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Version Control Systems:  
An Information Foraging Perspective 

Sruti Srinivasa Ragavan, Mihai Codoban, David Piorkowski, Danny Dig, Margaret Burnett 

Abstract—Version Control Systems (VCS) are an important source of information for developers. This calls for a principled 
understanding of developers’ information seeking in VCS—both for improving existing tools and for understanding requirements 
for new tools. Our prior work investigated empirically how and why developers seek information in VCS: in this paper, we 
complement and enrich our prior findings by reanalyzing the data via a theory’s lens. Using the lens of Information Foraging 
Theory (IFT), we present new insights not revealed by the prior empirical work. 

First, while looking for specific information, participants' foraging behaviors were consistent with other foraging situations in SE; 
therefore, prior research on IFT-based SE tool design can be leveraged for VCS. Second, in change awareness foraging, 
participants consumed similar diets, but in subtly different ways than in other situations; this calls for further investigations into 
change awareness foraging. Third, while committing changes, participants attempted to enable future foragers, but the 
competing needs of different foraging situations led to tensions that participants failed to balance: this opens up a new avenue 
for research at the intersection of IFT and SE, namely, creating forageable information. Finally, the results of using an IFT lens 
on these data provides some evidence as to IFT's scoping and utility for the version control domain. 

Index Terms—Human factors in software desgin, Software engineering, Version control 

——————————   u   —————————— 

1 INTRODUCTION
OFTWARE ENGINEERING (SE) is an information-in-
tensive activity. Empirical studies have revealed that, as 

part of their day-to-day software engineering activities, de-
velopers ask several questions from “why is this code imple-
mented this way?” to “what are other team members working 
on?” [27], [28], [52]. To answer such questions, developers 
seek information from various sources, such as the web, 
bug repositories, documentation or even other team mem-
bers. One such information source is the project’s version 
control system (e.g., Git, Subversion, Mercurial) [28].  

Version Control Systems (VCS) are a rich source of in-
formation: they contain the entire development history of 
a project. SE researchers routinely leverage this rich infor-
mation to multiple ends, such as to predict bugs [50], 
merge conflicts [6] and to recommend APIs to program-
mers [36], to name a few. However, even though studies 
(e.g., [28]) reveal that developers do seek information in 
VCS, surprisingly little research focuses on the details: 
what information they seek, how and why. As a result, as 
SE researchers, we are limited in our understanding of de-

velopers’ activities and, as tool builders, we do not under-
stand how well existing VCS tools support developers’ 
needs and where new tool opportunities lie.  

To address this gap, our prior empirical work [12] char-
acterized the motivations, strategies and barriers to devel-
opers’ information seeking in VCS, lifting the results to a 
three-lens model for software history. In this paper, we 
complement our prior empirical work and overlay a new 
perspective—that of a theory.   

We re-analyze empirical data from our prior study [12] 
from the perspective of Information Foraging Theory (IFT) 
to gain fresh insights into how developers seek information 
in VCS and how VCS tools can better aid developers.  

1.1 Why Theory? 
Our end goal is to better support developers’ information 
seeking. For that, we need to build good tools that will solve 
the right problems. Empirical studies, such as our prior 
work [12] are great for revealing phenomena (including 
problems), but they provide limited justifications for why the 
phenomena/problems happen. Theories, on the other hand, 
provide these justifications. This explanatory power of the-
ories can help tool builders identify the right problems—not 
just the symptoms—that need to be solved. Further, because 
theories can tell why something happens, they can also rea-
son in the opposite direction to predict what will happen in 
a given situation [22]. This predictive power can be lever-
aged for engineering good tools: for example, tool builders 
can theoretically reason about how a user will use a tool, or 
evaluate early on whether and why a tool will work (or 
not)—even before actually implementing the tool [22].   
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1.2 Why IFT? 
Information Foraging Theory (IFT) exemplifies the explan-
atory and predictive powers a good theory brings. IFT has 
successfully explained people’s information seeking behav-
iors in various domains (including SE [29], [30], [32], [37]) 
and its predictive powers have guided the practical design 
and evaluation of various tools and information environ-
ments, such as websites and web search engines [10], [11], 
information visualizations [8] and SE tools [10], [39]. These 
prior successes of IFT in diverse domains encouraged our 
choice of IFT for the VCS domain.  

