
How Programmers Debug, Revisited:
An Information Foraging Theory Perspective

Joseph Lawrance, Christopher Bogart, Margaret Burnett, Senior Member, IEEE,
Rachel Bellamy, Member, IEEE, Kyle Rector, and Scott D. Fleming, Member, IEEE

Abstract—Many theories of human debugging rely on complex mental constructs that offer little practical advice to builders of software
engineering tools. Although hypotheses are important in debugging, a theory of navigation adds more practical value to our

understanding of how programmers debug. Therefore, in this paper, we reconsider how people go about debugging in large collections
of source code using a modern programming environment. We present an information foraging theory of debugging that treats

programmer navigation during debugging as being analogous to a predator following scent to find prey in the wild. The theory proposes
that constructs of scent and topology provide enough information to describe and predict programmer navigation during debugging,

without reference to mental states such as hypotheses. We investigate the scope of our theory through an empirical study of
10 professional programmers debugging a real-world open source program. We found that the programmers’ verbalizations far more

often concerned scent-following than hypotheses. To evaluate the predictiveness of our theory, we created an executable model that
predicted programmer navigation behavior more accurately than comparable models that did not consider information scent. Finally,

we discuss the implications of our results for enhancing software engineering tools.

Index Terms—Information foraging theory, debugging, software maintenance, programmer navigation, information scent, empirical

software engineering

Ç

1 INTRODUCTION

ANadvantage of some theories of programmer behavior
is that they can be used to make predictions about how

programmers will use software engineering tools. Such
predictions can be used to guide choices about potential
benefits of new tool features or can inspire new software
engineering practices. In this way, software engineering
researchers and tool developers can build on each other’s
work in a principled manner.

This paper presents a theory of programmer navigation
when debugging. The programmer navigation aspect of
debugging is important: Recent research has shown that
programmers spend 35 percent of their time navigating
[23]. Older theories of program debugging (e.g., [5], [50]) do
not explicitly consider navigation; instead, they rely
primarily on in-the-head constructs, such as mental models
and hypotheses, to explain the behavior of programmers
during program comprehension and debugging. Although

such theories revealed phenomena that have influenced
software tools, they have not revealed concrete behavioral
phenomena that tools can directly observe and respond to
appropriately. Furthermore, these theories were mostly
developed in an age in which programming environments
were relatively simple. Modern programming environ-
ments provide a plethora of visualizations, clickable links,
animations, and other aids, but the use of these devices is
not accounted for by the older theories.

Rational Analysis [2] may hold the key to understanding
programmer navigation during debugging in modern
programming environments, with potential concrete im-
plications for programming tools. It suggests a basis for
theories of programmer behavior that do not involve
knowledge of what is inside a programmer’s head. Rational
Analysis assumes that expert behavior is optimally adapted
to the structure of the environment. It allows researchers to
infer what a person adapted to an environment will do
subject to 1) the person’s goals, 2) the costs and benefits of
actions in the environment, and 3) a modest set of resource
constraints known to apply to the brain’s computational
capacities. Applied to debugging, it implies that experts
will make the best possible navigational choices, given the
information the environment makes available to them at
each moment. Anderson has shown good results in this
approach to human behavior involving problem solving,
categorization, and causal inference.

Information foraging theory [34] is an example of a
rational analysis that has emerged in the last decade as a
way to explain how people seek, gather, and make use of
information. Like all rational analyses, information foraging
theory assumes that humans have evolved to be well
adapted to the excessive information in the world around
them, and that they behave accordingly in information
spaces. The basic idea is that, given the plethora of

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 39, NO. 2, FEBRUARY 2013 197

. J. Lawrance is with the Wentworth Institute of Technology, Oregon State
University, and the IBM T.J. Watson Research Center.
E-mail: lawrancej@wit.edu.

. C. Bogart is with Oregon State University.
E-mail: bogart@eecs.oregonstate.edu.

. M. Burnett is with Oregon State University and the IBM T.J. Watson
Research Center. E-mail: burnett@eecs.oregonstate.edu.

. R. Bellamy is with the IBM T.J. Watson Research Center.
E-mail: rachel@us.ibm.com.

. K. Rector is with the University of Washington and Oregon State
University. E-mail: rectorky@cs.washington.edu.

. S.D. Fleming is with the University of Memphis and Oregon State
University. E-mail: Scott.Fleming@memphis.edu.

Manuscript received 13 Apr. 2009; revised 16 Mar. 2010; accepted 21 Aug.
2010; published online 3 Jan. 2011.
Recommended for acceptance by P. Devanbu.
For information on obtaining reprints of this article, please send e-mail to:
tse@computer.org, and reference IEEECS Log Number TSE-2009-04-0081.
Digital Object Identifier no. 10.1109/TSE.2010.111.

2168-7161/13/$31.00 ! 2013 IEEE Published by the IEEE Computer Society

irrelevant information in the environment, humans have
evolved strategies to efficiently find information relevant to
their needs without processing everything—in essence,
minimizing the mental cost to achieve their goals.

Information foraging theory is based on optimal foraging
theory, a theory of how predators and prey behave in the
wild. Predators sniff for the prey, and follow the scent to
the patch where the prey is likely to be. Applying these
notions to the domain of information technology, predators
(people in need of information) sniff for the prey (the
information itself), and follow the scent through cues in
the environment to the information patch that contains the
prey. Information foraging theory has been shown to
mathematically model which web pages human informa-
tion foragers select on the web [6], and as a result has
become extremely useful as a practical tool for website
design and evaluation [7], [32], [48].

We believe that information foraging theory should
apply to how programmers navigate when searching for
and fixing a bug as well. That is, we propose that if a bug is
treated as the “prey,” words in the environment and the
source code are treated as “cues” that suggest the “scent” of
prey, and modern programming environments’ naviga-
tional affordances (such as the ability to mouse over a
method call to see its definition) are treated as “topology,”
then the theory of information foraging can be mapped to
the domain of debugging. (We detail this mapping in
Section 2.) If information foraging theory applies to
programmers’ debugging behavior, it has the potential
to provide a parsimonious and easily understood model to
guide the efforts of tool builders. Thus, a tool designer
would have a theoretically well-grounded way of evaluat-
ing design choices about the navigational devices and cues
in a proposed software-debugging tool. (In the conclusion
of this paper, we briefly suggest a few such implications;
[40] provides a more in-depth treatment of the implications
for tool design.)

In this paper, we present a theory of programmer
navigation during debugging based on information foraging
theory. Consistent with Sjøberg et al.’s theory-building
process [47], we 1) define the constructs and propositions
of the theory, 2) empirically investigate the scope of the
theory (i.e., the circumstances in which the theory is
applicable), and 3) empirically evaluate the theory’s pre-
dictive power.1 To perform the evaluation, we developed an
executable model, PFIS, which operationalizes the theory
constructs and can predict where expert programmers
navigate during debugging [27].2 As a point of comparison,
we also explored a variant of our theory that bases
predictions on programmer hypotheses, rather than scent.

The contributions of this paper are:

1. a theory of information foraging for programmer
navigation behavior while debugging;

2. an analysis of the relationship between information
foraging theory for debugging and other theories of
debugging in the software engineering literature;

3. an empirical comparison of the prevalence of scent-
following versus (nonscent) hypothesis processing
in debugging;

4. a detailed empirical analysis of how information
foraging activity pertains to six debugging “modes”;

5. an empirical analysis of which artifacts are needed
most by tools attempting to capitalize on informa-
tion foraging theory; and

6. an empirical evaluation of PFIS as a predictor of
where programmers navigate.

2 AN INFORMATION FORAGING THEORY OF

PROGRAMMER BEHAVIOR DURING DEBUGGING

A central aspect of developing a theory is choosing the right
constructs [47]. A small number of constructs may improve
the theory’s parsimony; however, too few or overly simple
constructs may limit the theory’s explanatory power or
scope. Information foraging theory [34] defines a manage-
ably small set of intuitive constructs that has demonstrated
utility for explaining and predicting how humans navigate
web pages [6].

To handle the realm of debugging, we refined the
original information foraging constructs as follows:

. Predator: The programmer who is debugging.

. Prey: What the programmer seeks to know to reveal
the changes that must be made to fix the bug.
Furthermore, any information that the programmer
seeks to achieve the goal also constitutes a form of
prey.

. Information patches: Localities in the source code,
related documents, and displays that may contain
prey.

. Proximal cues: Words, objects, and perceptible run-
time behaviors in the programming environment
that suggest scent relative to the distal prey. Cues act
as signposts to prey. For example, words in the
source code, including comments, constitute a type
of cue.

. Information scent: The perceived likelihood of a cue
leading to prey, either directly or indirectly. Scent is a
measure, and scent from one cue can be compared to
the scent of other cues. Unlike cues, scent exists only
in the programmer’s head. This definition is consis-
tent with Chi et al.’s definition of information scent as
“the subjective sense of value and cost of accessing
[information] based on perceptual cues” [6].

. Topology: The collection of paths through the source
code, related documents, and displays through
which the programmer can navigate.

To apply the theory to real-world debugging, we
developed the following operational definitions. Some
constructs have self-evident operationalizations. We oper-
ationalize the prey construct as places in the code where
changes must be made to fix the bug, the predator construct
as a programmer, and the patch construct as localities in the
source code, such as Java methods, classes, and packages.

The notions of topology, cues, and scent do not map
obviously to operational definitions. We operationalize
these constructs as follows:

198 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 39, NO. 2, FEBRUARY 2013

1. The empirical evaluations (described in Section 5) are original and
unique to this paper, but are based on previously collected navigation data
and think-aloud protocols (see Section 4 and [25]).

2. PFIS’s implementation is described in Appendix A and in [27].

. Topology: A directed graph with vertices representing
elements of the source code (e.g., classes, methods)
and of the environment (e.g., class labels enumerated
in a class hierarchy browser), and with edges
representing navigable links between the elements.

. Link: A connection between two nodes in the
topology that allows the programmer to traverse
the connection at a cost of just one click. For
example, in the Eclipse editor, a method invocation
can be clicked on to open the associated method
definition. Hence, Eclipse provides links from
method calls to definitions that the predator can
navigate with one click. In this case, a method call is
the source of a link and the associated definition is
the destination. (Note that links are environment and
context dependent.)

. Proximal cues: Words located near the source of a
link. For example, consider the following line of code
opened in the Eclipse editor: “System.out.
println(someData);”. The identifier println is
the source of a method-invocation link, and the
words system, out, println, and someData are
proximal cues that engender scent about potential
prey at the other end of the link.

. Scent: Word similarity between the bug report
(description of the prey) and proximal cues. That
is, a set of cues comprising words that appear
frequently in the bug report will engender strong
scent in the mind of the predator.

