFL? to true if aCell currently has a

“Checkmark” testing decision

13: if aCell’s current fault likelihood is less than its

previous fault likelihood then

14: set aCell’s fault likelihood to the previous fault

likelihood if retainHighFL? is true
15: end if

16: if aCell’s current fault likelihood is greater than its

previous fault likelihood then

17: set aCell’s fault likelihood to the previous fault

likelihood if retainLowFL? is true

18: end if

19: using a breadth-first search, call

MarkPlaced_Helper(directProd,
retainHighFL?, retainLowFL?) for all

directProd in aCell’s direct producers

20 end procedure

The AdjustFaultLikelihood subroutine, which is

called in line 10 of Algorithm 3, adjusts the fault likelihood

of aCell based on trends it observes in the current testing

decisions. This subroutine implements five rules; instead of

presenting the algorithm for the subroutine, we present

these five rules in the upcoming discussion.
The first three rules potentially adjust the fault likelihood

of aCell that was initially estimated in lines 8-9 of

Algorithm 3. It sequentially checks the conditions of each

rule and applies the first rule whose condition is met. These

three rules are described next. In doing so, we use the

following notation: DC is the set of a cell c’s direct

consumers, avgFLðDCÞ is the average fault likelihood of

DC (previously calculated in line 8 of Algorithm 3), xm is

the number of X-marks in DC, and cm is the number of

checkmarks in DC.
Rule 1. If the value of c is currently marked correct by the

placement of a checkmark and avgFLðDCÞ > “None,” then

c is assigned a fault likelihood of “Very Low” to attempt to

mimic the Blocking Technique’s behavior of having check-

marks block tests.
Rule 2. If c has a failure (X-mark), but avgFLðDCÞ <

“Medium,” then c is assigned a fault likelihood of

“Medium.” This assignment attempts to mimic the Blocking

Technique’s behavior of having X-marks block tests by

preventing cells with low fault likelihood from diluting the

fault likelihood of a cell in which a user has observed a

failure. A common occurrence of this situation is when a

user places the very first X-mark in the program’s testing

history in a cell c. Since it is the first X-mark placed, before

the algorithm is applied, the fault likelihood of all cells,
including c’s direct consumers, is “None.”

Rule 3. The fault likelihood from avgFLðDCÞ is incre-
mented one level whenever there are more X-marks than
checkmarks in DC, provided sufficient evidence is present.
Three specific cases are handled: 1) if xm > 1 and cm ¼ 0,
2) if xm > cm and cm > 0, or 3) if xm > cm and c has an
X-mark. The first two cases differ only in that the fault
likelihood of c is not incremented if xm ¼ 1 and cm ¼ 0.
(This is not seen as strong enough evidence to increment
fault likelihood.) The third case differs from the first two by
considering whether c has an X-mark. In essence, this rule
increases fault likelihood in areas of the program where
more failures than successes (i.e., more X-marks than
checkmarks) have been observed.

After adjusting the fault likelihood of aCell through
Rules 1-3, MarkPlaced_Helper applies two final rules to
the fault likelihood in lines 11-18 of Algorithm 3. Unlike
Rules 1-3, both Rules 4-5 can be applied if their conditions
hold true.

Rule 4. If the value of c is currently marked as incorrect
with an X-mark, the technique constrains the fault like-
lihood of c and c’s producers to their previous estimated
fault likelihood or to higher estimations. This rule helps to
mimic the behavior of the Blocking Technique by prevent-
ing cells with lower fault likelihood (due to checkmarks)
from diluting the fault likelihood of a cell in which a failure
has been observed, as well as all upstream cells.

Rule 5. Similarly, if a checkmark is currently placed in c,
the technique constrains the fault likelihood of c and c’s
producers to their previous estimated fault likelihood or to
lower estimations. This rule helps mimic the behavior of the
Blocking Technique by pruning off cells contributing to
correct values.

The Nearest Consumer Technique also enforces the
robustness feature of the Blocking Technique. Ensuring
that any cell that could have contributed to a failure is
assigned at least some fault likelihood is done by taking a
ceiling of the average fault likelihood of each cell c’s direct
consumers on line 8 of Algorithm 3. This mathematical
mechanism ensures that, if any direct consumer of c has at
least some fault likelihood (due to at least one X-mark), then
the average of those fault likelihood values will ensure that
c has at least a “Very Low” fault likelihood, as will its
producing cells in its dynamic backward slice.

The technique’s advantages are that it does not require
the maintenance of any data structures; it stores only the
current fault likelihood of cells. Given this information,
after marking a cell c, estimating c’s fault likelihood requires
only a look at c’s direct consumers. This is followed by a
single Oðpþ dÞ breadth-first traversal up c’s dynamic
backward slice to estimate the fault likelihood of these
producers, where d is the number of direct consumers
connected to the p producers.

Changing the Spreadsheet Logic. Unlike in the Blocking
Technique, Nearest Consumers does not have to remove the
effects of all testing decisions to which an edited non-
constant cell c contributes because it does not maintain such
testing decisions. The Nearest Consumers Technique must
consider those cells that are affected by c because those cells

222 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 32, NO. 4, APRIL 2006

will likely have new values, thereby rendering their current
testing decisions (if any) obsolete. Consequently, as the
spreadsheet environment traverses down the static forward
slice of c and updates cell values, Nearest Consumers
removes any X-marks or checkmarks on this set of affected
cells AC, including c. Because the forward slice is traversed,
all cells in AC will have no current testing decision for the
test case in question. Therefore, with no testing decision
history to draw on, Nearest Consumers also resets the fault
likelihood of both c and all cells in AC to “None.” This is all
done with Oð1Þ overhead to the spreadsheet environment.

However, since c’s fault likelihood has changed to
“None,” the cells in c’s static backward slice must have
their fault likelihood updated. This is done by calling the
NewFormula procedure in Algorithm 4. Because this
procedure requires a single breadth-first traversal up c’s
static backward slice, its runtime complexity is Oðpþ dÞ,
where d is the number of direct consumers connected to the
p producers in the backward slice.

Algorithm 4 The NewFormula subroutine of the Nearest

Consumers Technique. This algorithm performs a breadth-

first search on c’s backward slice using the MarkPlaced_

Helper subroutine in Algorithm 3.

1: procedure NewFormula (editedCell)

2: call MarkPlaced_Helper(editedCell, false,
false)

3: estimate fault likelihood and update the user

interface for editedCell and all of

editedCell’s producers

4: end procedure

Mapping Information to Estimated Fault Likelihood.
Table 2 shows that the Nearest Consumers Technique uses
the same fault likelihood levels as the Blocking Technique,
albeit with different numbers mapping to different levels.
(This is due to the fact that Nearest Consumers uses
averages to make fault likelihood estimations, rather than
multiplications and subtractions.) Moreover, Nearest Con-
sumers attempts to loosely mimic the Blocking Technique
by averaging the fault likelihood of a cell’s direct consumers
and then potentially adjusting that calculation based on
trends the technique observes in the current testing
decisions on cells (i.e., applying one or more of the five
rules described earlier).

The MarkPlaced_Helper procedure in Algorithm 3 is
responsible for averaging the fault likelihood of cells’ direct
consumers and adjusting this calculation based on the five
rules. This mapping can be summarized as follows: Let DC,
avgFLðDCÞ, xm, and cm have definitions similar to those

earlier. Using Rule 3, an adjustment z ¼ 1 is made to the
average fault likelihood of DC if any of the following
conditions are true: 1) xm > 1 and cm ¼ 0, 2) xm > cm and
cm > 0, or 3) xm > cm and c has an X-mark; otherwise,
z ¼ 0. The fault likelihood of c is then calculated as follows:

fault likelihoodðcÞ ¼ avgFLðDCÞ þ z: ð2Þ

The four exceptions to this calculation correspond to
Rules 1, 2, 4, and 5; we refer readers to the previous
discussion of those rules for details.

3.2.3 The Test Count Technique

The technique we term “Test Count” maintains, for each
cell c, an information base of the number of successful tests
(indicated by the user via checkmarks) and failed tests
(indicated via X-marks) in which c has participated. This
information base can be considered a subset of that of the
Blocking Technique as Test Count maintains a record of
previous tests, but not the information that would be
required to calculate complex, intertwined dataflow rela-
tionships. TARANTULA [31], a fault localization technique
for traditional programming languages, uses an approach
that is similar to our Test Count Technique.

An example of the previously introduced Gradebook

spreadsheet with the Test Count Technique is provided in
Fig. 5. The Midterm1_Perc cell contributes to two X-marks
and has an estimated fault likelihood of “Medium.” The other
four highlighted cells contribute to only a single X-mark and,
therefore, have a fault likelihood of “Low.”

Note that the Final_Percentage and Midterm_Avg

cells have the same fault likelihood as Exam_Avg and
Course_Avg, despite their checkmarks. This is because the
Test Count Technique does not maintain or mimic the
blocking behavior of the Blocking Technique. Although the
technique is similar to the Blocking Technique by making
fault likelihood inversely proportional to the number of
checkmarks in which the cell participates, the “Low” fault
likelihood level is the lowest level maintained by this
technique. Consequently, the technique cannot reduce the
estimated fault likelihood of Final_Percentage and
Midterm_Avg, despite the checkmarks on these cells.

This technique came about by leveraging algorithms and
data structures that were written for another purpose—to
support semi-automated test reuse [25] (regression testing)
in the spreadsheet paradigm. The detailed algorithms and
data structures used for test reuse purposes are detailed in
that work [25]. Here, we present the algorithms relevant to
fault localization support for the three interactions that
could trigger action from the Test Count Technique.

RUTHRUFF ET AL.: INTERACTIVE FAULT LOCALIZATION TECHNIQUES IN A SPREADSHEET ENVIRONMENT 223

Fig. 5. The Gradebook program with the Test Count Technique.