We also chose IFT because of its generalizability. Suc-
cessful solutions from one domain can be abstracted into 
generic IFT vocabulary as design principles or patterns 
(e.g., web design guidelines [53], principles for IDE navi-
gations [21], [41],  SE tool design patterns [15], [34]) to be 
reused in other domains. For this reuse, the phenomena in 
the “target” domain have to be framed in an IFT’s vocabu-
lary: that is what this study achieves. We frame version 
control activities in an IFT vocabulary so as to reuse exist-
ing IFT design patterns, without reinventing the wheel.  

1.3 Does IFT apply to VCS? 
Prior research has not applied IFT to the VCS domain and 
so one of the key goals of this paper is to evaluate the scope 
of validity of IFT in the VCS domain. By applying IFT to 
VCS, we can evaluate how well IFT is able to explain and 
predict phenomena related to version control foraging, and 
thereby, we can gather evidence as to whether IFT’s scope 
extends to version control activities (or not).   

1.4 Contributions 
The key contributions of this paper are: 
• IFT-based reanalysis of data from [12] to gain fresh in-

sights into how developers seek information in VCS, 
• evidence of the utility and appropriateness of apply-

ing IFT to the domain of version control. 
• IFT-informed design solutions to address the barriers 

to developers’ information seeking in VCS,  
• discussion of new avenues for IFT research motivated 

by version control activities. 

2 BACKGROUND 
Information Foraging Theory (IFT) [44] is a theory of how 
people seek information. Rooted in evolutionary psychol-
ogy, IFT assumes that human information-seeking abilities 
have evolved similar to animals’ food-foraging strategies. 
Therefore, to explain information seeking, Pirolli and Card 
turned to animals’ food foraging behaviors, eventually de-
riving IFT from the optimal food foraging theories [54].  

2.1 Constructs 
IFT uses a small set of constructs (summarized in Table 1). 
Predator is the person (e.g., developer) hunting for infor-
mation or prey (e.g., bug location). Just like animals hunt 
for their prey in foraging grounds, in IFT, a predator for-
ages for prey in the information environment (e.g., VCS).   

According to IFT, the information in the environment 
occurs in patches (e.g., commits, branches, files) and the 
patches contain information features (e.g., words, colors). 

The prey is actually a set of information features contained 
in one or more patches. A predator can go from one patch 
to another via a link (e.g., scrolling to go from one commit 
to another, clicking on commit message open a commit). 

Central to how predators forage for prey are the notions 
of cues and scent. Cues are information features associated 
with links: they tell the predator what information might 
be found at the other end of the link (e.g., text on a hyper-
link, icons, file names, commit messages). Just as animals 
sniff at various cues (e.g., hoofprints, fur bits) and take the 
path with the strongest scent of prey, IFT posits that human 
predators will also attend to use the scent from the cues to 
guide them to their prey.  

2.2 Cost-value proposition 
More formally, according to IFT, a predator treats the infor-
mation foraging problem as an optimization problem, try-
ing to get to the prey in the most efficient manner. 

In most information-rich environments (e.g., VCS), a 
predator has several available foraging choices (e.g., sev-
eral possible patches s/he can go to, several links s/he can 
follow), each bringing different informational value and at 
different cost (i.e., time, no. of clicks, cognitive costs). IFT 
says that, among these choices, a predator will choose the 
option that will maximize the rate of gain of valuable in-
formation (or the value-to-cost ratio). 