The measure of scent warrants further explanation.
Information scent is the programmer’s (imperfect) percep-
tion of the value (relatedness) of information (as in Pirolli’s
information foraging research on web searching [33]). To
computationally approximate information scent, we com-
pute word similarity between the description of the prey
(e.g., bug-report text) and the proximal cues in the source
code by applying cosine similarity to a vector space IR
model. Note that this operational definition is the model’s
approximation of scent; the true measure of scent exists only
in the programmer’s head.

Computing this approximation of scent is a three-step
process. First, we preprocess the source-code text and bug
report. We tokenize words so that camel case identifiers
(e.g., “NewsItem.getSafeXMLFeedURL()”) are split into
their constituent words (e.g., “news,” “item,” “get,” “safe,”
“xml,” “feed,” and “url”). Furthermore, we apply the
Porter stemming algorithm on the constituent words3 and
filter out Java reserved words (e.g., public, static, and
void) and English stopwords (e.g., “the,” “to,” “be,” “or,”
and “not”).

Second, we weigh terms in files of source code according
to the commonly used tf-idf formula [3], which we compute
as follows:

wi;j ¼ fi;j " idfi

where fi;j ¼
f reqi;j

max8v f reqv;j
and idfi ¼ log

N

ni
:

Here, fi;j is the frequency of word i in document j
(normalized with respect to the most frequently occurring
word v in a document), idfi is the inverse document
frequency, and wi;j is the weight of word i in document dj.

Third, we compute the interword correlation between
proximal cues in source files and the text of a bug report
using cosine similarity, a measure commonly used in
information retrieval systems [3]. We compute cosine
similarity as follows:

simðdj; qÞ ¼
dj % q

jdjj " jqj
¼

Pt
i¼1 wi;j " wi;qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPt

i¼1 w
2
i;j

q
"

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPt
i¼1 w

2
i;q

q ;

where wi;q is the weight of word i in the bug report text (i.e.,
the query in the terminology of [3]).

To evaluate the predictive power of the theory, we
developed an executable model, Programmer Flow by
Information Scent (PFIS) based on the above operationaliza-
tion. We introduced PFIS in previous work [27]. To
implement PFIS’s approximation of scent, we leveraged
the Apache Lucene search-engine library,4 which provides
functionality for computing word similarity.

To make predictions, PFIS propagates its computation of
scent throughout the foraging environment (i.e., program
source code). It starts by gathering topological information,
then calculates scent of each procedure/method’s cue. To
simulate the proportion of programmers that will follow
each link in the topology, PFIS propagates the scent through
the topology using the spreading activation technique [1],
[8]. Appendix A provides the details of the spreading-
activation algorithm. In Sections 4, 5, and 6, we describe
a study in which we applied PFIS to test the theory’s
predictive power.

3 RELATIONSHIP OF INFORMATION FORAGING TO

OTHER THEORIES OF DEBUGGING

Some researchers have proposedmodels of cognition during
debugging and have suggested ways that these models
might influence navigation. Theories of debugging have
evolved in parallel with changes to the task of debugging
itself. Broadly speaking, earlier theories (e.g., [4], [29])
tended to focus on a person reading programs and forming
hypotheses in his or her head until he or she found a fix.
Later theories (e.g., [23], [38]) depict a process of gathering
and organizing information; the trend is from largely in-the-
head debugging toward a distributed-cognition perspective,
which says that some cognition is “in the world” as a
replacement for being in the head [19].

Brooks proposed a top-down theory of program com-
prehension in which a hierarchy of hypotheses drives
comprehension [4]. According to Brooks, high-level hy-
potheses are notions about how the whole of the code might
be structured. The pursuit of these high-level hypotheses
spawns lower level hypotheses about parts or aspects of the
program. The programmer can validate the most specific,
lowest level hypotheses by inspecting specific lines of code.
Brooks observed several patterns in programmers’ hypoth-
esis-processing behavior:

LAWRANCE ET AL.: HOW PROGRAMMERS DEBUG, REVISITED: AN INFORMATION FORAGING THEORY PERSPECTIVE 199

3. Porter stemming is simple and efficient, but, like all stemming
algorithms, it can stem words erroneously (i.e., producing different stems
for different forms of the same words or producing the same stem for
different words) [3]. 4. http://lucene.apache.org/.

. Programmers generally do not give hypotheses
names or named components; their hypotheses are
“just descriptions of the components in terms of the
functions they perform.”

. In Brooks’s theory, the “primary hypothesis”—that
is, the top-level one about the structure of the
code—is “global and nonspecific,” and thus “the
programmer will almost always find it impossible to
verify directly against the program code.” Instead, it
prompts “construction of subsidiary hypotheses,”
with the lowest level ones “adding specific detail
and concreteness.” This suggests that the high-level
hypotheses will be the least likely to match up
directly with the code.

. “Information collection during the search will be
broad, rather than focused only on the hypothesis at
hand.” This observation suggests that a program-
mer’s current hypothesis is unlikely to directly
correspond to the code that the programmer visits
during debugging.

Brooks’ theory also helps us understand why scent may be
a more useful construct to use as a predictor of code
navigation. In his theory, he notes that the most concrete
hypotheses are verified by the identification of “beacons”:
“sets of features that typically indicate the occurrence of
certain structures or operations within the code.” For
example, a swap operation within nested DO loops is a
possible beacon for a sort operation. Other examples of
beacons include variable and other names used in code.
Beacons are closely related to cues in information foraging
theory. The programmer can register scent from beacons
because beacons relate the code to some notion the
programmer has in his or her head (e.g., a hypothesis
about what the code represents).

Letovsky proposed a cognitive model that involves both
bottom-up and top-down hypothesis5 formation [29]. His
work looked at programmers’ initial phase of comprehen-
sion during a small-scale change task. He described what
and why hypotheses (and questions) as drawing connec-
tions bottom-up from the program code (“implementation”)
to the program’s domain (“specification”), and how hypoth-
eses (and questions) as going top-down. Letovsky claimed
that these bottom-up hypotheses trigger a search through
code or documentation, or a reasoning process within the
mental model. Moreover, programmers tend to “pick a
method which is likely to yield an answer with little effort.”
Unlike Brooks’ top-down hypotheses, verbalizations of
Letovsky’s bottom-up hypotheses might contain words
found in the code itself, rather than in a bug report.
However, the bottom-up hypotheses seem unlikely to be
useful as a predictor of code navigation as these hypotheses
occur after a programmer has already navigated to a closely
related place in the code.

Program comprehension is one aspect of debugging;
however, there are other aspects to consider. Katz and
Anderson conducted experiments examining students’
LISP-debugging strategies [20]. The study revealed four
distinct debugging subtasks: comprehension, testing, locat-
ing the component containing the error, and repairing the
component. The students had the most difficulty with

locating the component that contained the error. The study
also found three general strategies for locating the buggy
component: mapping directly from program behavior to the
bug, causal reasoning, and hand simulation. The research-
ers speculated that causal reasoning becomes less frequent
over time as learners build up a set of familiar problem
situations and remedies. The study also found that students
engaged in more causal reasoning when debugging their
own code as opposed to someone else’s. Although the Katz
and Anderson study has been criticized because it assumed
that program comprehension precedes debugging [16],
subsequent studies which made no such assumption
corroborated the finding that programmers use these
debugging strategies [38].

We have already pointed out that the difference in
today’s environments from those of the early studies
suggests that we must tread carefully in generalizing the
results of these studies to programming today. Further-
more, the programming tasks studied by Brooks, Letovsky,
and Katz and Anderson were very different from those
typically encountered by today’s professional program-
mers. Brooks and Letovsky developed their theories using
short programs presented on paper. When working with a
short program on paper, a programmer could attempt to
completely comprehend the whole program before making
changes. In fact, navigation in the paper medium was fairly
costly because no navigation tools were provided. But
today, professional programmers must deal with large
source-code libraries containing thousands of lines of code.
For such large programs, the only realistic strategy is to
focus on relevant parts of the code and to navigate among
them. Today’s programming environments include affor-
dances and tools, such as the ubiquitous find utility, that
aim to support these capabilities.

Contemporary software-development environments
have been found to affect debugging strategies. In an
experiment using such environments, Romero et al.
identified an additional forward-reasoning strategy that
they termed following execution [38]. This strategy involves
step-by-step tracing of the execution for one particular
input example, and observing which lines of code change
the data and affect the program’s output. Such a strategy
requires environmental support, and was not possible in the
paper-based experiments of earlier years. Thus, the richness
and flexibility of modern development environments make
it possible for a programmer to substitute informational
manipulation for some cognitively intensive activities. For
instance, a programmer can use a debugger’s stepping
functionality when following execution rather than per-
forming hand simulations and calculating results by hand.

The large size of today’s programs also seems to impact
debugging strategies; in fact, we believe today’s large
programs necessitate that programmers use foraging strate-
gies in debugging. To reduce the cost in time and effort of
debugging a large program,we conjecture that programmers
choose to understand only parts of the program, accepting
the risk that incomplete comprehension might lead to an
incorrect fix. When following such a strategy, programmers
may have to ignore many bottom-up hypotheses. We expect
that in programming situations involving large programs
and limited time, programmers tend to ignore hypotheses
that are not related to the bug report. Instead, the
programmers follow scents that involve words related,

200 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 39, NO. 2, FEBRUARY 2013

5. Letovsky used the term conjecture.

directly or indirectly, to the bug report. Our theory is based
on this premise.

Ko et al. have also argued the importance of seeking
information as a central mechanism in debugging behavior
[23]. They propose a model of program understanding
during software maintenance in which the strategy chosen
depends on seeking relevant information in the environ-
ment. Their model consists of three stages: seeking, relating,
and collecting information. Seeking involves looking
through the code for information relevant to the task at
hand. Relating involves connecting the different regions
of code to each other to see how they relate. Collecting
involves the designation of some of these regions as
relevant to the task. Examples of relating and collecting
include programmers repeatedly returning to regions of
code they had visited before, and using affordances of the
programming environment to speed up that repeated
navigation, for example, by creating bookmarks, leaving
scrollbars strategically placed, and keeping multiple tabs or
windows open for fast switching.

Actions such as these allow the programmer to improve
the density of useful material in a patch, or to reduce the
cost of navigating between patches. In turn, these actions
change the cost/benefit tradeoffs of different debugging
strategies. Recall that information foraging theory refers to
such actions as enrichment. Through enrichment, the
information seeker can deliberately modify the environ-
ment to either improve the density of useful material in a
patch or speed travel between patches.