Changing Test Cases. Changing the input values of the
spreadsheet causes the Test Count Technique to retrieve the
prior testing decision for each cell affected by the new
inputs, if such testing decisions have been previously made.
In the worst case, all n cells in the spreadsheet will have
contributed to all m testing decisions and the technique
would have to search through the entire history of each cell
to retrieve the testing decision. The runtime complexity in
this worst case scenario is therefore Oðn �mÞ.

Making a Testing Decision. The placement or removal
of a testing decision triggers Algorithm 5. The algorithm
adds or removes the appropriate testing decision from the
cell under consideration in line 3 and then propagates that
decision to the test histories of the cells in the dynamic
backward slice of the marked cell in line 4. Finally, as the
user interface is updated for these cells, a fault likelihood
estimation is made for each cell c in line 5. Equation (3),
which is used to make this estimation, is presented soon.

Algorithm 5 The MarkPlaced subroutine for the Test

Count Technique.

1: procedure MarkPlaced (markedCell, aTest)

2: let markedCell’s current testing decision be aTest

3: add/remove aTest to/from markedCell’s test
history as warranted

4: propagate aTest to the test history of all dynamic

producers of markedCell

5: estimate fault likelihood and update the user interface

for markedCell and all of markedCell’s

dynamic producers

6: end procedure

Using the test reuse algorithms [25], after a testing
decision is placed on or removed from a cell c, the
information base of the Test Count Technique—the test
history of each cell—is updated in Oðu � pÞ time, where u is
the maximum number of uses of (references to) any cell in
the spreadsheet and p is the number of c’s producers.

Changing the Spreadsheet Logic. Changing cell c’s
nonconstant formula to a different formula, which triggers
Algorithm 6, requires all saved information about c’s tests
and those of its consumers to be considered obsolete, which
takes place in lines 2-3. For the same reason, the fault
likelihood of c and its consumers must all be reinitialized to
zero, which is performed in line 4.

Algorithm 6 The NewFormula subroutine for the Test
Count Technique.

1: procedure NewFormula (editedCell)

2: remove all decisions in editedCell’s test history

from editedCell’s consumers

3: clear the test history of editedCell

4: set fault likelihood of editedCell and all consumers

to “None”

5: update the user interface for editedCell and all of
editedCell’s consumers

6: end procedure

Using the test reuse methodology [25], all of the
related testing information can be updated in
Oðt �m �maxðu; cost of set operationsÞÞ, where t is the
number of tests that reach the modified cell, m is the

maximum number of consumers affected by c’s tests, and u
is the maximum number of uses for any cell in the
spreadsheet.

Mapping Information to Estimated Fault Likelihood.
The Test Count Technique mimics much of the behavior of
the Blocking Technique. However, because it does not track
the dataflow relationships between cells and testing
decisions, it cannot maintain the “blocking” characteristics
of the Blocking Technique. Instead, fault likelihood estima-
tions are made purely by observing the number of X-marks
and checkmarks in each cell’s test history.

LetNumFailingTestsðcÞ (NFT) be the number of X-marks
affected by c and let NumSuccessfulTestsðcÞ (NST) be the
number of checkmarks affected by c. If a cell c has no failed
tests, the fault likelihood of c is “None.” Otherwise, the fault
likelihood of a cell is estimated using (3):

fault likelihoodðcÞ ¼ maxð1; 2 �NFT �NST Þ: ð3Þ

This calculation is mapped to one of four possible fault
likelihood levels using the scheme shown in Table 3.

Similarly to (1) in Section 3.2.1, (3) makes the fault
likelihood of c proportional to the number of X-marks in
which c has participated and inversely proportional to the
number of checkmarks in which c has participated. The Test
Count Technique also ensures that the fault likelihood of c
will be greater than zero, for reasons similar to those of the
Blocking Technique.

4 TWO FACTORS INFLUENCING FAULT

LOCALIZATION TECHNIQUES

Our preliminary investigations [53], [57] into the effective-
ness of our three fault localization techniques showed that
the techniques can help pinpoint the locations of faults and
can improve the debugging strategies of end-user pro-
grammers. However, post-hoc analysis indicated that there
may be two distinct factors involved in the effectiveness of
fault localization feedback. We therefore separated our fault
localization techniques into these two factors, as follows:

. Information Base. To support the behavior of a fault
localization technique, information must be stored
and maintained either by the technique or by the
surrounding environment. To abstract away imple-
mentation or algorithmic details such as data
structures, we use this term to refer only to the type
of information used and the circumstances under
which it is maintained.

. Mapping. Mappings transform information bases
into fault localization feedback. This transformation

224 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 32, NO. 4, APRIL 2006

TABLE 3
The Mapping Used by the Test Count Technique to Transform

Numerical Values into Discrete Fault Likelihood Levels

involves reasoning about a cell’s fault likelihood
using the information provided by the information
base and then transforming that calculation into
appropriate feedback for the user.

In fact, we believe that any fault localization approach that
includes some form of reporting or feedback to a human
involves these two factors. For example, TARANTULA [31]
uses a set of passed and failed tests and coverage
information indicating the program points contributing to
each test as its information base. Its mapping uses this
information to calculate 1) a color representing each
statement’s participation in testing and 2) the technique’s
confidence in the correctness of each color.

There are some similarities between our notion of
“information base” and “mapping” factors in fault localiza-
tion techniques with the “model” and “view” in model-view-
controller architectures. In these architectures, the model
often consists of maintained data and the underlying
algorithms, while the view dictates the way in which things
appear to the user. A difference is that, in fault localization
techniques, the reasoning that maps the information to fault
localization values lies in our mappings, whereas this would
lie in the “model” in model-view-controller architectures.

4.1 Information Bases

To support the behavior of a fault localization technique,
information must be stored and maintained by the
technique (or the surrounding environment). Most of the
previous research into fault localization techniques has
focused on approaches to maintaining different types of
information and the cost of those approaches.

Each of our three techniques maintains a unique base of
information that is used to achieve the behavior described
in Section 3. The algorithms governing the maintenance of
this information were described in Sections 3.2.1-3.2.3. We
now draw from that presentation to summarize each
technique’s information base, which we refer to as I-TC,
I-BL, and I-NC for the remainder of this paper.

. Test Count (I-TC). This technique’s information base
maintains, for each cell c, the set of passed and failed
tests that dynamically execute c. Mappings estimate
the fault likelihood of spreadsheet cells using this
“history” of all testing decisions—both decisions for
previous and current input values (constant spread-
sheet cell values)—and how these decisions impact
the producing cells that dynamically contribute to
each decision (i.e., dynamic backward slices). The
size of I-TC grows with respect to both spreadsheet
and test suite size.

. Blocking (I-BL). There are two aspects to this
information base. Like I-TC, I-BL maintains a list
of all passed and failed tests for each cell. However,
to achieve its “blocking” behavior, I-BL also tracks
the dataflow relationships between each cell, using
this information to allow tests, under certain
circumstances, to “block” other tests from reaching
certain cells. Mappings estimate the fault likelihood
for cells using this history of all testing decisions and
the decisions’ respective dataflow information and
how these decisions impact their dynamically

producing cells. However, because of the techni-
que’s blocking behavior, in many cases, testing
decisions only play a role in the fault likelihood of
the cells in each decision’s program dice [38]. (The
situations where this is not the case are those where
our robustness feature in Section 3.2.1 prevents
checkmarks that block X-marks from completely
removing cells from this “dice.”) Because of the
overhead necessary to track dataflow and blocking
information, I-BL is more computationally expen-
sive than I-TC.

. Nearest Consumers (I-NC). Rather than maintaining a
history of all previous testing decisions, as do the
previous two information bases, the I-NC informa-
tion base tracks only 1) the fault likelihood of each cell
in the spreadsheet prior to a new testing decision and
2) the current testing decision for each cell affected by
the current test case (i.e., the current set of input values),
including that current test case. Since each of these
components requires only constant space for each cell
in the spreadsheet, the information base grows with
respect to spreadsheet size only.

Because the context of our experiment is interactive fault

localization, each of these information bases is immediately

updated whenever any action is taken by a user that affects

the contents of the base, potentially interfering with the

environment’s interactivity. One reason to compare these

information bases in an empirical setting is to learn whether

a modest information base such as I-NC can compete in

effectiveness with the other two more expensive informa-

tion bases.

4.2 Mappings

The manner in which fault localization techniques draw

from their information bases to produce feedback is

through the mapping factor. Mappings transform informa-

tion bases into fault localization feedback that fulfills the

goals of the fault localization technique. In the case of our

three techniques, the goals that the mappings must fulfill

are outlined at the beginning of Section 3.
For any fault localization technique, many mappings are

possible: Not only are there a large number of different

ways to transform an information base into feedback, but

the characteristics of this feedback, such as the number of

different levels in the feedback (e.g., in our techniques, this

is the number of discrete fault likelihood levels), can vary.

Thus, it would not be feasible to compare all possible

mappings and doing so is not even warranted until we

determine whether the mapping factor alone can signifi-

cantly impact a technique’s effectiveness. Surprisingly, in

our search of the research literature, we can find no

previous work that has investigated this possibility.
We use the mappings of our own three techniques as a

vehicle for investigating the importance of mapping as an

independent factor. The mappings of each technique were

described in Sections 3.2.1-3.2.3 and in (1)-(3). We now draw

from that presentation to summarize each technique’s

mapping, which we refer to as M-TC, M-BL, and M-NC for

the remainder of this paper.

RUTHRUFF ET AL.: INTERACTIVE FAULT LOCALIZATION TECHNIQUES IN A SPREADSHEET ENVIRONMENT 225

. Test Count (M-TC). The Test Count Technique’s
mapping ensures that the fault likelihood of a cell c
is inversely proportional to the number of c’s passed
tests and directly proportional to the number of
c’s failed tests. It maps information bases to four
fault likelihood values and begins by assigning c the
lowest fault likelihood if it contributes to a single
failure (X-mark), thereby allowing fault likelihood to
increase with further failures.