In reality, however, the predator often does not know 
the actual value or cost associated with an action (e.g., if a 
predator has never visited a commit, s/he does not know 
what value it exactly has). Therefore, to make foraging de-
cisions, the predator guesses the values and costs based on 
cues available in the environment. This value-cost estima-
tion is what constitutes scent, i.e.:  

𝑃𝑟𝑒𝑑𝑎𝑡𝑜𝑟(𝑠	𝑐ℎ𝑜𝑖𝑐𝑒 = Max(scent) = 𝑀𝑎𝑥 ;
Expected	value
𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑	𝑐𝑜𝑠𝑡 D	 

This equation, called IFT’s cost-value proposition, is the 
mechanism by which IFT makes predictions about how a 
predator will forage.  

As we will see in this paper, we can use this cost-value 
proposition to: 1) understand how developers will forage, 
2) evaluate and design tools and 3) gather evidence to as-
sess the scope of IFT’s validity in VCS domain. 

TABLE 1: CONSTRUCTS OF IFT 

Construct Definition Example in VCS 
Predator Person foraging for  

information Software developer 
Prey Information that the predator 

is seeking When was this bug  
introduced? 

Information 
environment Environment where the  

foraging happens Version control system 
Patch Locations in the environment, 

contains information features. Commit,  
list of commits 

Link Connection between patches Clicking on (link) commit 
message opens the commit. 

Cues Provide hints about what  
information might be at the 
other end of the link.  

Words in commit  
messages, timestamp 

Scent Predator’s estimate of value / 
cost ratio (in their heads) Similar words =  

higher scent 
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3 RELATED WORK 
3.1 Information Foraging Theory 
Pirolli and colleagues derived IFT to explain information 
seeking in large document collections [42] and information 
visualizations [8]. They then applied IFT extensively to the 
web domain, to explain and predict people’s web browsing 
behaviors [10] and to evaluate websites [9], [11], eventually 
laying the foundations for web usability [53]. 

In the software engineering (SE) domain, Ko et al. first 
suggested IFT as a theory for developers’ information 
seeking [27]. Ever since, researchers have applied IFT to ex-
plain information-seeking in various SE tasks, such as re-
quirements engineering [37], debugging [31], [32] and pro-
gram maintenance [40]. Recent work has also investigated 
programmers’ foraging among program variants during 
exploratory programming [45], [46]. 

Although the majority of IFT work in SE is on explain-
ing developer behavior via empirical studies or computa-
tional models, researchers have also leveraged IFT for SE 
tool building: Piorkowski et al. adopted PFIS2, an IFT com-
putational model, to recommend methods to programmers 
[39], Henley et al. leveraged IFT to design IDE navigation 
affordances [20] and Perez et al. used IFT to guide the de-
sign of Pangolin, a program comprehension tool [38]. 

Researchers have also gone beyond specific tools and 
lifted IFT’s insights to generic and reusable design princi-
ples and patterns. Notable examples include a community-
curated IFT design patterns catalog for SE tools [16, 34], 
principles for IDE navigation design [20] and Piorkowski 
et al.’s four fundamental ways of improving tool design 
[41].  These patterns and principles are framed in generic 
IFT vocabulary and are transferable to other domains.  

This paper builds on prior IFT research, particularly the 
design patterns catalog [34], to understand developers’ for-
aging in VCS and to improve VCS tools. Along the way, 
this paper also evaluates the scope of IFT in the version 
control domain (where IFT has not been applied before).  

3.2 Information seeking in VCS 
SE practitioners have used VCS tools for over three dec-
ades, but few studies have investigated how developers 
forage in version control history. Our prior study [12], on 
which this paper is built, is one of the first studies to do so. 
However, researchers have investigated and aimed to sup-
port specific version control activities, which we summa-
rize in the rest of this section. 