4 EMPIRICAL STUDY

This study investigates the use of information foraging
theory to explain and predict the navigation behavior of
programmers performing debugging. To better understand
and evaluate the theory in this context, we compared it with
a variant based on programmers’ hypothesis processing,
rather than scent following. In conducting the study, we
addressed four primary research questions. The first
research question explored the relationship between scent-
following and hypothesis-processing behavior:

. RQ1: The literature emphasizes the importance of
programmer hypotheses in understanding debug-
ging behavior. Is there reason to expect a scent-based
model of debugging navigation will succeed if it
does not explicitly handle programmers’ hypothesis
processing?

The second and third research questions served to elaborate
the scope of the theory:

. RQ2: Debugging involves a variety of activities, such
as locating the fault, fixing the fault, and verifying the
fix. When do developers engage in scent and
hypothesis processingwith respect to these activities?

. RQ3: Programmers navigate through a variety of
artifacts, such as source code, documentation, and
e-mail. Where do programmers navigate during
debugging with respect to these artifacts, and in
which artifacts do programmers exhibit scent
seeking and hypothesis processing?

The fourth question evaluated the predictive power of the
theory:

. RQ4: Is the PFIS approach to predicting programmer
navigation significantly more accurate than an
approach based on programmers’ stated information
needs and hypotheses?

To answer these questions, we made detailed observations
of programmers engaged in debugging. We analyzed verbal
protocols collected from our participants, focusing on what
those verbalizations could tell us about the roles of
hypotheses and scent in our theory and in operational
derivatives of it such as PFIS.

4.1 Design, Participants, and Materials
The study design used the think-aloud method [14].
Consistent with the method, we observed participants
performing programming tasks and prompted them to
“think aloud” as they worked. We recorded video of their
sessions as well as a log of their actions. Using a grounded-
theory approach [9], we performed an in-depth qualitative
analysis of their words and actions. Furthermore, we
quantitatively analyzed the action logs to evaluate our
model’s predictions.

We recruited 12 professional programmers from IBM to
participate in the study. All participants had at least two
years of experience programming in Java, used Java for the
majority of their software development, and were familiar
with Eclipse,6 a standard Java IDE, and with bug-tracking
tools such as Bugzilla.7

As the subject program for our study, we selected
RSSOwl,8 an open-source news-feed reader that is one of
the most actively maintained and downloaded projects
hosted at Sourceforge.net. The program met several key
criteria: It was a real-world program, we had access to its
source code and bug reports, it was written in Java, it was
sufficiently large to allow enough navigation for useful
analysis, and it was editable and executable through
Eclipse. RSSOwl’s source code consisted of 193 class files
(80,520 lines of code). The popularity of newsreaders and
the similarity of its user interface to e-mail clients helped
ensure that our participants would understand the func-
tionality and interface after a brief introduction, and that
they could quickly begin using and testing the program.

As tasks for our participants, we selected two bug reports
from RSSOwl’s bug-tracking database. We were more
interested in source-code navigation than the actual bug
fixes; therefore, wewanted to ensure that the issues could not
be solvedwithin the duration of the session.We also decided
that one bug should be about a code-level defect, whereas the
other bug should be a specification-level defect. The code-
level defect involved a broken feature: bug #1458101: “HTML
entities in titles of atom items not decoded.” The specifica-
tion-level defect involved a missing feature: bug #1398345:
“Remove Feed Items Based onAge.”We refer to the first bug
as“BrokenFeature” (BF) and the secondas“MissingFeature”
(MF). Although MF might be a less traditional bug than BF
(e.g., MF could be characterized as a feature request), this
kind of bug report is common. Including it in our analysis
adds diversity to the tasks studied and thus improves our

LAWRANCE ET AL.: HOW PROGRAMMERS DEBUG, REVISITED: AN INFORMATION FORAGING THEORY PERSPECTIVE 201

6. http://www.eclipse.org/.
7. http://www.bugzilla.org/.
8. http://www.rssowl.org/.

ability to assess the general applicability of our findings.
These two bugs were still open when we ran the study—that
is, no RSSOwl developers had fixed them yet.We considered
looking at closed bugs with solutions we could examine;
however, we would have been forced to restrict participants’
use of the web to ensure they did not find the existing
solutions. Such a restriction would have diminished the
realism of the task context, so we went with open bugs to
preserve realism.Fortunately, thebugs remainedopen for the
duration of the study.

4.2 Procedure

Initially, participants filled out paper work, and we briefly
described RSSOwl. Next, we individually instructed them
to find and fix the defects described in the bug reports. We
set up an instant messenger client so that participants could
contact us, then we excused ourselves from the room. Each
participant worked on both bugs. We also asked partici-
pants to “think aloud” as they worked. If a participant fell
silent for an extended period of time, we prompted the
participant over instant messenger to “please, keep talk-
ing.” We counterbalanced the ordering of tasks among the
participants to control for learning effects. We met with
each participant for 3 hours, and observed each participant
remotely for 2 hours.9 We allowed each participant to spend
only 1 hour per bug.

We recorded synchronized audio, video, and screen
captures, which we were able to replay together, allowing
us to hear what participants said while observing their
actions and the screens they were viewing. We also logged
their events and archived any changes they made to the
program. The electronic transcripts of their actions, videos
with screen captures, and source code served as the data
sources we used in our analysis.

5 ANALYSIS METHODOLOGY

We discarded the data for two of the 12 participants:
One was used as a pilot, and the data for the other were
unreadable (a recording-tool failure). Our analyses of the
verbal protocol data comprised three stages. In the first
stage, we categorized the participants’ explicit verbalizations
about hypothesis processing and scent following. In the
second stage, we categorized the artifacts that participants

were looking at when they made certain types of statements.
In the third stage, we performed a fine-grained analysis of
two of the participants’ verbalizations and videos. We
describe the details of each analysis below.

For the first stage of analysis, categorizing verbalizations,
we coded all 10 participants’ verbal protocols in the
following manner: Initially, four researchers developed
codes while jointly coding two of the protocols. After the
four researchers cooperatively refined the initial code sets
and developed norms about how to apply them, two
researchers coded the remaining protocols, working inde-
pendently, and then checking for agreement. Thus, at least
two researchers coded every protocol. The total rate of
agreement was 97 percent, which indicates extremely high
coding reliability. The reliabilitywas evenhigher (99 percent)
when we excluded from the calculations the code “no code”
(i.e., verbalizations deemed by the coders to be neither about
hypotheses nor scent).

For hypotheses, we coded when participants formed
hypotheses, modified hypotheses, confirmed hypotheses, or
abandoned hypotheses. We used the hypothesis codes on
verbalizations that were explicitly about the part of the code
or application behavior implicated in the bug or the fix. The
first four rows of Table 1 define these hypothesis codes. For
scent, we coded participants’ statements about what scent
to look for, when they gained scent, and when they lost
scent. Only three codes were needed here, instead of four,
because we did not try to discriminate between scents that
were and were not variants of previous scents sought. The
last three rows of Table 1 define these codes.

For the second stage, categorizing artifacts, we derived a
set of “trigger” codes by identifying the artifact in use when
a participant decided to pursue a hypothesis (hypothesis-
start) or a scent (scent-to-seek). (We call them “triggers”
because we considered these artifacts as potentially trigger-
ing the participants’ decisions to pursue hypotheses or
scent.) Table 2 lists these trigger codes. Because the trigger
codes did not require interpretation of the videos, we used a
simpler coding process than on the main code set. We
devised the codes by simply enumerating the artifacts/
assets we expected (the unitalicized entries in the first
column of the table). Coding of the first two videos
identified two more categories (italicized in the table). We
also allowed “other” in case a coder ran across any more,
but there were very few uses of that code. We tested the
scheme’s robustness by having two researchers code two

202 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 39, NO. 2, FEBRUARY 2013

TABLE 1
Main Codes Identifying Hypotheses and Scent, and Examples of Participant Verbalizations

9. We devoted one hour to overhead: paperwork, briefing participants, a
break between issues, and debriefing.

participants for each of the bugs (i.e., 20 percent of the data
set). After reaching an agreement of 93 percent, which
indicated that the codes were robust, one of the researchers
applied the verified codes to the remaining videos.

The third stage of analysis was very fine grained, so we
restricted it to two participants’ performances of both tasks
(i.e., four tasks in total). The fine-grained analysis had two
goals: to scrutinize the videos closely to identify instances of
hypotheses and scent that were not apparent from the
verbalizations alone, and to characterize context—why and
when participants’ hypotheses and scent following oc-
curred. Since such fine-grained qualitative analyses are
extremely time consuming, we selected just four tasks. Our
criteria were, first, that we were interested in extremes;
second, task selection should be paired (i.e., two tasks from
each of two participants); and third, participants must have
performed tasks in different orders. We thus selected one
participant (85) for whom our first stage of analysis
revealed that hypothesis activity and scent activity peaks
seemed to coincide. In particular, of all the sessions,
participant 85’s bug BF session had the highest correlation
between hypothesis and scent counts, aggregated over
5-minute periods (rð13Þ ¼ 0:7031; see Fig. 1). Participant
85’s bug MF had one of the lowest correlations (rð13Þ ¼
&0:0825), so it provided a good contrast. For the second
participant, we chose 98 because of the large distance
between the hypothesis and scent curves in Fig. 1 (a total
count of 65 more scents than hypotheses for bug BF) and
because Participant 98 worked on BF first, whereas 85
worked on MF first. For the two participants, three of the
researchers watched the videos, taking into account what
the participants said their goals were, what actions the
participants took, how the participants interacted with
artifacts, and what voice inflections and facial expressions
the participants exhibited (such as surprise, or puzzlement).
The researchers worked in tandem, watching the videos as
a group and discussing each segment of video in detail. The
three researchers worked through three of the four tasks,
and two researchers finished up the remaining task.

6 RESULTS

In this section, we present empirical analyses aimed at
building and evaluating our theory of information foraging

during debugging. Specifically, we first analyzed the
relationship between information-foraging navigation be-
havior and verbalized hypothesis-processing behavior
(RQ1); second, we analyzed when information-foraging
and hypothesis-processing behavior occurred by consider-
ing each of the six debugging subtasks (or modes) that arose
in our participants’ data (RQ2); third, we analyzed where the
participants sought scent by considering their interactions
with various artifacts (RQ3); and fourth, we evaluated the
predictive power of the theory by comparing the predic-
tions produced by our PFIS model with those produced by
variant models, including one based on hypotheses (RQ4).
We did not analyze whether participants’ utterances were
“correct” in any way.