. Blocking (M-BL). This mapping is similar to M-TC,
except that it supports five, rather than four, fault
likelihood values, and begins by assigning c the
second lowest fault likelihood value so as to be able
to build but also to reduce a cell’s fault likelihood
value when a test blocks fault likelihood propaga-
tion to it.

. Nearest Consumers (M-NC). This mapping computes
an adjusted average of the fault likelihood of the
cells to which c directly contributes. This calculated
mean is adjusted as described in Section 3 based on
trends in current testing decisions. It also supports
five fault likelihood values and begins by assigning c
the third value so as to make it viable to both
increase and decrease fault likelihood values as
c’s direct consumers’ fault likelihood values increase
and decrease.

These mappings have another important characteristic.
A previous study investigating the strategies and behaviors
of end-user programmers using fault localization techni-
ques [57] found that end users often make mistakes when
interactively testing or debugging their programs. In
consideration of this, each of our mappings incorporates a
“robustness” feature (described in Section 3) that ensures
that any cell that might have contributed to the computation
of an incorrect value (failure) will be assigned some positive
fault likelihood. This property ensures that incorrectly
placed checkmarks cannot cause a cell that is involved in
at least one correctly placed X-mark to be removed from a
user’s search space.

5 EXPERIMENT

To our knowledge, no previous work has considered the
impact that a mapping alone might have on the effective-
ness of a particular fault localization technique. Instead, any
results pertaining to effectiveness are attributed to the
technique as a whole (primarily to its reasoning mechan-
isms) as, for example, we ourselves have done in previous
studies [53], [57] reporting various results regarding the use
of fault localization by end users. An undesirable conse-
quence of this is that the effectiveness (or ineffectiveness) of
a technique may be wrongly attributed to the technique’s
information base, when, instead, it may be due to the
mapping. To investigate these two individual factors in
fault localization techniques in the context of an interactive
end-user programming environment, we conducted a new,
controlled experiment, with the following two research
questions:

RQ1: To what extent do differences in information bases affect the
effectiveness of spreadsheet fault localization techniques?

RQ2: To what extent do differences in mappings affect the
effectiveness of spreadsheet fault localization techniques?

Previous empirical work [33], [34], [57] has indicated that

end users make mistakes during their interactive testing

and debugging tasks and any differences between the

information bases and mappings of fault localization

techniques may be exaggerated or diminished when

isolating situations where techniques must operate in the

presence of unreliable information. Further, researchers

have only recently begun to consider these types of

situations when evaluating interactive debugging devices

for end users. To investigate each factor’s role in technique

effectiveness in the presence of such unreliable information,

we devised two additional research questions:

RQ3: To what extent does inaccurate information affect informa-
tion bases and the effectiveness of spreadsheet fault localization
techniques?

RQ4: To what extent does inaccurate information affect mappings
and the effectiveness of spreadsheet fault localization techniques?

5.1 Design

In formulating our experiment, we considered three

methodologies for gathering sources of data. The first

possible methodology was to follow the classic human-

subjects approach: Gather participants for each possible

mapping and information base combination and compare

technique effectiveness across groups. Although this meth-

odology would allow us to elicit test suites from real end

users, it has a significant disadvantage: Each technique that

we would compare would be given different testing actions

(i.e., different participants would place different testing

actions, in the form of WYSIWYT X-marks and checkmarks;

thus, each technique would work with different testing

actions). This would make it impossible to ensure that

differences in test suites were not confounding any results,

thereby preventing us from addressing our research

questions regarding whether differences in fault localiza-

tion factors alone can impact the effectiveness of fault

localization techniques.
A methodology that avoids this flaw involves following

a classic test suite generation approach: Generate hypothe-

tical test suites according to some criterion and select

(randomly or according to other criteria) from these test

suites to simulate end users’ testing actions. We could then

run each selected test suite under each technique and

compare effectiveness. This methodology features the tight

controls we sought, but the test suites could not be tied to

our ultimate users and may not be representative of real

end-user testing actions.
We chose instead a third methodology that draws on

advantages from both of the foregoing approaches, while

avoiding their drawbacks. We obtained actual testing

actions from real end users and then uniformly applied

these actions across all mapping and information base

combinations. The test suites, as defined by the testing

actions that the end users performed, were the objects of

analysis of our experiment.

226 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 32, NO. 4, APRIL 2006

5.1.1 Participants

To obtain the necessary test suites, we recruited 20 students
(18 undergraduate students and two graduate students)
from Oregon State University. We sought students with
spreadsheet experience because we did not want the
learning of spreadsheet functionality to be a factor in our
experiment. Of the 20 participants, 17 had at least some
previous spreadsheet experience. We also sought partici-
pants without any personal or professional programming
experience in order to make our participants more
representative of real end users. (It is fairly common these
days for business and engineering students to take a high
school or college programming class.) Only one participant
had programming experience in a professional setting,
which consisted of writing a few basic spreadsheet macros
using Visual Basic during a summer internship.

The background of the 20 participants is summarized in
Table 4. In the education category of this table, “LA”
indicates the number of liberal arts participants, “Bus”
indicates business participants, “Eng” indicates engineering
participants, and “GPA” indicates the average grade point
average of all 20 participants. In the spreadsheet and
programming categories, “HS” encodes the number of
participants that used spreadsheets (or programmed) in a
high school class, “C” encodes use in a college class, “Per”
encodes personal use, and “Pro” encodes use in a
professional setting.

5.1.2 Materials

The experiment utilized two spreadsheets, Gradebook and
Payroll (shown in Fig. 3 and Fig. 6, respectively). To make
our spreadsheets representative of those used by real end-
user programmers, Gradebook was derived from an Excel
spreadsheet of an (end-user) instructor, which we ported
into an equivalent Forms/3 spreadsheet. Payroll was a
spreadsheet designed by two Forms/3 researchers from a
payroll description from a real company.

These spreadsheets were seeded with five faults created
by actual end users. To obtain these faults, we provided
three separate end users with the following: 1) a “template”
spreadsheet with cells and cell names, but no cell formulas

and 2) a description of how each spreadsheet should work,

which included sample values and correct results for some

cells. Each person was given as much time as he or she

needed to design the spreadsheet using the template and

the description.
From the collection of faults left in these end users’ final

spreadsheets, we chose five that provided coverage of the

categories in Panko’s classification system [43], which is

based on Allwood’s classification system [5]. Under Panko’s

system, mechanical faults include simple typographical

errors or incorrect cell references. Logical faults are

mistakes in reasoning and are more difficult to detect and

correct than mechanical faults. An omission fault is

information that has never been entered into a cell formula

and is the most difficult to detect [43].
When classifying these faults, we realized that Panko’s

and Allwood’s schemes do not always clearly differentiate

types of faults. For example, the schemes do not specify

how to distinguish typographical mistakes (mechanical

faults) from mistakes in reasoning (logical faults). In our

study, if a seeded fault was a single incorrect character

adjacent on the keyboard to the correct character (e.g., a 5

that should have been a 4), the fault was classified as a

“mechanical” fault—the result of a typographical error.

Faults were also classified as mechanical faults if they were

due to mistakes in the placement of parentheses, erroneous

operators, or incorrect cell references. If the fault was

missing information, such as a missing cell reference,

subexpression, or logical construct, it was classified as an

“omission” fault. Otherwise, the fault was classified as a

“logical” fault.
We seeded Gradebook with three mechanical faults,

one logical fault, and one omission fault and Payroll with

two mechanical faults, two logical faults, and one omission

fault. These faults are outlined in Table 5 and Table 6.

Payroll was intended to be the more difficult program

due to its larger size, greater level of dataflow and

intertwined dataflow relationships, and more difficult

faults.

RUTHRUFF ET AL.: INTERACTIVE FAULT LOCALIZATION TECHNIQUES IN A SPREADSHEET ENVIRONMENT 227

TABLE 4
A Summary of the Participants’ General, Educational Background, Previous Spreadsheet Experience,

and Previous Programming Experience

Fig. 6. The Payroll task.

5.1.3 Variables and Measures

As a dependent variable, we require a measure of a fault
localization technique’s effectiveness. Many such measures
are possible. In this experiment, our goal is to study the
ability of techniques to point out faults by applying identical
test suites uniformly. Thus, we define effectiveness as a
technique’s ability to correctly and visually differentiate the
correct cells in a spreadsheet from those cells that actually
contain faults. The better a technique visually distinguishes
a program’s faulty cells from its correct cells, the more
effective the technique.

In this experiment, we considered two notions of
effectiveness, resulting in two effectiveness metrics. For
our first notion, we measure effectiveness in terms of the
visual separation between the faulty cells and the correct cells
of each spreadsheet, which is the result of subtracting the
average fault likelihood of the colored correct cells from the
average fault likelihood of the colored faulty cells. (Sub-
traction is used instead of calculating a ratio because the
color choices form an ordinal, not a ratio, scale.) Our
previous work [57] indicated that users usually restrict their
attention during debugging only to the cells indicated in the
fault localization feedback (i.e., the colored cells). Given this
finding, this first effectiveness measure focuses only on the
cells colored by the technique.