3.2.1 Change awareness 
Empirical studies have looked into developers’ collabora-
tive needs in SE, including change awareness. Notable pa-
pers in this area include Guzzi et al.’s study of developers’ 
collaboration practices [18], Gutwin et al.’s categorization 
of general vs. specialized change awareness needs [16] and 
DeSouza et al.’s characterization of developers’ forward 
and backward impact management needs [14].  

Based on these empirical studies, researchers have also 
built tools to meet developers’ collaboration needs. Some 
tools, such as ProjectWatcher [17] and Bellevue [18], sup-
port developers’ general change awareness, while others, 

such as FastDash [4], Cassandra [23] and Palantir [48], spe-
cifically focus on conflict detection and awareness. 

3.2.2 Locating specific commits  
Studies have revealed that developers ask several ques-
tions about code (e.g., why is some code the way it is),   
(e.g., [52], [28]), but research has largely overlooked ques-
tions such as: what kinds questions do developers ask in 
VCS, how do they find answers to those questions or how 
to support them. A notable exception is [55], in which Tao 
et al. discuss how developers understand the changes in a  
commit and how tools can aid this activity. Our prior study 
[12] also began investigating these activities. 

3.2.3 Committing changes 
In the realm of committing changes, some studies have at-
tempted to understand the nature of commits developers 
create. For example, Alali et al. investigated the character-
istics of a typical commit [1], Brindescu et al. [5] investi-
gated the commit sizes made by Git and SVN users, 
Kawrykow and Robillard studied commits to understand 
the nature of changes made on a project [24] and Kirinuki 
et al. investigated tangling of changes in commits [26]. 

Other researchers have used commit characteristics, 
such as commit sizes [33], commit message content [25] or 
pull request information [56] to predict the nature of 
changes in the commit(s).  

Even others have attempted to help developers in the 
commit process, such as by automatically generating com-
mit messages [13]. Yet, these studies do not look into how 
developers create commits, and why. 

In summary, existing literature is largely focused on 
specific version control activities, in contrast, we treat ver-
sion control activities as a whole. We also differ from exist-
ing work in that we bring to version control activities a the-
ory: as a result, we emphasize on whys: why developers 
need the information they are looking for, why they go 
about looking for it the way they do, why they face chal-
lenges and why existing tools meet (or not) developers’ 
needs. Answering these why questions are important for 
tools builders, who might otherwise make incomplete or 
inaccurate assumptions about developers and their needs.  

4 METHODOLOGY 
As mentioned earlier, this paper presents the results from 
an IFT-based re-analysis of the data from a prior study [12]. 
Therefore, we first discuss the methodology of the original 
study and then discuss the reanalysis procedure. 

4.1 Prior study: Interviews 
We recruited 14 developers from across 11 companies via 
convenience sampling. On an average, participants had 
~13 years of professional software development experi-
ence. They used diverse VCS (Git, SVN, TFS, Bazaar) and 
clients (e.g., command line, Github, Stash).  

We used semi-structured interviews: we started with a 
fixed set of anchoring questions (listed in the study’s web-
site [57]), but followed interesting tangents based on par-
ticipants’ responses [51]. Each interview lasted 40-90 
minutes. Each participant received $50 in compensation. 
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For analysis, we used qualitative methods. Since ours 
was the first study on the subject, we did not have a prior 
codeset. So, we used open coding to build our codeset, fol-
lowing Campbell et al.’s advice [7] for segmentation, code-
book evolution and inter-rater agreement issues. 

First, we transcribed the interviews. We then segmented 
the transcripts topically: each time the interviewer asked a 
new question, or participant changed the topic of the con-
versation, we created a new segment. Since segmentation 
required subjective interpretation and contextualization of 
the participants’ responses [7], the second author, who also 
conducted the interviews, performed the segmentation. 

After all interviews were transcribed and segmented, 
the first and second authors coded the transcripts proceed-
ing one at a time. During each coding session, the two cod-
ers independently coded each segment, allowing multiple 
codes per segment. Since a prior code set was not available, 
the coders coded participants’ motivations, strategies and 
barriers using their own code names and schemes. 