LAWRANCE ET AL.: HOW PROGRAMMERS DEBUG, REVISITED: AN INFORMATION FORAGING THEORY PERSPECTIVE 203

TABLE 2
Trigger Codes:

Artifacts at Which Participants Were Looking When They Expressed Hypothesis-Start or Scent-to-Seek Verbalizations

Fig. 1. Thumbnails of each participant’s hypothesis (dark blue) and scent
(light orange) verbalizations over time. The x-axes are time (0 to 70+
minutes, in 5-minute intervals), the y-axes denote counts of verbaliza-
tions of each type (0 to 18).

6.1 The Relationship between Scent and
Hypotheses

The literature has long held that the debugging behavior
of programmers is driven by hypothesis processing. We
have reason to believe that our theory based on informa-
tion foraging sufficiently accounts for hypothesis proces-
sing to explain and predict programmer navigation during
debugging. In particular, we hypothesize that two condi-
tions hold: 1) some hypothesis content closely parallels
scent content and therefore is accounted for by our theory,
and 2) the remaining amount of hypothesis-based proces-
sing (i.e., that is unaccounted for by our theory) is
relatively small compared to the amount of scent proces-
sing. In this section, we check for these conditions with a
qualitative analysis of all 10 participants’ scent-following
and hypothesis-processing behavior.

Regarding the first condition, we found that when there
was a relationship between hypotheses and scent, it often
reflected a bottom-up hypothesis modification that was
based on a scent gained in the code, or sometimes reflected
a hypothesis that led top down to a new scent to look for.
For example, after working for some time on Bug BF,
Participant 82 gained scent from getTitle:

82: “GetTitle, there we go!” followed by a hypothesis modifica-
tion: “so this is the problem...we need to turn this into
HTML,” followed directly by a scent to seek: “so now the
question is how do we test this to see if it’s HTML?”

Note that not all scent processing verbalizations led to
hypotheses. There were numerous examples of scent
verbalizations without hypothesis verbalizations. For ex-
ample, Participant 82’s early work on Bug BF involved scent
alone as he tried to gain a better understanding of the way
RSSOwl was organized:

82: “GUI, where is that? Okay, GUI RSSOwl tab folder. So is
it something in this directory?”

As another example, Participant 99 discovered the class
“entity resolver” as he browsed through code while
working on Bug BF. This discovery triggered a scent-
seeking diversion unrelated to any expression of hypoth-
eses, starting with the statement:

99: “I have no idea what an entity resolver is.”

These results make clear that although some instances of
hypothesis processing and scent processing were inter-
twined (and therefore are accounted for explicitly by our
model), not all of them were intertwined.

Regarding the second condition, whether the remaining
amount of hypothesis processing is relatively small com-
pared to the amount of scent processing, we found that this
was indeed the case for our participants. Table 3 compares
the numbers and patterns of hypothesis and scent verba-
lizations. We found strong evidence that verbalizations
about scent occurred more often than verbalizations about
hypotheses (paired t-test of log of counts: p < 0:000004,
df ¼ 9, mean of 4.14 times as many scents as hypotheses).
This finding not only held in the aggregate—it was true of
each individual participant for both issues. Fig. 1 depicts a
profile of each participant’s hypothesis and scent verbaliza-
tions over time.

In fact, the participants expressed few new hypotheses:
sometimes only one or two original hypotheses per bug.
Half the hypothesis starts were later followed by hypothesis
abandons. Interestingly, participants confirmed hypotheses

onlywhenworking on Bug BF. For both Bug BF and BugMF,
participants modified more hypotheses than they started
(paired t-test of log counts: BF: p < 0:00005, df ¼ 9, mean of
5.57 times more modifications than starts, excluding one
participant who started no hypotheses; MF: p < 0:000006,
df ¼ 9, mean of 7.16 times more modifications than starts).
Thus, it appears that once they had a hypothesis, these
participants explored that initial hypothesis in depth.
Apparent differences between BF andMF hypothesis counts
in the table were not statistically significant.

Scent processing showed a very different pattern. Here,
participants gained scent more frequently than they lost it
(paired t-test of log of counts: p < 0:0002, df ¼ 9, mean of
3.7 times more gains than losses). Participants verbalized
lost scent less often than sought scent (paired t-test of log
of counts: p < 0:00005, df ¼ 9, mean of 4.4 times more
seeks than losses). Furthermore, scents gained were almost
as frequent as scents sought (paired t-test of log of counts,
p < 0:025; df ¼ 9, mean of 1.2 times more seeks than gains).
However, these were not necessarily the same scents; scent
gains were often serendipitous.

Eisenstadt’s data on real-world programmers’ debug-
ging experiences [13] are consistent with our data regarding
the prevalence of scent-following activity over hypothesis-
oriented activity. (Eisenstadt’s work is one of the few classic
works in which the researchers did not have a hypothesis-
oriented focus when investigating how people debug.) He
harvested 78 real programmers’ self-reports (anecdotes) of
how they had gone about debugging recently in their real-
world lives. Eisenstadt identified four categories of “bug-
catching techniques,” one of which essentially amounts to
scent following. He called this one “gather data,” which he
defined as a bottom-up activity in which “informants may
have had a rough idea of what they were looking for
(emphasis added), but were not explicitly testing any
hypotheses in a systematic way.” He distinguished this
from “controlled experiments,” which were hypothesis
oriented. He reported 27 occurrences of “gather data,”
compared to only four of “controlled experiments.”
Although we were counting instances of programmers’
utterances and Eisenstadt was counting reported debug-
ging strategies, his results were similar to ours in showing a
heavy bias toward information seeking over hypothesizing.
More recent works focused on software maintenance tasks,
such as debugging. Although these works have not actually
measured scent, they have explicitly emphasized the
proportion of such tasks spent browsing through code in
pursuit of relevant information (e.g., [23], [35], [46]).

204 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 39, NO. 2, FEBRUARY 2013

TABLE 3
Total Number of Statement Instances by Type

6.2 When: A Fine-Grained Analysis by Debugging
Mode

To understand the scope of our theory, we investigated
when during debugging the participants engaged in
information foraging. In particular, we analyzed our data
to see when in their debugging activity programmers
followed scent and when they worked on hypotheses. We
checked whether scent following pervaded all kinds of
debugging activities and how it compared to hypothesis
activity during different modes of debugging.

To consider this question, we performed a fine-grained
analysis of Participant 85 and Participant 98, as explained in
Section 5. For this fine-grained analysis, we watched video
recordings of the sessions in order to take into account not
only the participants’ explicit words, but also their actions,
facial expressions, and so on. This led to the identification of
additional instances of both hypotheses and scent that had
not been evident when coding directly from the transcripts.
The most prevalent of the additional instances were scent
following through use of the pop-up method documenta-
tion (in tool-tip form). Whereas in older programming
environments, looking up documentation for a method
would have required opening another file and scrolling
around, in Eclipse a mere mouse-over quickly brings up
documentation. Our participants rarely even mentioned
this functionality in their words, but used it extensively in
their actions to follow up on scents. We did not use these
actions in the verbalization-based analyses, which were
more conservative because they relied solely on utterances
in which participants made their intent explicit. However,
the data from both types of analyses were consistent:
Although the fine-grained analysis increased the raw
counts of both hypotheses and scent, it did not change the
relative proportions of hypotheses to scent.

We categorized the major contexts in these participants’
videos into six categories that emerged from the data. These
contexts were major activities, covering almost the entire
data set, and we therefore characterize them as debugging
modes. The modes, which are summarized in Table 4, were:

1. Mapping mode: Program understanding is widely
understood to be an important part of debugging
(e.g., [23], [31], [50]). The type of program-under-
standing behavior that stood out in our participants’
data was their attempts to build a mental model
(“map”) of the program. Both participants started off
by mapping, not only in their first task but also in
their second one. This mode was characterized by

participants scanning proximal cues, noticing bea-
cons [4], and taking inventory of the information
patches. Participant 98 summarized this mode
succinctly when he said:

98: “Let me see what the project is made out of.”
We believe that this mode was necessary to even

begin to follow scent because it provided the
information participants would need in later modes
to interpret proximal cues’ scent, meaning, and
relative importance.

2. Drill-down mapping mode: Participants worked hard-
er to build a detailed mental model of some patches
in the source code than others, drilling down into the
details, and we termed those periods of time as
“drill-down mapping.” For example, during this
mode, Participant 98 looked at constructors, reading
the detailed comments and trying to figure out
exactly what happened when a new instance was
created. As with mapping, both participants used
drill-down mapping in both tasks.

3. Observe-the-failure mode: It is common in debugging
for programmers to try to replicate the failure, and
we termed this mode “observe the failure.” (Eisen-
stadt also reported this mode in his “gather data”
category [13].) In our study, an example failure had
been included in Bug BF’s bug report, but detailed
instructions for actually making the code fail were
not present, and we noticed that some participants
invested a great deal of effort in figuring out how to
reproduce the failure so as to observe the program
carefully. In our fine-grained analysis, this occurred
in three of the four task instances we analyzed.
Observing the failure included not only figuring out
exactly what kind of data to provide to make the
failure happen, but also figuring out where to install
breakpoints and the like. From an information
foraging perspective, at this point the (interim) prey
was the failure, not the fault. For example, when
trying to get the software to display the garbled
character described in Bug BF, Participant 98 said:

98: “I’m looking at CrookedTimber and I click on some
of the items. I’m not seeing any examples of what they are
talking about in the bug.”

4. Locate-the-fault mode: We termed the participant to
be in the “locate the fault” mode when he or she was
currently seeking the location of the fault in the code.
In the case of bug MF, we assigned this mode when

LAWRANCE ET AL.: HOW PROGRAMMERS DEBUG, REVISITED: AN INFORMATION FORAGING THEORY PERSPECTIVE 205

TABLE 4
The Six Primary Modes Observed in the Bug and Feature Tasks

the prey was the “hook” in the code where changes
should be made. Participant 98 was in drill-down
mode when he found a properties page, and went
into locate-the-fault mode as he started exploring the
code with the idea that he should copy some code
and use it as a hook to add the requested feature:

98: “So this looks good; this is a properties page. Is
there a view tab? Here’s a view one. Yeah. Which one of
these is different? I would have to add one of those.”

5. Fix-the-fault mode: Once a participant located the
fault, it was not always obvious how exactly to fix it.
In fact, for three of the four task instances in which a
participant got to this stage, it occupied far more
time than all other modes combined. We termed a
participant’s efforts in devising a fix to be in “fix the
fault” mode.