Let C be the set of all cells in a spreadsheet, let faultðcÞ
be a function that maps a cell c 2 C to zero if c does not
contain a fault and one if c contains one or more faults, let
FLðcÞ be the fault likelihood of any given cell c 2 C, and let
avgFLðCÞ be the average fault likelihood of the set of cells C.
The effectiveness (Eff-Color) of a technique according to
this first measure is measured in the following way:

Cf ¼ fc j c 2 C; faultðcÞ ¼ 1; FLðcÞ > 0g;
Cnf ¼ fc j c 2 C; faultðcÞ ¼ 0; FLðcÞ > 0g
Eff-Color ¼ avgFLðCfÞ � avgFLðCnfÞ:

ð4Þ

Our second effectiveness measure is similar to the first,

except that, rather than considering only the colored faulty

and correct cells, the second measure considers all faulty and

correct cells—that is, the result of subtracting the average

fault likelihood of all correct cells from the average fault

likelihood of all faulty cells. Since all faulty and correct cells

are considered, this metric also has the effect of rewarding

techniques with a smaller search space size. This is because

faulty cells with no fault likelihood will have the effect of

lowering the average fault likelihood of faulty cells, thereby

lowering effectiveness, while correct cells with no fault

likelihood will have the effect of lowering the average fault

likelihood of correct cells, thereby increasing effectiveness.
Let C, faultðcÞ, FLðcÞ, and avgFLðCÞ have the same

definitions as in Eff-Color. The effectiveness (Eff-All)

of a technique according to this measure is measured in the

following way:

Cf ¼ fc j c 2 C; faultðcÞ ¼ 1g;
Cnf ¼ fc j c 2 C; faultðcÞ ¼ 0g
Eff-All ¼ avgFLðCfÞ � avgFLðCnfÞ:

ð5Þ

Positive effectiveness is preferable for both effectiveness

measures and a greater effectiveness implies a better

distinction between faulty and nonfaulty cells.
To investigate whether differences in information bases

and mappings can impact the effectiveness of fault

localization techniques, we separately manipulate each

228 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 32, NO. 4, APRIL 2006

TABLE 5
The Faults Seeded in the Gradebook Task

TABLE 6
The Faults Seeded in the Payroll Task

The SocSec cell has a fault in the “then” clause and a separate fault in the “else” clause. The fault in the “else” clause was classified as an omission
fault because it was deemed that the clause was missing information regarding subtracting the amount over $87,000 from the gross pay before
taking the tax of 6.2 percent.

factor for the research question under consideration. From
our selection of an information base or a mapping in a fault
localization technique, we can measure the effectiveness of
the technique’s feedback according to our dependent
variables in order to gauge whether changes in the
manipulated factor cause a significant difference in the
quality of the feedback. The selected information bases in
RQ1 and RQ3, or mappings in RQ2 and RQ4, are therefore
the independent variables of our experiment.

Without considering the attributes that “bind” a map-
ping to an information base, the essence of the differences
among our three mappings is two shared characteristics:
1) the number of possible fault likelihood values and 2) an
“initial” value used to start assigning fault likelihood feed-
back. When we manipulate the two factors to apply different
information bases to different mappings, we refer to applying
only these two characteristics of one mapping to another to
create an entirely new mapping for that technique. We do not
attempt to tease apart the influences of these two character-
istics, but simply consider them together to learn whether
changing the mapping factor of a technique can significantly
impact that technique’s effectiveness.

5.1.4 Points of Evaluation

At what point should effectiveness be measured? Most
previous work focuses on “traditional” techniques for
professional programmers that perform a batch processing
of information. This point of maximal system reasoning
potential—when the system has its best (and only) chance
of producing correct feedback—is therefore an appropriate
point to measure these types of techniques. Given the
interactive nature of end-user environments, however,
debugging, and, therefore, fault localization use, occurs
not just at the end of testing, but throughout the testing
process. Measuring technique effectiveness only at the end
of testing would thus ignore most of the reporting being
done by the interactive technique.

In principle, we could measure effectiveness at every
point at which a user receives feedback. However, it is not
statistically viable to utilize every such point, because many
will not be reached by numbers of users sufficient to
support comparisons. Therefore, we elect to measure at just
the following points, where fault localization feedback is
reported:

. First X-mark. When a failure is first reported by users
(in our environment, signaled by an X-mark), they
immediately receive fault localization feedback. We
term this the beginning of a debugging session.
(X-marks initiate such sessions only when no other
session is already in progress.) Because this point
marks the first (and perhaps only) opportunity for
techniques to provide feedback, we measure techni-
que effectiveness here.

. Second X-mark. The second X-mark’s computations are
based on a greater quantity of information than the
first X-mark, so measuring at this point helps to gauge
effectiveness trends over time. (For the same reason,
we measure at the third X-marks, fourth X-marks, and
so on, but the participants kept their debugging very
incremental, which caused almost all debugging

sessions to consist of two or fewer X-marks.) Thus,
we do not analyze marks beyond the second X-mark
(except as they impact the fault localization feedback
at the next point of measurement).

. Last Test. When users find the cause of a failure (a
fault), they often immediately try to fix it. This point
includes at least one X-mark and any number of
checkmarks and denotes the end of a debugging
session. As such, it is the feedback point at which
fault localization has the most information available
to it, so technique effectiveness is also measured
here. Once a user edits the “source code” (formula),
downstream fault localization information becomes
obsolete and is discarded.

We emphasize that the need to evaluate at multiple
points is not specific to our particular experiment. Rather,
because the traditional measurement point of evaluating
fault localization—at the end of testing or debugging—is
insufficient in the domain of interactive debugging, any
interactive fault localization technique must be evaluated
on the basis of multiple feedback points. Otherwise, the
experiment may be overlooking important data reported by
the technique.

5.1.5 Procedures

After completing a background questionnaire, participants
were given a brief tutorial to familiarize them with the
environment. In the tutorial, participants performed actions
on their own machines with guidance at each step. The
tutorial taught use of WYSIWYT (checkmarks and asso-
ciated feedback), but did not include any debugging or
testing strategy content. We also did not teach use of fault
localization; rather, participants were introduced to the
mechanics of placing X-marks and given time to explore
any aspects of the feedback that they found interesting. At
the end of the tutorial, the participants were given five
minutes to explore the spreadsheet they were working on
during the tutorial to allow them to work further with the
features taught in the tutorial.

After the tutorial, participants were given the Grade-

book and Payroll spreadsheets (tasks) with instructions
to test and correct any errors found in the spreadsheets. The
participants were also provided with two correct sequences
of input and output for each task to facilitate testing. The
experiment was counterbalanced with respect to task order
so as to distribute learning effects evenly. The tasks
necessarily involved time limits—set at 20 minutes for
Gradebook and 30 minutes for Payroll—to ensure
participants worked on both spreadsheets and to remove
possible peer influence of some participants leaving early.
To obtain the participants’ testing actions during these two
tasks, the actions by each participant were recorded into
electronic transcripts.

In order for participants to include the use of a fault
localization technique in their testing actions, some techni-
que had to be incorporated into the environment for use by
the participants. Because of their successes in earlier
empirical work [53], [57], we chose to use the I-TC

information base with the M-BL mapping. We then applied
the testing actions collected using this technique across all
information base and mapping combinations.

RUTHRUFF ET AL.: INTERACTIVE FAULT LOCALIZATION TECHNIQUES IN A SPREADSHEET ENVIRONMENT 229

5.1.6 Threats to Validity

Every experiment has threats to the validity of its results and
these threats must be considered in order to assess the
meaning and impact of results. (Wohlin et al. [68] provide a
general discussion of validity evaluation and a classification
of validity threats.) This section discusses potential threats to
the validity of our experiment and, where possible, how we
attempted to mitigate the impact of these threats on our
results.

Threats to External Validity. Threats to external validity
limit the extent to which results can be generalized.

If the spreadsheets used in our experiment did not
represent those that real end users create, our results may
not generalize. To reduce this threat, we obtained “real-
world” spreadsheets from an actual end user who taught a
course at the university where this work was performed and
an actual payroll description. Also, to better control experi-
ment conditions and ensure that participants could complete
the tasks in the allotted time,10 our spreadsheets were not
large. While end-user spreadsheets can be of varying size,
including both large and small spreadsheets, our results
should be interpreted in the context of this limitation.
Future empirical work gathering additional empirical
evidence using a greater range and number of spreadsheets
would reduce this threat, although such studies could
require days for very large, industrial-sized spreadsheets
and would therefore have to be conducted in uncontrolled,
nonlaboratory settings, thereby sacrificing the degree of
control that this experiment sought to achieve.

The ability to generalize our results may also be limited
by our selection of faults. We attempted to address this
issue by seeding “real-world” faults into our tasks using the
procedures outlined in Section 5.1.2. Also, to help control
the threats to internal validity, we selected faults from the
end users according to classification schemes [5], [43].
However, this came at a cost of some external validity
because the fault patterns of end users may differ from
those introduced into our experiment tasks.

Finally, our experiment was conducted in the Forms/3
spreadsheet environment [12]. However, end users may
debug differently in different environments.

All of these external validity concerns can be addressed
only through repeated studies, using different spreadsheet
tasks, faults, and spreadsheet environments.

Threats to Internal Validity. Threats to internal validity
are other factors that may be responsible for an experi-
ment’s results.

The specific types of faults seeded in a program can
affect fault localization results. To reduce this threat, as
described in Section 5.1.2, we selected faults according to
Panko’s classification scheme [43] to ensure that different
types of faults were included.

As mentioned in Section 5.1.5, in order to apply the same
test suites uniformly across all techniques, we had to obtain
suites using a single information base and mapping and we
chose the I-TC information base and M-BL mapping. It is
possible that the specific actions taken by participants in
response to fault localization feedback would have varied
had a different information base or mapping been chosen.

However, this trade-off was necessary in order to obtain
uniform test suites; as we have already explained, had we
chosen a design that allowed for varying testing actions, we
would have risked confounding the independent variable
—information base or mapping selection—with a second
variable of varying testing actions.

Another threat to the internal validity of the experiment
is the possibility that participants may not have understood
the functionality of the spreadsheets that they worked on
sufficiently to correct the faults. Also, the participants could
have learned at different rates either during our tutorial or
during the tasks themselves and this learning factor could
have played a role in our results. Finally, the study’s time
limits could have interacted with the learning styles of some
participants. However, as described in Section 5.1.5, one
reason our study involved time limits was to eliminate
another threat to internal validity: peer influence as the
result of some participants leaving early.