After independently coding a transcript, the coders 
compared their code sets. First, they resolved disagree-
ments in code names: for example, one coder used a code 
name “why is this this way”, while the other coder used the 
name “change rationale”; eventually, the coders agreed on 
the name “why is this this way” and updated both the code 
set and the coded transcripts. After such renaming, the 
coders received an inter-rater agreement (IRR) of 65% (Jac-
card index) averaged across all sessions. These IRR levels 
are consistent with the measures Campbell et al. report [7]. 

The coders then resolved any disagreements in code as-
signment via “negotiated agreement”, discussing the code 
assignment until they reached agreement [7]. Along the 
way, they added new codes, removed or merged existed 
codes and disambiguated code descriptions. For such 
codebook changes, the coders recoded previously-coded 
interviews to reflect the updated code book.  

With such a process, the codebook changed at the end 
of each coding session. The final codebook from each ses-
sion became the starting codebook for the next session. 
Consistent with prior studies involving semi-structured in-
terviews [7], it took 10 interviews for the codebook to sta-
bilize. The final codebook is provided in [57].  

At the end of all coding sessions, the coders achieved an 
IRR of 97.4%. The coders then grouped the codes into 
larger emerging themes.  

4.2 Prior study: Survey 
Interviews provided rich data about VCS usage, but only 
from a small sample size. To validate and quantify our in-
terview findings with a broader demographic, we de-
signed a survey based on our interview findings. The sur-
vey consisted of multiple-choice questions (except for one 
open-ended question on commit messages). For each mul-
tiple-choice question, we included an “other” field to cap-
ture any new data that did not surface in the interviews. 
The survey questions are available on [57].  

We advertised the survey via Reddit and Twitter. Of the 
217 survey repondents, 80% had > 5 years of software de-
velopment experience and 84% were from the industry.  

As mentioned earlier, the survey contained an open-

ended question on what a commit message should contain. 
We analysed the responses to this question qualitatively, 
via open coding. The first and second authors coded the 
data and, via negotiations, reached 93.5% agreement. This 
codeset is also found in the accompanying website [57].  

4.3 Re-analysis procedure 
For the reanalysis, we mapped high-level codes (code cat-
egories) from the prior study [12] to an IFT vocabulary. 
Specifically, (1) motivation codes from [12] were about why 
developers seek information in VCS; in IFT, these reasons 
are called foraging goals. (2) Strategy codes were about how 
participants foraged from the perspectives of costs and val-
ues, patches, cues and/or diet and (3) enabler codes were 
what helped them do so; we mapped both these codes to 
foraging strategy codes that participants adopted and/or 
that tools supported. (4) Barrier codes captured partici-
pants’ difficulties and (5) wishes codes were what partici-
pants wanted (but didn’t have), so we mapped both to for-
aging barriers. The above list is the entire list of high-level 
codes from the prior codeset, and the low-level codes did 
not change. Since coding in [12] was done on the low-level 
codes, no recoding was necessary.  The entire codeset and 
code mappings are available in the study’s website [57].   

This codeset mapping resulted in coded data instances 
that correspond to IFT (e.g., patches, diet, foraging goals). 
Given this, the rest of the re-analysis was to use the in-
stances in the data of IFT concepts predicted using the the-
ory’s predictions, and to analyze whether and how these 
predictions were realized in the data. 

5 RESULTS 1. CHANGE AWARENESS FORAGING 
Participants engaged in three main foraging activities: 1) 
foraging for change awareness, 2) foraging for specific infor-
mation and 3) creating commits with future foraging in mind. 
This section discusses the first of these, and Sections 6 and 
7 discuss the other two. 

5.1 Change awareness foraging: a diet problem  
Change awareness—staying up-to-date with the latest 
changes on a project—has previously been established to 
be important to developers (e.g., [12], [16], [28]), who tend 
to use version control systems to achieve it [12]. For our 
participants, their change awareness efforts amounted to 
solving what IFT terms the “diet problem” [43].  