Why did the fix mode take so long? These tasks
were reasonably challenging, and there were many
decisions to bemade about how exactly to implement
a reasonable solution, any one of which could lead
down a path that ultimately had to be undone. For
example, Participant 85’s fix to implement the new
feature for Bug MF required extensive refactoring of
existing code. The environment’s refactoring tools
supported the procedure, but these tools also intro-
duced new problems. In all, Participant 85 spent most
of the time on the refactoring aspects of the fix,
including solving bugs introduced by the refactoring.
He finished the refactoring aspect just before time ran
out, so he was never able to spend much time on the
remaining aspects of the fix. Participant 98, on the
other hand, spent considerable time deciding how to
proceed, then began entering new code to implement
the fix. After about 15 minutes invested in this new
code, however, he decided he had been going about it
the wrong way, and removed most of his new code
and then started a different approach. However, he
ran out of time before he could make progress with
the second approach.

6. Verify mode. It has long been known that, after
making a fix, novice and expert programmers alike
evaluate whether their fix actually did correct the
problem [31]. In our study, only one of the two
participants produced a fix complete enough to
evaluate. The results of his first evaluation led him to
change his fix, and then evaluate it again.

Using these modes, the graphs in Fig. 2 show activity of
hypotheses and scent for each of these participants and
tasks, mode-by-mode, with each mode on a separate row.
The thick gray horizontal bars show the length of time each
participant spent in that mode. The blue hash marks below
the gray bars denote hypothesis verbalizations, and the red
hash marks above the lines denote scent seeking (verbaliza-
tions and actions to request the pop-up explanations).
Longer hash marks indicate two or more events of the same
type in quick succession.

The final row, “other,” accounts for activities that could
not be classified into one of the six modes. For example,
Participant 85 spent about 5 minutes on “enrichment,” an
information foraging concept in which the predator
modifies his environment to optimize the environment’s

affordances for foraging. In this case, Participant 85 was
working on making the debugging tool behave in a
particular way so that he could proceed with the strategy
he had in mind. Numerous other examples of enrichment
were pervasive among all of the modes, although some-
times they were very short, such as when a participant
rearranged windows. (Enrichment was categorized as
“other” only if it was relatively independent of any of the
six debugging modes.)

As the figure shows, scent seeking permeated all six
modes. Recall from Table 3 that participants expressed
scent following much more often than hypotheses and that
this phenomenon occurred consistently over time. Fig. 2
shows how consistently the phenomenon occurred in all six
debugging modes. This was true of both participants,
consistently for both issues, regardless of the order in which
the issues were tackled.

Seventy-six of the 101 hypothesis verbalizations occurred
in the “Fix” mode. (Recall that for the purposes of our
analysis, hypotheses were defined as being hypotheses
about where the bug was lurking or how to fix it.) As we
have pointed out, Fix dominated the time spent when it
occurred, and this may be why more hypotheses occurred
in that mode. It may also help explain why Participant 98
had only three hypothesis verbalizations for Bug BF (see
Fig. 2). Many hypothesis modifications in Fix mode
involved the participants evolving programming plans as
they worked on their fixes. For example, Participant 98
verbalized two contradictory hypothesis modifications in a
short span of time:

98: “Let’s take some of this stuff out.” Removed some code he
believed had been rendered obsolete by his changes. “[...] You
know, wait, this stuff has to be there.” Used undo to add it back.

Interestingly, the hypotheses initiated and scents sought
were not “bookended.” In the analysis process, we tried to
track hypotheses from initiation through modifications
until the hypothesis was confirmed or abandoned, and
likewise to track the length of a scent from the time a
participant started pursuing it until he or she found or lost
it. However, such bookending of hypotheses and scents was
not present in our data. Participants often did not find what
they sought, but instead some even more interesting scent
“found” them, sending them off in a different direction than
planned. Participants did try to make plans (initiate
hypotheses and try to confirm or refute them)—but they
were willing to change these plans to adapt to the cues and
scents that arose along the way.

This behavior is consistent with Activity Theory [28],
where plans are like high-level descriptions of activities that
guide behavior but do not specify exact actions or
operations; rather, the actions or operations are determined
by the context in which the action is taking place. It is also
consistent with Suchman’s theories of situated cognition, in
which plans are inherently vague and the structure of the
environment has far more effect on particular actions [49].

Also consistent with our observations, Hollan et al.’s
theory of distributed cognition [19] would predict that scent
processing dominated across all debugging modes. They
assert that “the organization of mind ... is an emergent
property of interactions among internal and external
resources.” Moreover, they argue that a large part of

206 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 39, NO. 2, FEBRUARY 2013

cognition is triggered by interaction with the environment,
rather than happening predominantly in the head.

6.3 Where: In Which Artifacts Participants Sought
Scent and Formed Hypotheses

To further understand the scope of our theory, we
investigated where the 10 participants directed their atten-
tion as they engaged in information foraging. Studying

which artifacts in the environment triggered participants to
follow scent revealed the kinds of artifacts a computational
model needs to analyze to predict programmers’ navigation
behavior. To investigate this issue, we analyzed the data for
all 10 participants to see which artifact a participant was
looking at during each scent-to-seek verbalization (recall
Tables 1 and 2). For each such event, we refer to the artifact
as the scent trigger. As a point of comparison, we performed

LAWRANCE ET AL.: HOW PROGRAMMERS DEBUG, REVISITED: AN INFORMATION FORAGING THEORY PERSPECTIVE 207

Fig. 2. Scent and hypothesis events observed for each mode. Top to bottom: Participant 85 Bug BF (done as task #2), Participant 85 Bug MF (done

as task #1), Participant 98 Bug BF (done as task #1), Participant 98 Bug MF (done as task #2). The gray horizontal bar shows mode is in effect. Red

hash marks above the mode bar: Scent to seek: \ combined scent sought/gained via tooltip: | scent gained/lost/. Blue hash marks below the mode

bar: Hypothesis start: / hypothesis modify: | hypothesis confirm/abandon: \. Longer hash marks denote multiple events at one time stamp.

a similar analysis for hypothesis triggers for each hypothesis-
start verbalization.

Fig. 3 depicts the results of our analyses. We found that,
for both Bug BF and Bug MF, participants’ pursuits of scent
were triggered in the source code far more than anywhere
else. Other noticeable triggers included web resources, the
runtime behavior of RSSOwl, and the bug report itself (Bug
BF or MF). These results were consistent across participants
—each information source was used by at least seven
participants (and no participant using fewer than four
information sources), with source code being the dominant
information source for every participant.

The distribution of the scent triggers was also reasonably
consistent between Bugs BF and MF, as can be seen by
comparing the light and dark bars on the left side of Fig. 3.
When starting a new hypothesis, however, trigger patterns
were less clear because of the low number of hypotheses.
However, it appears that, although the bug description
itself triggered the hypothesis over one-fourth of the time,
no trigger dominated the others as source code did for scent
seeking. Other than the bug-report text triggers, the
distribution of triggers varied greatly between Bug BF and
Bug MF (light and dark bars on the right side of Fig. 3,
respectively). For Bug BF, hypothesis triggers were mostly
in the bug report, source code, and the program input; for
Bug MF, hypothesis triggers were mostly in the bug report
and web resources. As expected, comparing the graphs in
Fig. 3 shows that these artifacts triggered far more scent-
seeking behavior than hypothesis-processing behavior.

These results suggest that, although noncode artifacts did
affect participants’ navigation behavior to some extent, it is
reasonable for amodel or tool to rely solely on the analysis of
source code relative to the bug report to obtain predictions,
without incurring the expense of the more costly analyses of
runtime data, the web, and so on. This concurs with the PFIS
modeling approach, which relies solely on static analysis of
source code relative to the bug report.

6.4 Predictors of Where Participants Sought and
Found Scent

Our fourth research question asked whether PFIS predicts
programmer navigation better than programmers’ stated
information needs and hypotheses. To answer this, we
evaluated aspects of PFIS in two stages, using the
navigation data from all 10 participants.

First, we compared three different sources of information
as proxies for the programmers’ information needs to see
which of these was most predictive of navigation: verbal
scent-to-seek, verbal hypotheses, and the bug report. We
used as predictors the information’s similarity to the
method to which a programmer navigated, calculated via
cosine similarity (explained in Section 2) between the text of
the information source and the text of the method. We term
these three predictors verbal-scent-distal, verbal-hypothesis-
distal, and bug-report-distal. “Distal” emphasizes that these
predictions are based only on the relevance of the place the
programmer navigates to, rather than the proximal cues
they follow to get there.

We considered each predictor’s ability to predict the
source-code file to which participants went next at each
moment that a participant verbalized an information need
(i.e., at each verbalization coded “scent to seek” for verbal-
scent-distal, or “hypothesis start” for verbal-hypothesis-distal).
Each predictor produced a rank-ordered list of predicted
next navigations; ideally, the method to which the program-
mer actually navigated (the “true” navigation) would be
ranked number 1. Table 5 shows the mean andmedian ranks
that each predictor assigned to the observed navigations.

Paired Wilcoxon signed rank tests showed that the bug
report was significantly better at predicting participants’
navigations than their verbalizations. This was the case for
both verbal hypotheses (p < 0:00001; N ¼ 831; V ¼ 33;150:5,
Wilcoxon, mean difference in ranks ¼ 50:3) and verbal scent-
to-seek (p < 0:00001; N ¼ 2;171; V ¼ 250;697, mean differ-
ence in ranks ¼ 49:9) (see Table 5). This result is probably
due to two factors: the phenomenon of “invisibility” of
hypotheses in verbal protocols in which participants neglect
to state their hypotheses (cf. [44]), and the richness of
natural language in which hypotheses are not stated
explicitly enough for automated analysis. For example,
our participants’ expressions of hypotheses and scents were
often context dependent, and also contained deixis (e.g.,
“Where is that?”), interjections (e.g., “Ahhh”), and dis-
ambiguations using nonexplicit mechanisms, such as saying
a word or phrase as a question (e.g., “getTitle?” indicating
continuing search for information) or as an exclamation
(e.g., “getTitle!” indicating having found it).

Second, using the bug report as input, we compared two
algorithms: simple cosine similarity (the same bug-report-
distal as before) and the full PFIS algorithm (which we call

208 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 39, NO. 2, FEBRUARY 2013

Fig. 3. Scent to seek (left) and hypothesis (right) verbalizations: What triggered participants to seek scent or form new hypotheses. Light bars
represent triggers for Bug BF; dark bars represent triggers for Bug MF. The influence of artifacts on hypotheses was overwhelmed by these artifacts’
influences on scent. For that reason, the small inset graph blows up the data to allow comparison of the most influential artifacts on hypotheses.

bug-report-proximal+topology). “Proximal” emphasizes that
PFIS predicts based on the relevance of nearby, visible cues,
and “topology” is a reference to PFIS’s spreading activation
algorithm, which is detailed in Appendix A.