Threats to Construct Validity. Threats to construct
validity question whether the measures in an experiment’s
design adequately capture the effects that they should or
that they were intended to.

It is possible that other metrics could better measure how
well techniques provide fault localization feedback. To
reduce this threat, we used two metrics to measure the
effectiveness of our fault localization techniques.

We chose to measure at the First X-mark, Second X-mark,
and Last Test points because they provide a snapshot of a
technique’s performance with minimal feedback and when
the feedback was sufficient for the user to determine which
formula to edit. Measuring effectiveness at other feedback
points in debugging sessions could have yielded valuable
information that is not captured by our experiment design.
However, our analysis reveals that the number of X-marks
(failures) placed in each session rarely exceeded two,
thereby limiting the number of such points.

5.2 Results

5.2.1 RQ1: The Information Base Factor

To investigate RQ1, which pertains to the impact of the
information base factor on techniques’ effectiveness, in
isolation from the mapping factor, we compared the
information bases’ effectiveness three times, once under
each mapping described in Section 4.2. The comparisons
were done at the three feedback points, based on debugging
sessions, described in Section 5.1.4. In total, there were
18 debugging sessions in the Gradebook task and 13 in the
Payroll task. (A second X-mark was placed in five of the
18 sessions for Gradebook and in three of the 13 sessions
for Payroll.)

As a statistical vehicle for our analyses, we state the
following (null) hypotheses:

H1. There is no difference in the effectiveness of the three
information bases with the M-TC mapping.

H2. There is no difference in the effectiveness of the three
information bases with the M-BL mapping.

H3. There is no difference in the effectiveness of the three
information bases with the M-NC mapping.
The results using both the Eff-Color and Eff-All

metrics are shown in Table 7. Each table has six subtables,
(a)-(f), which depict the effectiveness of the feedback for the

230 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 32, NO. 4, APRIL 2006

10. Two hours were required for each participant to learn the mechanics
of the spreadsheet environment, work on the two moderately-sized tasks,
and complete postsession questionnaires.

specified metric, information base, and mapping at each

point of evaluation. The mean (standard deviation) effec-

tiveness values comparing the three information bases are

shown. The information base with the greatest average

effectiveness is shown in bold. We used the Friedman test

[60] to statistically analyze the data. This test is an

alternative to the repeated measures ANOVA when the

assumption of normality or equality is not met. (We did not

RUTHRUFF ET AL.: INTERACTIVE FAULT LOCALIZATION TECHNIQUES IN A SPREADSHEET ENVIRONMENT 231

TABLE 7
Isolating the Information Base Factor with the Specified Mapping: (a) Mapping M-TC, Metric Eff-Color, (b) Mapping M-TC,

Metric Eff-All, (c) Mapping M-BL, Metric Eff-Color, (d) Mapping M-BL, Metric Eff-All, (e) Mapping M-NC,
Metric Eff-Color, and (f) Mapping M-NC, Metric Eff-All

run Friedman tests on the Second X-mark data due to the
small sample sizes.) The “p” denotes p-values of the
Friedman tests and “n” denotes the number of observations
compared at each point. (Prior to this experiment, we
defined the 0.05 level of significance as a prerequisite for
rejecting hypotheses. However, we separately denote, in the
text, p-values reaching the 0.01 level of significance to
provide a more rich accounting of the results. We also point
out significance at the 0.10 level for similar reasons;
however, we do not consider this significance level to be
sufficient for rejecting hypotheses.)

Before discussing the results of the Friedman tests in
Table 7, we describe one table in detail to illustrate our results.
In Table 7a, the mapping M-TC is held and the three
information bases are varied; this has the effect of isolating
the impact of the information base factor. The mean
effectiveness of the three resulting techniques, according to
the Eff-Color metric, are shown for the Gradebook and
Payroll tasks at each point of measurement described in
Section 5.1.4. For each task at each evaluation point, the
technique(s) with the best effectiveness are shown in bold. On
the leftmost column under the task name, the number of
debugging sessions reaching each evaluation point is shown
asn; for example, in Table 7a, there were 18 sessions that had a
“First X-mark” and a “Last Test” for Gradebook and three
sessions that had a “Second X-mark.” The p-values of the
Friedman tests for each set of observations are also shown in
this area; for example, the p-value for Payroll at the “Last
Test” of the debugging sessions is 0.0608.

Table 7a shows marginal significance (at the 0.10 level) at
the Last Test of the Payroll task using the Eff-Color

metric. Table 7b corroborates this finding, showing sig-
nificance (at the 0.01 level) at the same point using the Eff-
All metric. Therefore, we reject H1.

Similar trends were found using the M-BL mapping to
isolate the information base factor. Table 7c shows marginal
significance (at the 0.10 level) and 0.01 level significance at
the First X-mark and Last Test, respectively, of Payroll,
while Table 7d shows marginal significance at the Last Test
of Payroll. Given these differences, especially at the Last
Test of the larger Payroll task, we reject H2.

Differences were even more pronounced using the M-NC
mapping, as shown in Table 7e and Table 7f. This was
especially true using the Eff-Color metric (Table 7e)
where, for both tasks, statistical differences were at the 0.10
level at the First X-mark and at the 0.05 and 0.01 levels at the
Last Test. We reject H3.

Although the Friedman test reveals only whether there is
a difference among the three information bases in the
measured settings, Table 7 indicates that the I-NC informa-
tion base, which is the basis of the inexpensive Nearest
Consumers technique, may be the most effective of the three
information bases—I-NC showed the highest average
effectiveness at almost every point measured. The implica-
tions of this are discussed in Section 5.3.

5.2.2 RQ2: The Mapping Factor

How important is mapping alone to technique effective-
ness? The tables in Section 5.2.1 are suggestive in this
regard. To statistically consider whether this factor had a
significant impact on effectiveness, we used the Friedman

test to compare the mappings’ effectiveness under each

information base, for the following hypotheses:

H4. There is no difference in the effectiveness of the three

mappings with the I-TC information base.

H5. There is no difference in the effectiveness of the three

mappings with the I-BL information base.

H6. There is no difference in the effectiveness of the three

mappings with the I-NC information base.

As Table 8 shows, for all three information bases,

mapping M-NC was consistently the most effective. Even

more, the Friedman tests reveal significant differences in

technique effectiveness among the different mappings at

the First X-mark and the Last Test points of measurement.

These differences were almost always significant at the

0.05 level and often significant at the 0.01 level. Clearly, H4,

H5, and H6 must all be rejected.

5.2.3 RQ3: Information Base Robustness

As our first step in investigating the pervasiveness of
mistakes, we counted the number of incorrect testing
decisions made in each end-user test suite. In the context
of our environment, this is either a WYSIWYT checkmark,
signifying a correct value placed in a cell that really has an
incorrect value, or an X-mark, signifying an incorrect value
(a failure) placed in a cell that really has a correct value.

In the Gradebook task, 8.99 percent of the checkmarks
and 5.95 percent of the X-marks were incorrect. This trend
continued in Payroll, where 20.62 percent of the check-
marks and 3.33 percent of the X-marks were incorrect.
These results corroborate the findings of an earlier for-
mative study [57], where many more incorrect checkmarks
were placed than incorrect X-marks. In that previous study,
we found evidence suggesting that our end-user partici-
pants placed checkmarks if they thought that a cell’s value
could possibly be correct. In both that previous study and
this paper’s experiment, it appears that this liberal use of
checkmarks resulted in many incorrect testing decisions.

Clearly, the large number of incorrect testing decisions
means that the information bases and mappings were
corrupted with incorrect information. Given that such
mistakes corrupt information bases, how did these mistakes
impact an information base’s effect on technique effective-
ness? To investigate this, we measured the effectiveness at
each First X-mark, Second X-mark, and Last Test that was in the
context of at least one incorrect testing decision; this occurred for
13 of the 18 debugging sessions in the Gradebook task and
for 10 of the 13 sessions in Payroll. (In the debugging
sessions in which a second X-mark was placed, all three such
sessions in Gradebook took place in the presence of at least
one incorrect testing decision, as did three of the five sessions
for Payroll.) We isolated information bases using the same
procedure as in Section 5.2.1.

H7. There is no difference in the effectiveness of the three

information bases with the M-TC mapping when feedback is

provided in the context of mistakes.

H8. There is no difference in the effectiveness of the three
information bases with the M-BL mapping when feedback is
provided in the context of mistakes.

232 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 32, NO. 4, APRIL 2006

H9. There is no difference in the effectiveness of the three

information bases with the M-NC mapping when feedback is

provided in the context of mistakes.

As can be seen in Table 9a, Table 9b, Table 9c, and

Table 9d, there were no significant differences (at the 0.05 or

0.01 levels) among the techniques, so we cannot reject H7 or

RUTHRUFF ET AL.: INTERACTIVE FAULT LOCALIZATION TECHNIQUES IN A SPREADSHEET ENVIRONMENT 233

TABLE 8
Isolating the Mapping Factor with the Specified Information Base: (a) Information Base I-TC, Metric Eff-Color, (b) Information

Base I-TC, Metric Eff-All, (c) Information Base I-BL, Metric Eff-Color, (d) Information Base I-BL, Metric Eff-All,
(e) Information Base I-NC, Metric Eff-Color, and (f) Information Base I-NC, Metric Eff-All

H8. However, in Table 9e and Table 9f, at the last test of

debugging sessions, the differences in each information

base’s effectiveness were marginally significant forPayroll

and significant (at the 0.01 level) for Gradebook. There-

fore, we reject H9.
More important, though, as shown in all three of these

tables, all three information bases were able to provide

234 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 32, NO. 4, APRIL 2006

TABLE 9
Isolating the Information Base Factor with the Specified Mapping at Feedback Points that Were in the Context of at Least One

Incorrect Testing Decision: (a) Mapping M-TC, Metric Eff-Color, (b) Mapping M-TC, Metric Eff-All, (c) Mapping M-BL, Metric
Eff-Color, (d) Mapping M-BL, Metric Eff-All, (e) Mapping M-NC, Metric Eff-Color,and (f) Mapping M-NC, Metric Eff-All

effective feedback (indicated by positive values in the
tables) in most cases, even in the presence of user mistakes.
(As one would expect, the mistakes appeared to have an
impact on technique effectiveness. Although there was
almost no change in effectiveness at the First X-mark
feedback point due to incorrect testing decisions, by the
Last Test feedback point, many effectiveness measures were
adversely affected.) This ability to provide effective feed-
back in these scenarios may be in part due to the help of our
robustness feature. However, further research would be
required in order to test this possibility.