The IFT diet problem is a predator deciding what prey, 
among all available preys, he/she should consume as part 
of his/her “information diet” to get the maximum value 
per cost [43]. Applied to change awareness, the IFT diet se-
lection problem is a developer selecting the changes to gain 
awareness about, within the time s/he want to spend on it. 

IFT’s diet models predict for optimal diet selection: a 
predator will choose to consume high value prey and ex-
clude low value prey, even if the latter might be abundant 
and/or cheap to consume. This pattern has indeed been 
shown in other software engineering settings [40], and in 
our participants' foraging also it appeared. As Fig. 1 shows, 
participants did not waste time consuming all available 
changes; they selected only the changes most relevant to 
them to be part of their information diet.  
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P12: “I do not read every single commit … If something does 
not look as [if] it is needed, I shall ignore it.” 

Of course, what was relevant varied for each particular de-
veloper in each particular situation. 

Insight #1: Participants’ dietary choices were consistent with 
traditional IFT diet models. This provides evidence that IFT 
might apply to change awareness foraging, and allows prior 
IFT results on diets to be leveraged for change awareness tools. 

Implication for tools: Since the selection of diet in change 
awareness matched well to other IFT work on diet selec-
tion, tool builders can leverage IFT-oriented design solu-
tions to support diet selection, such as the IFT-based design 
patterns compiled by Nabi et al. [34]. These design patterns 
crystallize decades of prior IFT research, abstracting de-
signs in multiple successful SE tools so that they can be re-
used in tools for other similar situations, including for 
change awareness diet selection.  

For example, the above compilation provides patterns 
such as specification matcher, notifier, dashboard, struc-
tural relatedness, recommendations and impact location 
that tool builders can leverage to help developers locate in-
teresting (or high value) changes. There is already some ev-
idence that doing so is appropriate for change awareness: 
several existing change awareness tools, such as GitHub’s 
watch, Palantir’s notifications and FastDash’s dashboard, 
that are empirically shown to be successful, already imple-
ment some combination of these design patterns.  

5.2 Change awareness’s foraging: differences from 
many other SE foraging situations 

Change awareness foraging also differed in nuanced ways 
from traditional notions of foraging. 

Difference #1: The prey is easy to find. In traditional forag-
ing, the prey is often elusive.  For example, a developer 
might forage through a large codebase, seeking prey from 
multiple places in the code, using a combination of cues 
and experience to find relevant locations, with many 
deadends likely along the way (e.g., [42]). In contrast, in 
VCS, the prey is simply “what changed?”, which most VCS 
environments present to developers with a single user ac-
tion (e.g., via a pull action).  

Difference #2: Foraging to ease future foraging costs. Since 
the prey is so easy to find, why do developers need to for-
age at all in VCS tasks? The answer for our participants 
was that, in their change awareness foraging, they foraged 
to ease future foraging costs, mostly in the following two 
ways. They either foraged the changes to understand 
which ones will and will not require them to forage for its 
details at a future time (next, or much later); or, they for-
aged to avoid additional costs in future foraging situations 
(e.g., avoid merge conflicts, which can impose extensive 
foraging costs to resolve). For example, P4 foraged to avoid 
future merge conflicts:  

P4: “If I … need to be more cautious, then I’ll do a TkDiff <on> 
the files that are most crucial, see what changes have been 
made since I last looked.” (emphasis added.) 