For Bug BF, bug-report-proximal+topology (PFIS) per-
formed significantly better than bug-report-distal at predict-
ing participants’ navigations (p < 0:00001; V ¼ 1;062;158,
N ¼ 3;002, mean rank difference ¼ 22:3). In the best case,
PFIS’s recall approached 100 percent at a false-positive rate
of 25-30 percent for the bug. This suggests the overall
suitability of this combination to model programmer
navigation during debugging.

However, for BugMF, PFIS did not perform as well as the
cosine similarity measure: bug-report-distal was more effec-
tive than bug-report-proximal+topology in predicting where
participants went (Table 5; p < 0:00001, V ¼ 534;252, N ¼
3;002, mean rank difference ¼ 15:3). We speculate that this
may be related to different characteristics of BF and MF. A
previous study involving 228 bugs and 25 feature requests
from a different open-source project (jEdit) has also sug-
gested differences in the utility of bug reports versus feature
requests for predicting where programmers should navigate
on the basis of distal scent [26]. The decrease in PFIS’s
accuracy on the Bug MF task suggests that different types of
bug reports and tasks may call for variants of the model.

The performance of different predictors can be visua-
lized using a receiver operating characteristic (ROC) curve.
In an ROC, the true positive rate is plotted on the vertical
axis against the false positive rate on the horizontal axis, for
all possible choices of decision threshold point. For
example, in the left graph of Fig. 4, the PFIS (BF) label
pointer touches the curve at a point where true positives are
greater than 0.9 and false positives are about 0.2. This point
represents one possible threshold value that could be
applied to PFIS to control the size of its list of predictions.
This particular threshold choice would result in a 90 percent
certainty of containing the one true next navigation, and a
20 percent certainty of containing any given wrong
navigation. Thus, if 1,000 possible navigation locations
were available to choose from, this predictor would have a
90 percent chance of containing the right choice within the
top 200. The graphs support the statistical outcomes above,
and in general show that bug reports were better than
verbalizations at predicting subsequent navigation.

7 THREATS TO VALIDITY

Every experiment has threats to the validity of its results,
and these threats must be considered in order to assess the
meaning and impact of results. (Wohlin et al. [51] provide a

general discussion of validity evaluation and a classification
of validity threats.) Appendix B discusses three different
types of threats to the validity of our experiment: external,
internal, and construct validity. Threats to external validity
limit the extent to which results can be generalized. Threats
to internal validity are other factors that may be responsible
for an experiment’s results. Threats to construct validity
question whether the measures in an experiment’s design
adequately capture the effects that they were intended to
capture. Appendix B also discusses how we attempted to
mitigate the impact of these threats on our results.

8 DISCUSSION AND CONCLUSION

In this paper, we have presented an information foraging
theory that predicts programmer’s navigation choices when
debugging source code in response to a bug report. The
results show that the scent and topology constructs of this
theory are valuable constructs in a predictive model. In
particular, we found that:

. RQ1: The way participants worked with scent was
consistent with information foraging theory. The
participants verbalized activities related to scent
about four times as often as (nonscent) hypotheses.
The relationships between scent and some types of
hypotheses may have contributed to the effective-
ness of scent as a predictor.

. RQ2: In the six debugging modes in our participants’
data, scent following was pervasive in all six of them,
whereas (nonscent) hypotheses were mostly concen-
trated in just one of them, the predominant “fix”
phase. This finding also helps to explain why scent
was soeffective atpredictingprogrammernavigation.

. RQ3: The biggest “trigger” for scent followingwas the
source code itself, but other triggers included the bug
report, runtime behavior, and additional resources
such as web pages and input files. These findings
suggest, first, that operationalization of the scent
construct using static analysis of source code alone
can produce reasonably accurate predictions and,
second, that even greater accuracy may be possible if
a model includes these additional data sources.

. RQ4: The PFIS model, which operationalizes our
theory, was more accurate at predicting programmer
navigation behavior than comparable models that do
not consider information scent.

Turning our attention to practical implications of the
theory, we now briefly discuss how it potentially could be

LAWRANCE ET AL.: HOW PROGRAMMERS DEBUG, REVISITED: AN INFORMATION FORAGING THEORY PERSPECTIVE 209

TABLE 5
Median and Mean Ranks for Each Predictor Shown in Fig. 4

used as a basis for designing software engineering tools.10

(Note that the PFIS model is an executable model of the
theory for use in validating the theory, not a tool in its own
right.) The constructs of information foraging theory can
provide design guidelines for the makers of interactive
debugging tools. Given the presence of prey (bug), a
predator (programmer), and information patches (methods,
screens, webpages, etc.), the theory implies that a tool
should support scent following through patches by lever-
aging proximal cues and topology. For example, suppose a
tool designer aims to support debugging by providing
visual access to runtime information. Absent a psychologi-
cal theory but familiar with the language interpreter’s
implementation details, the designer might be tempted to
structure the topology of the visualizations in a way that
mirrors the way the underlying data is structured, and label
links between them with cues reminiscent of the variable
names in the interpreter. Information foraging theory gives
the designer a different way of approaching the problem.
The designer should first identify the universe of informa-
tion goals (prey) that the tool will support and the cues that
users are likely to associate with each of these goals. Once
the designer has done this psychological research, IFT can
guide him or her in laying out an information topology in
which each screenful of information has embedded cues
that will help bring the programmer a step closer to his or
her goal, whatever that goal may be. The tool may also
allow the programmer to manipulate and customize cues
and the topology (i.e., to perform enrichment) to improve
the efficiency of finding and navigating to particular types
of information. Although these implications might seem to
simply say “employ good tool design,” they make explicit
theory-based criteria for doing so, enabling designers to
take a more principled approach.

One design challenge is that much of the quality of cues
is outside the control of the tool designer because cues often
occur in the source code itself, which was written by a
programmer, not the tool designer. Here, information
foraging theory can help too. Tools based on information
foraging theory could evaluate and promote “forageabil-
ity.” For example, tools based on information foraging
theory could evaluate and suggest improvements to names,
labels, pictures, and explicit links in source code, in
hypertext documentation of source code, in bug reports,
and so on. Thus, cues in these artifacts would emanate
stronger and more precise scent.

There are many open questions for debugging-tool
development, for the PFIS model, and for our theory itself.
In future work, we plan to empirically explore and evaluate
the use of the theory for the practical design of tools.
Although we have empirically evaluated our theory’s
predictive power using PFIS, we only investigated one
type of computing scent, linguistic similarity. In the future,
we plan to explore other possible types of scent, such as
structural relatedness and code complexity. We also have
yet to consider enrichment activities and noncode artifacts
in our model. It is an open question whether incorporating
these factors into the model will impact its predictive
power and whether any benefits will outweigh the
computational overhead. Finally, both the current study
and a previous one suggested differences in the ability of
the PFIS model to predict program navigation for Bug BF
versus Bug MF. Further research is needed to determine the
scope of our theory across different types of debugging
tasks. Moreover, we also plan to extend and evaluate
information foraging for tasks beyond debugging, such as
code refactoring and reuse tasks.

In the future, we believe information foraging theory can
provide a fundamental understanding of why software
maintenance tool features are or are not useful to human

210 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 39, NO. 2, FEBRUARY 2013

10. For an in-depth treatment of this topic, see [40].

Fig. 4. (Left): Verbal hypothesis ROC curves: Ability to predict classes to which participants navigated directly after they expressed a hypothesis
(i.e., just after “hypothesis start” or “hypothesis modify” verbalizations). Bug BF has thick lines; Bug MF has thin lines. (Right): Verbal scent-to-seek
ROC curves: Ability to rank high the classes to which participants navigated directly after they expressed a need for information (i.e., just after “scent
to seek” verbalizations).

programmers. Information foraging theory’s principles are

few in number, lending to its comprehensibility by tool

builders. This parsimonious theory can therefore provide

practical guidance to tool designers toward ways to

increase practical support for programmers, for instance

by making clear that tools need to consider information-

foraging factors, such as scent and topology. Because of

these attributes of information foraging theory, we hope

this theory of human programmers’ information seeking

needs during maintenance can help make obsolete practices

of building interactive software maintenance tools ad hoc.

APPENDIX A

PFIS

PFIS is based upon the web user flow by information scent

(WUFIS) algorithm [6], which combines information

retrieval techniques with spreading activation. As WUFIS

does for web path following, PFIS calculates the probability

that a programmer will follow a particular “link” from one

class or method in the source code to another, given a

specific information need. The implementation of PFIS is

similar to systems that derive relations in source code on

the basis of source-code structure (e.g., [18], [30], [36], [37],

[39]). PFIS, as an executable model of a theory, is not a

system for programmers; however, it was originally

motivated by systems that derive useful relations from

navigation and editing actions (e.g., [11], [12], [21], [41],

[42], [43], [46] [52], [54],).
PFIS is summarized in Fig. 5. We explain how each step

was accomplished next.

Central to WUFIS is a description of the link topology of
the website, describing each link in terms of which page it is
on and which page it points to. For example, Fig. 6 shows,
on the left, four nodes and the links between them. In
WUFIS, the nodes are web pages; in PFIS the nodes are
anything that is the destination of a link (e.g., method
definitions, method invocations, and variable definitions).
The link topology is described by the matrix on the right.
For step 1 of the PFIS algorithm, to create the link topology
of source code, we created an Eclipse JDT plug-in to
traverse each class and method in each compilation unit,
and used the Java Universal Network/Graph Framework to
construct the link topology (adjacency matrix) T , which
gives us the beginning (i) and end points (j) for each link
that a programmer can follow.

Steps 2 and 3 determine the information scent of each
link relative to the bug report (Fig. 7). Thus, PFIS treated the
text of the bug report as the query and the proximal cues of
each link as a document. The scent of each link is
determined by the cosine similarity of the words in the
bug report to the text that labels the link and the text in
close proximity to the link. Lucene determined the cosine
similarity of each link in relation to the bug report to
determine the scent of each link. We then used these results
as weights for the edges in T , producing a proximal-scent
matrix PS.

In step 4, PFIS normalizes PS so that each column sums
to 1, thus producing a column-stochastic matrix. In effect,
each column contains the probability that a programmer
will follow a link from one location to another. Thus, at the
end of step 4, the proximal scent relative to the bug report
has been calculated, reflecting the information foraging
premise that links in the source with proximal cues close to

LAWRANCE ET AL.: HOW PROGRAMMERS DEBUG, REVISITED: AN INFORMATION FORAGING THEORY PERSPECTIVE 211

Fig. 5. The PFIS algorithm.

Fig. 6. Link topology (adjacency) matrix T .