Another interesting trend in the data is that, once again,
the I-NC information base usually showed the highest
average effectiveness, even in the context of these testing
mistakes. We discuss possible reasons for this superior
robustness in Section 5.3.

5.2.4 RQ4: Mapping Robustness

In the context of at least one incorrect testing decision, some
of the differences in information base effectiveness tended
to disappear. Would the same trend hold for the mapping
factor?

H10. There is no difference in the effectiveness of the three
mappings with the I-TC information base when feedback is

provided in the context of mistakes.

H11. There is no difference in the effectiveness of the three
mappings with the I-BL information base when feedback is

provided in the context of mistakes.

H12. There is no difference in the effectiveness of the three
mappings with the I-NC information base when feedback is

provided in the context of mistakes.

In the context of at least one incorrect testing decision,
Table 10a and Table 10b show significant differences in
effectiveness using difference mappings. This trend con-
tinued in Table 10c, Table 10d, Table 10e, and Table 10f.
These differences were almost always significant at the 0.05
or 0.01 levels, so we reject H10, H11, and H12.

5.3 Discussion

5.3.1 The Information Base Factor

Our results regarding RQ1 showed that the information
base factor can make a significant difference in technique
effectiveness. This result is in keeping with traditional
understanding. We also found that the information bases’
differences in effectiveness were most pronounced at the end
of debugging sessions, most likely due to the increased
testing information available at the end of a session, allowing
the techniques a greater opportunity to differentiate them-
selves from each other. However, a surprise was that
effectiveness did not always improve as debugging sessions
progressed—in the case of Gradebook, the feedback
produced by all nine information bases and mappings
consistently got worse. We believe this may relate to the
mistakes the users made in their testing, a point we will return
to shortly. The implied importance of the information base
factor indicates that researchers could serve end users and
the software they create by investing effort into devising
information bases for end-user fault localization techniques,

just as has been done for professional programmers’ fault
localization techniques.

Another surprise was the superior effectiveness of the
I-NC information base. The first aspect of this result is the
fact that this information base is the least computationally
expensive of the three we compared. The second aspect of
this result is that the I-NC information base is the
information base least like those employed in many
traditional fault localization techniques, which tend to use
counts of passed and failed tests (as does I-TC) or dicing-
like approaches (as does I-BL) to generate feedback.

In generalizing this experience, the first lesson to
researchers may be that the most expensive and intelligent
information base may not always be the most effective. In fact,
from a cost-effectiveness standpoint, a simple, inexpensive
technique may be sufficient for end users programming in
spreadsheet environments. Second, researchers may find
that techniques employing nontraditional measures gener-
ate the most effective feedback in the spreadsheet para-
digm. Future research may shed some insights into whether
similar lessons are indicated in other end-user program-
ming paradigms.

We were surprised at the role of the information base
factor in the presence of user mistakes (RQ3). We had
expected that this factor would be the most important factor
in providing quality feedback in the presence of these
mistakes. Contrary to expectations, when using the M-TC

and M-BL mappings, the information base factor often did
not make a significant difference in effectiveness. This
occurs despite the importance of the information base factor from
the investigation in RQ1. A likely reason is that the
information bases themselves are corrupted by such
mistakes. This corruption may generally mitigate any
differences among information bases. But, because signifi-
cant differences were found when using the M-NC mapping
to isolate this factor, future research is needed to determine
the importance of the information base factor in the
presence of user mistakes by using a greater number of
information base and mapping combinations on a wider
variety of test suites.

5.3.2 The Mapping Factor

Turning to RQ2, the role of mapping in the fault localization

techniques’ performance was quite pronounced. While we

found two significant differences at the 0.05 level and three

differences at the 0.01 level in RQ1 using both effectiveness

measures, our investigation of RQ2 yielded three differ-

ences at the 0.05 level and 17 differences at the 0.01 level.

These significant differences occurred despite only small

distinctions among the way the three mappings were done

(i.e., the number of fault likelihood values and the “initial”

value).
This result has two implications. First, regarding the

design of fault localization techniques, our results suggest
that, because mapping plays such a critical role, great care
should be exercised in selecting what mapping to include in
a fault localization technique. The second implication
concerns the evaluation of fault localization techniques.
Since the information base and mapping factors had sig-
nificant, independent roles in the techniques’ effectiveness, our

RUTHRUFF ET AL.: INTERACTIVE FAULT LOCALIZATION TECHNIQUES IN A SPREADSHEET ENVIRONMENT 235

results suggest that evaluating each factor separately is

necessary in order to obtain accurate information as to the

effectiveness of a fault localization technique. In fact,

researchers may find that some mappings consistently

perform better than others, as we found in this particular

experiment with M-NC.

236 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 32, NO. 4, APRIL 2006

TABLE 10
Isolating the Mapping Factor with the Specified Information Base for Feedback Points in the Context of at Least One Incorrect

Testing Decision: (a) Information Base I-TC, Metric Eff-Color, (b) Information Base I-TC, Metric Eff-All, (c) Information Base
I-BL, Metric Eff-Color, (d) Information Base I-BL, Metric Eff-All,

(e) Information Base I-NC, Metric Eff-Color, and (f) Information Base I-NC, Metric Eff-All

The mapping factor continued to play a significant role
in technique effectiveness when considering situations
where at least one incorrect testing decision had been made
(RQ4). This result may not seem terribly surprising given
the results for RQ2, but it is quite surprising given the
results for RQ3, where the information base factor at times
did not make a significant difference.

The immediate consequence of these results is a
reinforcement of the importance of the mapping factor,
and the care that researchers should take when choosing a
mapping for their own fault localization techniques. In fact,
these results suggest that the mapping factor may be even
more important than the information base factor.

6 CONCLUSIONS AND IMPLICATIONS FOR FUTURE

WORK

End-user programmers are writing a substantial number of
programs, due in large part to the significant effort put forth
to bring programming power to end users. Unfortunately,
this effort had not been supplemented by a significant effort
to increase the correctness of these often faulty programs.
The lack of research in this area is especially evident with
respect to supporting the debugging tasks that end-user
programmers inevitably must perform.

To help address this need, this paper presents algorithms
for three fault localization techniques for end users
programming in spreadsheet environments. These techni-
ques are designed to accommodate the differences between
professional and end-user programming and have varying
costs in order to provide fault localization feedback. We also
discussed two separate factors in fault localization techni-
ques that can play important roles in providing fault
localization feedback. To investigate the impact of these
factors on the effectiveness of fault localization feedback,
we conducted an experiment. This experiment indicated
that each can have a significant impact on the effectiveness
of fault localization techniques. To our knowledge, this
work is the first to formally suggest the possible importance
of evaluating each factor of a fault localization technique
separately.

We believe that the fault localization techniques de-
scribed in this paper can be extended to other end-user
programming paradigms. The information bases of our
approaches are coupled with the WYSIWYT testing
methodology, which has been shown to be generalizable
to other spreadsheet systems, such as Excel [27], to other
programming paradigms, such as the dataflow paradigm
using Prograph [32], and to the screen transition paradigm
using Lyee [10]. Our mappings can be adapted as needed to
map these information bases into suitable fault localization
feedback in the given programming paradigm. For example,
in Prograph [21], fault likelihood calculations would be made
for nodes rather than spreadsheet cells. In summary, any
paradigm capable of supporting WYSIWYT is capable of
supporting our fault localization techniques. Further, our
techniques could be implemented in paradigms without the
support of WYSIWYT, provided that the environment
provides some mechanism for maintaining testing informa-
tion provided by an oracle such as an end user.

Repeated empirical study is needed, of course, to
investigate this experiment’s research questions in other

settings. Nevertheless, this paper has several implications
for future work into bringing interactive fault localization
techniques to end-user programmers. First, we found
significant differences in the effectiveness of the informa-
tion bases of our three techniques. These information bases
have varying costs associated with providing fault localiza-
tion feedback, indicating that researchers and developers of
end-user programming environments may face varying
cost-effectiveness considerations when selecting informa-
tion bases for their own techniques. For example, designers
of future fault localization techniques may find that some
expensive information bases may not be as cost-effective as
other less expensive information bases. We believe that
researchers may benefit from experimenting with various
information bases for their own interactive fault localization
techniques in order to find the most cost-effective choice,
especially if responsiveness is an issue in their settings.

Second, this paper evaluates interactive techniques at the
various points throughout debugging in which fault
localization feedback occurs, including early in debugging
when very little information may be available on which to
base feedback. This differs from most research regarding
traditional fault localization techniques by considering
points other than those of maximal system reasoning
potential—when the system has its best (and only) chance
of producing correct feedback.

Third, this paper reinforces the need to design and
evaluate interactive techniques while considering the
possibility of providing feedback in the presence of
inaccurate information. The fault localization algorithms
presented in this paper have robustness features to attempt
to mitigate the impact of inaccurate information. The
experiment in this paper also corroborates a growing body
of evidence [33], [34], [57] that mistakes are commonly
made by end users performing interactive testing and
debugging tasks. This contribution, which goes against
another traditional assumption in fault localization research
—that all information provided to the technique is
correct—is important because many techniques leverage
testing information to provide feedback. We believe that
researchers should design their information bases and
mappings with the possibility of mistakes in mind.
Researchers should also empirically study their techniques’
resiliency to such mistakes to better inform their design
decisions. We have recently conducted such follow-up
work on our own techniques [44], where we found
beneficial adjustments to our mappings and formulated a
set of empirically-based recommendations for handling
mistakes in fault localization techniques for spreadsheets.