Difference #3: Consume prey now, or save it for later? The 
third difference was in when predators consumed the prey. 
In traditional notions of foraging, a predator finds and con-
sumes the prey within a task context; e.g., when debug-
ging, a developer finds the bug location(s) and works with 
the found code to fix the bug.  In contrast, during change 
awareness, participants used the found prey mostly to 
make timing decisions on when to consume it, based on 
the value/cost of now vs. later. For example, sometimes 
they consumed the prey immediately, other times they de-
cided it could be consumed as part of a later diet (which 
they might actually consume later or not). P12 explains 
these value/cost decisions on the change awareness prey 
which arrived via his emails: 

P12: “I go through email typically twice a day... [But] I have a 
couple of folders of email that, if I get any email, I’ll look at it 
fairly quickly, within like 30 minutes or so… those are changes 
that are introduced to an important repo and I want to know fairly 
quickly if something happened”. (emphasis added). 

Difference #4: Lightweight. The final difference was in 
how participants allocated their time. In other SE research 
on foraging, the predator may be required to stubbornly 
pursue a specific prey often at high costs, as the needed 
prey may only exist in a specific patch (e.g., exact location 
of a bug). However, in change awareness situations, partic-
ipants often had to become aware of multiple high-value 
changes. As a result, they adopted a lightweight approach: 
for each relevant change, they mostly spent only low costs, 
to gain only incomplete or “partially thorough” (P1) un-
derstanding of changes.  

P6: “[I] look at the history really quick, see what has happened.” 

P9: “... each commit that you care about sends you an email, 
just scan the subject lines … you can kind of see the direction that 
the code base is going.” [emphasis added in both quotes]. 

Insight #2: Change awareness foraging showed several differ-
ences from most SE foraging:  
1) the prey is easy to find,  
2) much of the foraging is to ease future foraging,  
3) actually prey consumption might be immediate or later, and  
4) foragers adopted a lightweight approach.  

Tool design implication: One view of the low-cost light-
weight strategy supported so well by VCS tools is as a 
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model of good design for other foraging tools. Version con-
trol tools allow developers to easily maximize their value-
to-cost ratio by enabling them to forage for high value in-
formation across multiple patches at very low cost. Specif-
ically, the cost of gaining high-value information in a patch 
(e.g., reading commit message summary) as well as the 
cost of going from one patch to another (e.g., by scrolling 
through a list) are both low to enable this foraging. Such 
low costs in the environment can be viewed as an examplar 
for other SE tools (e.g., for debugging, IDEs) to strive for in 
supporting similar foraging needs in other SE tasks. 

5.3 An unfulfilled foraging need: bulk change 
awareness 

A foraging problem participants' version control tools did 
not address was their need for bulk change awareness. Par-
ticipants' need for change awareness "in bulk" arose when 
they had too many changes to catch up with (e.g., after a 
vacation, or in large open source projects). In these cases, 
even though participants spent even less than usual time 
foraging within each commit, their overall foraging costs 
were high because of the high volume of commits.  

The situation was so burdensome that some partici-
pants came up with explicit foraging strategies just to deal 
with it. Some participants kept up with commits and 
emails even during vacations:  

P3: “Look at emails to keep track… while on vacation.” 

Others who caught up with changes after the vacation, 
skimmed pull requests and release tags (groups of com-
mits) which were far lesser in number than commits. 

P12: “I found that Github pull requests are one of the most 
helpful ways to do that… I’ll look at all the pull requests that 
have been opened or changed since I was out…I’ll go quickly 
through the merged and closed ones just to see what happened, 
then save the still opened ones for later...” 

Even preferred to meet with other team members (adding 
to the team member’s cost) to catch up with changes in-
stead of foraging through all that data: 
P6: “...If I am just getting back and there has been a lot going on, I 
will usually prefer to have a one-to-one meeting with various individ-
uals that are involved ...” (Emphasis added.) 

Implication for tools: Our results suggest that tools for 
change awareness should facilitate deferred prey con-
sumption (e.g., implement the cart pattern for developers 
collect to changes for future vetting),  help developers esti-
mate the future value of change awareness (e.g., based on 
an open issue or upcoming feature) and aid bulk change 
awareness. Existing tools have largely overlooked these as-
pects, leaving gaps for new change awareness tools to fill. 