Fig. 7. Create the normalized proximal scent matrix PS by weighting
edges in T according to the cosine similarity scores computed using
Lucene.

the important words in the bug report will smell more
strongly of the bug, and are thus more likely to be followed.

Steps 5, 6, and 7 simulate programmers navigating
through the source code, following links based on scent.
Spreading activation is an iterative algorithm used widely
by HCI theories in which phenomena spread, and by
information foraging theory in particular. It calculates how
widely the spreading emanates. For PFIS, spreading
activation calculates the likely spread of programmers to
locations in source code, which can be interpreted as the
expectation that a programmer trying to resolve a particular
bug report will navigate to those locations in the program.

Spreading activation takes an activation vector A, a scent
matrix PS, an entry vector E, and a scalar parameter !. The
parameter ! scales PS by the portion of users who do not
follow a link. In the initial iteration, the activation vector
equals the entry vector. The entry vector is derived from the
location in the source code where each participant began
navigation. Activation is updated (spread) in each iteration
t as follows [3]:

AðtÞ :¼ !PS 'Aðt& 1Þ þE:

In each iteration, activation from the entry vector is
spread out to adjacent nodes, and activation present in any
node is spread to neighboring nodes according to the scent
(i.e., the edge weights in PS). In the final iteration,
activation vector A represents the activation of each node
(package, class, method, field) in our topology T . Normal-
izing A, we interpret A as the probability of a hypothetical
user visiting that node in T . See Fig. 8. The final activation

vector makes predictions about where programmers navi-
gated. Although PFIS reasons at the granularity of method-
to-method navigations, we observed programmer naviga-
tion at the class level. Therefore, we aggregated method
predictions across classes to associate PFIS predictions with
observed behavior.

APPENDIX B

THREATS TO VALIDITY

B.1 External Validity

If the particular source code does not represent that of real
software projects, our results may not generalize. To reduce
this threat, we obtained source code from an actively
maintained open-source project. Even so, it is possible that
this project’s source code had characteristics that are
unusual and would not generalize to other projects. Also,
because we assigned this particular project, participants did
not have prior familiarity with the project, and therefore we
cannot generalize from these results to other types of
experiences with software, such as with code they wrote
themselves or that they have been working with for a long
time. As newcomers to the project, participants may have
pursued a comprehension strategy different from that of a
senior member of the project [45].

The ability to generalize our results may be limited by
our selection of bug reports. We attempted to address this
issue by choosing one bug that involved a broken feature
and one that involved a missing feature. However, our
study included only these two bugs, and it seems unlikely
that only two bugs can reasonably represent bugs in
general. One other study we performed analyzed a number
of other bugs in other open-source projects [26], but in
contrast to the current study, that study investigated the use
of bug reports for predicting the files programmers
ultimately changed. Thus, further work is needed to
generalize the findings of the current paper.

The limited size of our sample also limits our study’s
generalizability. When conducting in-depth qualitative
analyses of the sort done in this study, practical constraints
limit the number of participants, which in turn limits the
extent to which findings can be generalized. To reduce this
threat, we triangulated our data, analysis methods, and
interpretations. Specifically, we used statistical quantitative
methods on participant actions (in their activity logs),
qualitative methods on their verbal data through dual
coding of all verbal transcripts, and in-depth review of two
participants’ full videos for two tasks each. In this way, we
incorporated multiple sources of data, multiple analysis
methodologies, and multiple researchers’ perspectives.

Finally, our experiment was conducted in Java in the
Eclipse environment. As we have pointed out, our theory
suggests that programmer navigation behavior is context
dependent, and therefore programmer navigation behavior
is expected to be different in another programming
language or environment. Whether navigation behavior in
that different environment would then be predicted by the
theory remains an open question.

All of these threats to external validity can be
addressed through repeated studies, using different source

212 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 39, NO. 2, FEBRUARY 2013

Fig. 8. Example of application of spreading activation to matrix PS.

code, different issues, and/or different programming
environments.

B.2 Internal Validity
We imposed a time limit which was somewhat artificial.
Also, it is possible that imposing a time limit of this sort was
not a good fit for some participants’ preferred style of
familiarizing themselves with new code.

The think-aloud protocol is a widely accepted method of
getting an approximation of what a participant is thinking,
but it is also well established that use of the think-aloud
method can impact participant behavior. For example, it
could be that participants more readily verbalized scent-
related thoughts because scents are connected to concrete
actions in the world, whereas hypotheses were less verbally
accessible [44]. If that were the case, our data showing scent
processing to be more prevalent than (nonscent) hypothesis
processing would be undermined somewhat. However, this
threat does not change the essence of the result that scent
processing was widespread nor would it suggest that tools
should use hypotheses instead because the difficulty in
accessing hypotheses would still make them unavailable to
tool builders in practice.

B.3 Construct Validity
Recall that in our analysis methodology, we coded
hypotheses only if the statements made were clearly
hypotheses about where the bug might be lurking or how
to fix it. Some statements about promising directions,
verbalized during browsing, were explicit enough about
scent to be coded as scent seek/gained/lost, but if no
hypothesis was explicit in the verbalization, we could not
code such statements as hypotheses. Some of the statements
not coded as hypotheses could have been related to
hypotheses. However, this actually is further support for
the idea of relying upon information foraging instead of
hypothesis processing as a way to understand programmer
behavior because any hypothesis processing that arises as
part of scent processing will be accounted for in the
foraging model.

The PFIS model that was used to measure the theory’s
constructs uses only static analysis, and thus simplifies the
information space through which a programmer really
navigates. For example, as a consequence of using Eclipse,
ourprogrammershad the ability touse full-text search to alter
their navigation behavior in a way that PFIS does not model.
(Despite this ability, fewof our programmerswere successful
in using Eclipse’s search feature and, even when successful,
Eclipse returned results in alphabetical order by class, not in
order of relevance.) A more complete model of information
patches would have to include all the information within a
participant’s gaze. Instead, PFIS approximates patches
with locations in source code only. In the future, we plan
to include elements of dynamic analysis and analysis of
the changes to elements of source code to empirically
determine whether the additional implementation and
runtime costs of these approaches will produce commen-
surate improvements in prediction accuracy.

PFIS is one way of operationalizing the constructs of our
theory, but the specific choices we made in implementing
PFIS may not be the correct choices. For example, recall
that scent means relatedness. PFIS looks for only linguistic
relatedness (i.e., word similarity) and does not consider

any other form of scent. Furthermore, it measures related-
ness using tf-idf [3], a widely used measure in the
information retrieval community, but it is possible that
other measures of relatedness such as Latent Semantic
Analysis [24] or Pointwise Mutual Information [10] would
be more appropriate. In future work, we plan to empiri-
cally compare the suitability to our model of these
competing measures against tf-idf.

Note that our comparison between bug-report-distal and
bug-report-proximal+topology (PFIS) might on the surface
appear to be confounded: The reader may wonder if
the differences are due to the distal/proximal difference
or the fact that the latter involved a spreading activation
process over the program’s topology. However, proximal
scent is inseparable from topology because proximality is
defined by topology. Distal scent with topology is equally
strange; by its very definition distal scent does not
propagate, so it would not differ from distal scent without
topology. Each has strengths the other does not. For
example, if a patch had strong scent relative to the bug
report but weak proximal scent from the perspective of its
neighbors (for example, a class whose interface made no
mention of words in the bug report, but whose implemen-
tation did mention such words), then bug-report-distal
would predict navigation to that class, whereas bug-report-
proximal+topology would not. On the other hand, proximal
scent and topology take into account the proximal cues’
ability to “light the way” down the path to the fix, which
distal scent does not. Therefore, we considered it important
to measure the performance of both to compare them.

ACKNOWLEDGMENTS

Much of this work was performed during M. Burnett’s
sabbatical stay at the IBM T.J. Watson Research Center. This
work was also supported in part by the US Air Force Office
of Scientific Research FA9550-09-1-0213, by the EUSES
Consortium via NSF ITR-0325273, by an IBM International
Faculty Award, and by J. Lawrance’s IBM PhD Scholarship.

REFERENCES

[1] J.R. Anderson, “A Spreading Activation Theory of Memory,”
Verbal Learning and Verbal Behavior, vol. 22, pp. 261-295, 1983.

[2] J.R. Anderson, The Adaptive Character of Thought. Lawrence
Erlbaum Assoc., 1990.

[3] R. Baeza-Yates and B. Ribeiro-Neto, Modern Information Retrieval.
Addison Wesley Longman, 1999.

[4] R. Brooks, “Towards a Theory of the Comprehension of Computer
Programs,” Int’l J. Man-Machine Studies, vol. 18, pp. 543-554, 1983.

[5] R. Brooks, “Toward a Theory of the Cognitive Processes in
Computer Programming,” Int’l J. Human-Computer Studies, vol. 51,
pp. 197-211, 1999.

[6] E. Chi, P. Pirolli, K. Chen, and J. Pitkow, “Using Information
Scent to Model User Information Needs and Actions on the
Web,” Proc. ACM Conf. Human Factors in Computing Systems,
pp. 490-497, 2001.

[7] E. Chi, A. Rosien, G. Supattanasiri, A. Williams, C. Royer, C.
Chow, E. Robles, B. Dalal, J. Chen, and S. Cousins, “The
Bloodhound Project: Automating Discovery of Web Usability
Issues Using the InfoScent Simulator,” Proc. ACM Conf. Human
Factors in Computing Systems, pp. 505-512, 2003.

[8] F. Crestani, “Application of Spreading Activation Techniques in
Information Retrieval,” Artificial Intelligence. Rev., vol. 11, no. 6,
pp. 453-482, 1997.

LAWRANCE ET AL.: HOW PROGRAMMERS DEBUG, REVISITED: AN INFORMATION FORAGING THEORY PERSPECTIVE 213

[9] J. Corbin and A. Strauss, Basics of Qualitative Research:
Techniques and Procedures for Developing Grounded Theory. Sage
Publications, 2008.

[10] T. Cover and J. Thomas, Elements of Information Theory. John Wiley
& Sons, 1991.

[11] D. Cubranic, G. Murphy, J. Singer, and K. Booth, “Hipikat: A
Project Memory for Software Development,” IEEE Trans. Software
Eng., vol. 31, no. 6, pp. 446-465, June 2005.

[12] R. DeLine, M. Czerwinski, and G. Robertson, “Easing Program
Comprehension by Sharing Navigation Data,” Proc. IEEE Symp.
Visual Languages and Human-Centric Computing, pp. 241-248, 2005.

[13] M. Eisenstadt, “Tales of Debugging from the Front Lines,” Proc.
Empirical Studies of Programmers: Fifth Workshop, pp. 86-112, 1993.