Finally, our results suggest that the mapping factor may
have a significant impact on technique effectiveness more
often than the information base factor. The importance of
the mapping factor provides yet another contrast to
traditional fault localization research, which has often
focused solely on ways to bring better information bases
to fault localization techniques. We suggest that researchers
design and empirically evaluate various mappings in order
to determine the best choice for their own end-user fault
localization techniques. Furthermore, for fault localization
techniques focusing on professional programmers, it may
sometimes be possible to improve the quality of a

RUTHRUFF ET AL.: INTERACTIVE FAULT LOCALIZATION TECHNIQUES IN A SPREADSHEET ENVIRONMENT 237

technique’s feedback with simple modifications to the

mapping factors of these techniques rather than by

investing resources into developing entirely new informa-

tion bases.

ACKNOWLEDGMENTS

The authors thank the participants in their experiment.

James Reichwein developed the first version of the Blocking

Technique [57]. Marc Fisher II developed the first version of

the Test Count Technique [25]. Curtis Cook provided advice

on our statistical analyses. The authors thank the anon-

ymous reviewers of this paper for comments that improved

the content of the work. This work was supported in part by

the EUSES Consortium via US National Science Foundation

grant ITR-0325273. This paper is a revised and expanded

version of a paper presented at the 27th International

Conference on Software Engineering, May 2005 [55]. This

work was performed at Oregon State University.

REFERENCES

[1] R. Abraham and M. Erwig, “Header and Unit Inference for
Spreadsheets through Spatial Analyses,” Proc. IEEE Int’l Symp.
Visual Languages and Human-Centric Computing, pp. 165-172, Sept.
2004.

[2] H. Agrawal and J.R. Horgan, “Dynamic Program Slicing,” Proc.
ACM SIGPLAN 1990 Conf. Programming Language Design and
Implementation, pp. 246-256, June 1990.

[3] H. Agrawal, J.R. Horgan, S. London, and W.E. Wong, “Fault
Localization Using Execution Slices and Dataflow Tests,” Proc.
Sixth IEEE Int’l Symp. Software Reliability Eng., pp. 143-151, Oct.
1995.

[4] Y. Ahmad, T. Antoniu, S. Goldwater, and S. Krishnamurthi, “A
Type System for Statically Detecting Spreadsheet Errors,” Proc.
18th IEEE Int’l Conf. Automated Software Eng., pp. 174-183, Oct.
2003.

[5] C.M. Allwood, “Error Detection Processes in Statistical Problem
Solving,” Cognitive Science, vol. 8, no. 4, pp. 413-437, Oct.-Dec.
1984.

[6] T. Antoniu, P.A. Steckler, S. Krishnamurthi, E. Neuwirth, and M.
Felleisen, “Validating the Unit Correctness of Spreadsheet
Programs,” Proc. 26th Int’l Conf. Software Eng., pp. 439-448, May
2004.

[7] Y. Ayalew and R. Mittermeir, “Spreadsheet Debugging,” Proc.
European Spreadsheet Risks Interest Group, July 2003.

[8] M. Betts and A.S. Horowitz, “Oops! Audits Find Errors in 49 Out
of 54 Spreadsheets,” Computerworld, p. 47, May 2004.

[9] B. Boehm and V.R. Basili, “Software Defect Reduction Top 10
List,” Computer, vol. 34, no. 1, pp. 135-137, Jan. 2001.

[10] D. Brown, M. Burnett, G. Rothermel, H. Fujita, and F. Negoro,
“Generalizing WYSIWYT Visual Testing to Screen Transition
Languages,” Proc. IEEE Symp. Human-Centric Computing, Lan-
guages, and Environments, pp. 203-210, Oct. 2003.

[11] P. Bunus and P. Fritzson, “Semi-Automatic Fault Localization and
Behavior Verification for Physical System Simulation Models,”
Proc. 18th IEEE Int’l Conf. Automated Software Eng., pp. 253-258,
Oct. 2003.

[12] M. Burnett, J. Atwood, R. Djang, H. Gottfried, J. Reichwein, and S.
Yang, “Forms/3: A First-Order Visual Language to Explore the
Boundaries of the Spreadsheet Paradigm,” J. Functional Program-
ming, vol. 11, no. 2, pp. 155-206, Mar. 2001.

[13] M. Burnett, C. Cook, O. Pendse, G. Rothermel, J. Summet, and C.
Wallace, “End-User Software Engineering with Assertions in the
Spreadsheet Paradigm,” Proc. 25th Int’l Conf. Software Eng., pp. 93-
103, May 2003.

[14] M. Burnett, C. Cook, and G. Rothermel, “End-User Software
Engineering,” Comm. ACM, vol. 47, no. 9, pp. 53-58, Sept. 2004.

[15] M. Burnett, A. Sheretov, and G. Rothermel, “Scaling Up a ‘What
You See Is What You Test’ Methodology to Spreadsheet Grids,”
Proc. IEEE Symp. Visual Languages, pp. 30-37, Sept. 1999.

[16] T.Y. Chen and Y.Y. Cheung, “On Program Dicing,” Software
Maintenance: Research and Practice, vol. 9, no. 1, pp. 33-46, Jan.-Feb.
1997.

[17] M. Clermont, “Analyzing Large Spreadsheet Programs,” Proc.
10th Working Conf. Reverse Eng., pp. 306-315, Nov. 2003.

[18] M. Clermont and R. Mittermeir, “Auditing Large Spreadsheet
Programs,” Proc. Int’l Conf. Information Systems Implementation and
Modelling, pp. 87-97, Apr. 2003.

[19] H. Cleve and A. Zeller, “Locating Causes of Program Failures,”
Proc. 27th Int’l Conf. Software Eng., pp. 342-351, May 2005.

[20] C. Cook, M. Burnett, and D. Boom, “A Bug’s Eye View of
Immediate Visual Feedback in Direct-Manipulation Programming
Systems,” Proc. Empirical Studies of Programmers: Seventh Workshop,
pp. 20-41, Oct. 1997.

[21] P.T. Cox, F.R. Giles, and T. Pietrzykowski, “Prograph: A Step
towards Liberating Programming from Textual Conditioning,”
Proc. IEEE Workshop Visual Languages, pp. 150-156, Oct. 1989.

[22] R.A. DeMillo, H. Pan, and E.H. Spafford, “Critical Slicing for
Software Fault Localization,” Proc. Int’l Symp. Software Testing and
Analysis, pp. 121-134, Jan. 1996.

[23] E. Duesterwald, R. Gupta, and M.L. Soffa, “Rigorous Data Flow
Testing through Output Influences,” Proc. Second Irvine Software
Symp., pp. 131-145, Mar. 1992.

[24] M. Erwig and M. Burnett, “Adding Apples and Oranges,” Proc.
Fourth Int’l Symp. Practical Aspects of Declarative Languages, pp. 173-
191, Jan. 2002.

[25] M. Fisher II, D. Jin, G. Rothermel, and M. Burnett, “Test Reuse in
the Spreadsheet Paradigm,” Proc. IEEE Int’l Symp. Software
Reliability Eng., pp. 257-268, Nov. 2002.

[26] M. Fisher II and G. Rothermel, “The EUSES Spreadsheet Corpus:
A Shared Resource for Supporting Experimentation with Spread-
sheet Dependability Mechanisms,” Proc. First Workshop End-User
Software Eng., pp. 47-51, May 2005.

[27] M. Fisher II, G. Rothermel, T. Creelan, and M. Burnett, “Scaling a
Dataflow Testing Methodology to the Multiparadigm World of
Commercial Spreadsheets,” Technical Report TR-UNL-CSE-2005-
0003, Univ. of Nebraska-Lincoln, Sept. 2005.

[28] M. Francel and S. Rugaber, “Fault Localization Using Execution
Traces,” Proc. ACM 30th Ann. Southeast Regional Conf., pp. 69-76,
Apr. 1992.

[29] D.S. Hilzenrath, “Finding Errors a Plus, Fannie Says; Mortgage
Giant Tries to Soften Effect of $1 Billion in Mistakes,” The
Washington Post, 31 Oct. 2003.

[30] T. Igarashi, J.D. Mackinlay, B.W. Chang, and P.T. Zellweger,
“Fluid Visualization of Spreadsheet Structures,” Proc. IEEE Symp.
Visual Languages, pp. 118-125, Sept. 1998.

[31] J.A. Jones, M.J. Harrold, and J. Stasko, “Visualization of Test
Information to Assist Fault Localization,” Proc. 24th Int’l Conf.
Software Eng., pp. 467-477, May 2002.

[32] M. Karam and T. Smedley, “A Testing Methodology for a
Dataflow Based Visual Programming Language,” Proc. IEEE
Symp. Human-Centric Computing, Languages, and Environments,
pp. 280-287, Sept. 2001.

[33] A.J. Ko and B.A. Myers, “Development and Evaluation of a Model
of Programming Errors,” Proc. IEEE Symp. Human-Centric Comput-
ing, Languages, and Environments, pp. 7-14, Oct. 2003.

[34] A.J. Ko and B.A. Myers, “Designing the Whyline: A Debugging
Interface for Asking Questions about Program Failures,” Proc.
ACM Conf. Human Factors in Computing Systems, pp. 151-158. Apr.
2004.

[35] B. Korel and J. Laski, “Dynamic Slicing of Computer Programs,”
J. Systems and Software, vol. 13, no. 3, pp. 187-195, Nov. 1990.