[14] K.A. Ericsson and H.A. Simon, Protocol Analysis: Verbal Reports as
Data. MIT Press, 1993.

[15] P. Fritzson, T. Gyimóthy, M. Kamkar, N. Shahmehri, “Generalized
Algorithmic Debugging and Testing,” Proc. ACM SIGPLAN Conf.
Programming Language Design and Implementation, pp. 317-326,
1991.

[16] D.J. Gilmore, “Models of Debugging,” Acta Psychologica, vol. 78,
pp. 151-172, 1991.

[17] J. Herlocker, J. Konstan, L. Terveen, and J. Riedl, “Evaluating
Collaborative Filtering Recommender Systems,” ACM Trans.
Information Systems, vol. 22, no. 1, pp. 5-53, 2004.

[18] E. Hill, L. Pollock, and K. Vijay-Shanker, “Exploring the
Neighborhood with Dora to Expedite Software Maintenance,”
Proc. Int’l Conf. Automated Software Eng., pp. 14-23, 2007.

[19] J. Hollan, E. Hutchins, and D. Kirsh, “Distributed Cognition:
Toward a New Foundation for Human-Computer Interaction
Research,” ACM Trans. Computer-Human Interaction, vol. 7,
pp. 174-196, 2000.

[20] I.R. Katz and J.R. Anderson, “Debugging: An Analysis of Bug-
Location Strategies,” Human-Computer Interaction, vol 3, pp. 351-
399, 1988.

[21] M. Kersten and G. Murphy, “Mylar: A Degree of Interest Model
for IDEs,” Proc. Aspect-Oriented Software Development Conf., 2005.

[22] A.J. Ko, H. Aung, and B.A. Myers, “Eliciting Design Requirements
for Maintenance-Oriented IDEs: A Detailed Study of Corrective
and Perfective Maintenance Tasks,” Proc. Int’l Conf. Software Eng.,
pp 126-135, 2005.

[23] A.J. Ko, B.A. Myers, M.J. Coblenz, and H.H. Aung, “An
Exploratory Study of How Developers Seek, Relate, and Collect
Relevant Information during Software Maintenance Tasks,” IEEE
Trans. Software Eng., vol. 32, no. 12, pp. 971-987, Dec. 2006.

[24] T.K. Landauer and S.T. Dumais, “A Solution to Plato’s Problem:
The Latent Semantic Analysis Theory of the Acquisition, Induc-
tion, and Representation of Knowledge,” Psychological Rev.,
vol. 104, pp. 211-240, 1997.

[25] J. Lawrance, R. Bellamy, and M. Burnett, “Scents in Programs:
Does Information Foraging Theory Apply to Program Main-
tenance?” Proc. IEEE Symp. Visual Languages and Human-Centric
Computing, pp. 15-22, 2007.

[26] J. Lawrance, R. Bellamy, M. Burnett, and K. Rector, “Can
Information Foraging Pick the Fix? A Field Study,” Proc. IEEE
Symp. Visual Languages and Human-Centric Computing, pp. 57-64,
2008.

[27] J. Lawrance, R. Bellamy, M. Burnett, and K. Rector, “Using
Information Scent to Model the Dynamic Foraging Behavior of
Programmers in Maintenance Tasks,” Proc. ACM Conf. Human
Factors in Computing Systems, pp. 1323-1332, 2008.

[28] A. Leontjev, Activity, Consciousness, and Personality. Prentice-Hall,
1978.

[29] S. Letovsky, “Cognitive Processes in Program Comprehension,”
Empirical Studies of Programmers, E. Soloway and S. Iyengar, eds.,
pp. 58-79, Ablex Publishing Corporation, 1986.

[30] F. Long, X. Wang, and Y. Cai, “API Hyperlinking via Structural
Overlap,” Proc. ESEC/ACM SIGSOFT Symp. Foundations of Software
Eng., pp. 203-212, 2009.

[31] M. Nanja and C. Cook, “An Analysis of the On-Line Debugging
Process,” Proc. Second Workshop Empirical Studies of Programmers,
E. Soloway and S. Sheppard, eds., pp. 172-184, 1987.

[32] J. Nielsen, “Information Foraging: Why Google Makes People
Leave Your Site Faster,” http://www.useit.com/alertbox/
20030630.html, June 2003.

[33] P. Pirolli, “Computational Models of Information Scent-Following
in a Very Large Browsable Text Collection,” Proc. ACM Conf.
Human Factors in Computing Systems, pp. 3-10, 1997.

[34] P. Pirolli and S. Card, “Information Foraging,” Psychology Rev.,
vol. 106, no. 4, pp. 643-675, 1999.

[35] M. Robillard, W. Coelho, and G. Murphy, “How Effective
Developers Investigate Source Code: An Exploratory Study,”
IEEE Trans. Software Eng., vol. 30, no. 12, pp. 889-903, Dec. 2004.

[36] M. Robillard, “Automatic Generation of Suggestions for Program
Investigation.” Proc. ESEC/ACM SIGSOFT Symp. Foundations of
Software Eng., pp. 11-20, 2005.

[37] M. Robillard, “Topology Analysis of Software Dependencies,”
ACM Trans. Software Eng. and Methodology, vol. 17, no. 4, article 18,
2008.

[38] P. Romero, B. du Boulay, R. Cox, R. Lutz, and S. Bryant,
“Debugging Strategies and Tactics in a Multi-Representation
Software Environment,” Int’l J. Human-Computer Studies, vol. 65,
no. 12, pp. 992-1009, Dec. 2007.

[39] Z.M. Saul, V. Filkov, P. Devanbu, and C. Bird, “Recommending
Random Walks,” Proc. ESEC/ACM SIGSOFT Symp. Foundations of
Software Eng., pp. 15-24, 2007.

[40] C. Scaffidi, S. Fleming, D. Piorkowski, M. Burnett, R. Bellamy, and
J. Lawrance, “Unifying Software Engineering Methods and Tools:
Principles and Patterns from Information Foraging,” in review.

[41] K. Schneider, C. Gutwin, R. Penner, and D. Paquette, “Mining a
Software Developer’s Local Interaction History,” Proc. Int’l Work-
shop Mining Software Repositories, 2004.

[42] T. Schummer, “Lost and Found in Software Space,” Proc. Hawaii
Int’l Conf. System Sciences, 2001.

[43] J. Shirabad, T. Lethbridge, and S. Matwin, “Mining the Main-
tenance History of a Legacy System,” Proc. Int’l Conf. Software
Maintenance, 2003.

[44] J. Shrager and D. Klahr, “Instructionless Learning about a
Complex Device,” Int’l J. Man-Machine Studies, vol. 25, pp. 153-
189, 1986.

[45] S.E. Sim and R.C. Holt, “The Ramp-Up Problem in Software
Projects: A Case Study of How Software Immigrants Naturalize,”
Proc. Int’l Conf. Software Eng., pp. 361-370, Apr. 1998.

[46] J. Singer, R. Elves, and M.A. Storey, “NavTracks: Supporting
navigation in Software Maintenance,” Proc. Int’l Conf. Software
Maintenance, pp. 325-334, 2005.

[47] D.I.K. Sjøberg, T. Dybå, B.C.D. Anda, and J.E. Hannay, “Building
Theories in Software Engineering,” Guide to Advanced Empirical
Software Eng., pp. 312-336, Springer, 2008.

[48] J. Spool, C. Profetti, and D. Britain, “Designing for the Scent of
Information,” User Interface Eng., 2004.

[49] L. Suchman, Plans and Situated Actions: The Problem of Human-
Machine Communication. Cambridge Univ. Press, 1987.

[50] A. Vans and A. von Mayrhauser, “Program Understanding
Behavior during Corrective Maintenance of Large-Scale Soft-
ware,” Int’l J. Human-Computer Studies, vol. 51, pp. 31-70, 1999.

[51] C. Wohlin, P. Runeson, M. Host, B. Regnell, and A. Wesslen,
Experimentation in Software Engineering. Kluwer Academic Publish-
ers, 2000.

[52] A. Ying, G. Murphy, R. Ng, and M. Chu-Carroll, “Predicting
Source Code Changes by Mining Change History,” IEEE Trans.
Software Eng., vol. 30, no. 9, pp. 574-586, Sept. 2004.

[53] A. Zeller, “Yesterday, My Program Worked. Today, It Does Not.
Why?” Proc. ESEC/ACM SIGSOFT Symp. Foundations of Software
Eng., pp. 253-267, 1999.

[54] T. Zimmermann, P. Weissgerber, S. Diehl, and A. Zeller, “Mining
Version Histories to Guide Software Changes,” Proc. IEEE Int’l
Conf. Software Eng., 2004.

214 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 39, NO. 2, FEBRUARY 2013

Joseph Lawrance received the PhD degree in
computer science from Oregon State University
in 2009. He is an assistant professor in the
Computer Science and Systems Department at
the Wentworth Institute of Technology. His
research interests include human factors in
programming and debugging, particularly infor-
mation foraging theory applied to debugging.

Chris Bogart is working toward the PhD degree
at Oregon State University’s School of Electrical
Engineering and Computer Science. His current
research involves human factors in debugging,
comprehension, and validation, particularly re-
lating to scientific modeling.

Margaret Burnett received the PhD degree in
computer science from the University of Kansas.
She is a professor in Oregon State University’s
School of Electrical Engineering and Computer
Science. Her current research focuses on end-
user programming, end-user software engineer-
ing, information foraging theory as applied to
programming, and gender issues in those
contexts. She is a senior member of the IEEE.

Rachel Bellamy is the manager of the Software
Productivity Group at IBM Research. She con-
ducts research into the psychology of program-
ming, expert debugging, parallel programmer
debugging, end-user modeling, design tools for
productivity assessments, and is a practitioner of
user-centered design. Before coming to IBM,
she worked in Apple Computer’s Advanced
Technology Group and at the University of
Cambridge. She is a member of the IEEE.

Kyle Rector is working toward the PhD degree
at the University of Washington’s Computer
Science and Engineering Department. Her
research interests include human computer
interaction with respect to gender and informa-
tion foraging theory as it applies to debugging.

Scott D. Fleming received the PhD degree in
computer science from Michigan State Univer-
sity. He is an assistance professor in the
Department of Computer Science at the Uni-
versity of Memphis. His research interests
include human aspects of software engineering,
concurrent software, end-user software engi-
neering, and design and usability of software
engineering tools. He is a member of the IEEE
and the IEEE Computer Society.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

LAWRANCE ET AL.: HOW PROGRAMMERS DEBUG, REVISITED: AN INFORMATION FORAGING THEORY PERSPECTIVE 215