[36] V. Krishna, C. Cook, D. Keller, J. Cantrell, C. Wallace, M. Burnett,
and G. Rothermel, “Incorporating Incremental Validation and
Impact Analysis into Spreadsheet Maintenance: An Empirical
Study,” Proc. IEEE Int’l Conf. Software Maintenance, pp. 72-81, Nov.
2001.

[37] J. Laski and B. Korel, “A Data Flow Oriented Program Testing
Strategy,” IEEE Trans. Software Eng., vol. 9, no. 3, pp. 347-354, May
1993.

[38] J.R. Lyle and M. Weiser, “Automatic Program Bug Location by
Program Slicing,” Proc. Second Int’l Conf. Computers and Applica-
tions, pp. 877-883, June 1987.

[39] R.C. Miller and B.A. Myers, “Outlier Finding: Focusing User
Attention on Possible Errors,” Proc. ACM Symp. User Interface
Software and Technology, pp. 81-90, Nov. 2001.

238 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 32, NO. 4, APRIL 2006

[40] S.C. Ntafos, “On Required Element Testing,” IEEE Trans. Software
Eng., vol. 10, no. 6, pp. 795-803, Nov. 1984.

[41] H. Pan and E. Spafford, “Toward Automatic Localization of
Software Faults,” Proc. 10th Pacific Northwest Software Quality
Conf., Oct. 1992.

[42] R. Panko, “Finding Spreadsheet Errors: Most Spreadsheet Errors
Have Design Flaws that May Lead to Long-Term Miscalculation,”
Information Week, p. 100, May 1995.

[43] R. Panko, “What We Know about Spreadsheet Errors,” J. End User
Computing, pp. 15-21, Spring 1998.

[44] A. Phalgune, C. Kissinger, M. Burnett, C. Cook, L. Beckwith, and
J.R. Ruthruff, “Garbage In, Garbage Out? An Empirical Look at
Oracle Mistakes by End-User Programmers,” Proc. 2005 IEEE
Symp. Visual Languages and Human-Centric Computing, pp. 45-52,
Sept. 2005.

[45] B.C. Pierce and D.N. Turner, “Local Type Inference,” ACM Trans.
Programming Languages and Systems, vol. 22, no. 1, pp. 1-44, Jan.
2000.

[46] B. Pytlik, M. Renieris, S. Krishnamurthi, and S.P. Reiss, “Auto-
mated Fault Localization Using Potential Invariants,” Proc. Fifth
Int’l Workshop Automated and Algorithmic Debugging, pp. 273-276,
Sept. 2003.

[47] S. Rapps and E.J. Weyuker, “Selected Software Test Data Using
Data Flow Information,” IEEE Trans. Software Eng., vol. 11, no. 4,
pp. 367-375, Apr. 1985.

[48] O. Raz, P. Koopman, and M. Shaw, “Semantic Anomaly Detection
on Online Data Sources,” Proc. 24th Int’l Conf. Software Eng.,
pp. 302-312, May 2002.

[49] M. Renieris and S.P. Reiss, “Fault Localization with Nearest
Neighbor Queries,” Proc. 18th IEEE Int’l Conf. Automated Software
Eng., pp. 30-39, Oct. 2003.

[50] G. Robertson, “Officials Red-Faced by $24m Gaffe: Error in
Contract Bid Hits Bottom Line of TransAlta Corp.,” Ottawa Citizen,
5 June 2003.

[51] G. Rothermel, M. Burnett, L. Li, C. Dupuis, and A. Sheretov, “A
Methodology for Testing Spreadsheets,” ACM Trans. Software Eng.
and Methodology, vol. 10, no. 1, pp. 110-147, Jan. 2001.

[52] K.J. Rothermel, C.R. Cook, M.M. Burnett, J. Schonfeld, T.R.G.
Green, and G. Rothermel, “WYSIWYT Testing in the Spreadsheet
Paradigm: An Empirical Evaluation,” Proc. 22nd Int’l Conf.
Software Eng., pp. 230-239, June 2000.

[53] J. Ruthruff, E. Creswick, M. Burnett, C. Cook, S. Prabhakararao, M.
Fisher II, and M. Main, “End-User Software Visualizations for
Fault Localization,” Proc. ACM Symp. Software Visualization,
pp. 123-132, June 2003.

[54] J.R. Ruthruff and M. Burnett, “Six Challenges in Supporting End-
User Debugging,” Proc. First Workshop End-User Software Eng.,
pp. 57-61, May 2005.

[55] J.R. Ruthruff, M. Burnett, and G. Rothermel, “An Empirical Study
of Fault Localization for End-User Programmers,” Proc. 27th Int’l
Conf. Software Eng., pp. 352-361, May 2005.

[56] J.R. Ruthruff, A. Phalgune, L. Beckwith, M. Burnett, and C. Cook,
“Rewarding ‘Good’ Behavior: End-User Debugging and Re-
wards,” Proc. IEEE Symp. Visual Languages and Human-Centric
Computing, pp. 115-122, Sept. 2004.

[57] J.R. Ruthruff, S. Prabhakararao, J. Reichwein, C. Cook, E.
Creswick, and M. Burnett, “Interactive, Visual Fault Localization
Support for End-User Programmers,” J. Visual Languages and
Computing, vol. 16, nos. 1-2, pp. 3-40, Feb.-Apr. 2005.

[58] J. Sajaniemi, “Modeling Spreadsheet Audit: A Rigorous Approach
to Automatic Visualization,” J. Visual Languages and Computing,
vol. 11, no. 1, pp. 49-82, Feb. 2000.

[59] C. Scaffidi, M. Shaw, and B. Myers, “Estimating the Numbers of
End Users and End User Programmers,” Proc. 2005 IEEE Symp.
Visual Languages and Human-Centric Computing, pp. 207-214, Sept.
2005.

[60] S. Siegel and N.J. Castellan Jr., Non-Parametric Statistics for the
Behavioral Sciences. Boston: McGraw-Hill, 1998.

[61] D.H. Stamatis, Failure Mode Effect Analysis: FMEA from Theory to
Execution, second ed. ASQ Quality Press, June 2003.

[62] F. Tip, “A Survey of Program Slicing Techniques,” J. Programming
Languages, vol. 3, no. 3, pp. 121-189, 1995.

[63] J.M. Voas, “Software Testability Measurement for Assertion
Placement and Fault Localization,” Proc. Int’l Workshop Automated
and Algorithmic Debugging, pp. 133-144, 1995.

[64] E. Wagner and H. Lieberman, “An End-User Tool for e-Commerce
Debugging,” Proc. Int’l Conf. Intelligent User Interfaces, pp. 331, Jan.
2003.

[65] E.J. Wagner and H. Lieberman, “Supporting User Hypotheses in
Problem Diagnosis on the Web and Elsewhere,” Proc. Int’l Conf.
Intelligent User Interfaces, pp. 30-37, Jan. 2004.

[66] M. Weiser, “Program Slicing,” IEEE Trans. Software Eng., vol. 10,
no. 4, pp. 352-357, July 1984.

[67] A. Wilson, M. Burnett, L. Beckwith, O. Granatir, L. Casburn, C.
Cook, M. Durham, and G. Rothermel, “Harnessing Curiosity to
Increase Correctness in End-User Programming,” Proc. ACM Conf.
Human Factors in Computing Systems, pp. 305-312, Apr. 2003.

[68] C. Wohlin, P. Runeson, M. Host, B. Regnell, and A. Wesslen,
Experimentation in Software Engineering. Boston: Kluwer Academic,
2000.

Joseph R. Ruthruff is currently a PhD student
in computer science at the University of Nebras-
ka-Lincoln. In 2004, he received the MS degree
in computer science from Oregon State Uni-
versity. In 2002, he received the honors BS
degree in computer science, magna cum laude,
with a minor in mathematics from Oregon State
University. His research interests lie in the
analysis and verification of software systems
and in the human-computer interaction issues

arising in those systems. He is a student member of the ACM, the ACM
SIGSOFT, the IEEE, and the IEEE Computer Society. He is a member
of the Upsilon Pi Epsilon Honors Society.

Margaret Burnett received the BA degree in
mathematics from Miami University, Oxford,
Ohio, and the MS and PhD degrees in computer
science from the University of Kansas, Lawr-
ence. She worked for several years for large and
small companies before beginning her academic
career as an assistant professor at Michigan
Technological University in 1991. She is cur-
rently a professor of computer science at
Oregon State University. She is also project

director of the EUSES Consortium (End Users Shaping Effective
Software), a national research consortium investigating ways to support
end-user software engineering. She has been a recipient of the US
National Science Foundation’s Young Investigator Award, of Oregon
State University’s Elizabeth P. Ritchie Distinguished Professor Award,
and of Oregon State University’s Research Collaboration Award
(College of Engineering). She is currently on the steering committees
for the IEEE Symposium on Visual Languages and Human Centric
Computing and for the ACM Symposium on Software Visualization. She
is a senior member of the IEEE and a member of the ACM and the IEEE
Computer Society.

Gregg Rothermel received the PhD degree in
computer science from Clemson University, the
MS degree in computer science from the State
University of New York at Albany, and the BA
degree in philosophy from Reed College. He is
currently a professor and the Jensen Chair of
Software Engineering in the Department of
Computer Science and Engineering at the Uni-
versity of Nebraska-Lincoln. His research inter-
ests include software engineering and program

analysis, with emphases on the application of program analysis
techniques to problems in software maintenance and testing and on
empirical studies. He is program cochair for ICSE 2007 and has
previously served as associate editor-in-chief for the IEEE Transactions
on Software Engineering, program chair for ISSTA 2004, and the chair of
the steering committee for the International Conference on Software
Maintenance. He is a member of the editorial boards for the Empirical
Software Engineering Journal and the Software Quality Journal. He has
served as a member of numerous program committees. He is a member
of the IEEE and the ACM.

RUTHRUFF ET AL.: INTERACTIVE FAULT LOCALIZATION TECHNIQUES IN A SPREADSHEET ENVIRONMENT 239

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