6. RESULTS 2: FORAGING FOR SPECIFIC 
INFORMATION 

6.1 Foraging Traditionally for Specific Information  
When looking for specific information, our participants’ 
foraging needs (Table 2), are consistent with questions 
developers asked in other foraging studies in SE  [31], [40], 
[46] (e.g., where is the bug located?, what does this code 

do?, what are the dependencies?, where shoud I reuse code 
from?). Thus, in seeking answers to those questions, our 
participants engaged in foraging behaviors consistent with 
those in prior studies. For example, consider P3’s foraging 
behaviors during a debugging task:  

P3: “[I] …looked at commits for the last couple of days, looked 
at a particular solution, read the messages, read the diffs, talked 
to people.”  

Here, the foraging activities P3 mentions fall into tradi-
tional foraging categories:  

• enrichment, to modify the environment for conven-
ient foraging (e.g., filtering),  

• between-patch foraging, to choose a profitable patch to 
forage in next (e.g., read commit message to choose 
which commit to go to), and 

• within-patch foraging, to assimilate the information 
within a patch (e.g., read diffs to grasp a commit).  

This similarity with traditional notions of foraging sug-
gests that, to support foraging for specific information, 
VCS tool builders can harvest prior IFT tool design pat-
terns or improvements. To demonstrate the feasibility and 
utility of such transfer of results, we employ Nabi et al.’s 
design patterns catalog [34] to address existing problems 
in VCS (listed as barriers in Table 3).  

Insight #3:  While foraging for specific information, partici-
pants’ foraging goals and activities were consistent other kinds 
of foraging in SE, suggesting that IFT might apply to these 
kinds of version control activities.  

We place our suggestions under the four fundamental 
ways in which, according to IFT, tools can support foragers 
in their traditional foraging activities [41]: 

1) helping developers accurately estimate costs,   
2) helping developers accurately estimate values,  
3) reducing actual foraging costs, and  
4) increasing actual value in the environment. 

6.2 IFT-Informed VCS design: supporting 
developers’ estimates of cost and value 

In IFT, a predator’s ability to forage efficiently depends on 
how well he/she can estimate costs and values for various 
actions. In our study also, accurate estimates allowed par-
ticipants to make informed and efficient foraging choices, 
whereas inaccurate estimates sometimes caused them to 
make poor foraging choices, leading to disappointment. 

TABLE 2.  FORAGING FOR SPECIFIC INFORMATION  
(TRADITIONAL FORAGING BEHAVIORS) 

Foraging 
 goal Definition Where participants  

foraged 
Selectively  
compose 
changes 

Find specific commits (e.g., 
bug, feature) to cherry-pick 
into other branches. 

Commits pertaining to a 
specific bug or feature to 
that need to be cherry-
picked. 

Change  
impact 

analysis 
Find which areas of code are 
impacted by a change,  
what tests need to be run. 

Commits relevant to the 
specific changes (e.g., 
other commits modifying 
same code or tests). 

Debug Find when a bug was intro-
duced, how the code at that 
time was.  Bug-introducing commit. 

Understand  
code / change 

rationale 
Understand why a code snip-
pet was implemented a certain 
way. 

Commit where the code 
was added or modified. 
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P4 faced such disappointment when he could not esti-
mate costs while foraging for when a certain line of code 
came into being (Table 3: traceability to history). At first he 
navigated to the oldest version of that line, expecting that 
to be all his foraging costs. But once there, P4 realized the 
line had been moved from elsewhere, and he had to trace 
the history of the file the code had been moved from. 

P4: “…that line came into being in such and such a version but 
the reason it came into being is that a chunk of code got moved 
from here to there. So then you need to look at the previous 
version to see when that line came into being and that will refer 
you back farther … what CVS tells you is not actually true.” 

At this stage, P4 was disappointed because: 1) he could 
not find the prey in the location he had expected to find it, 
2) the foraging costs were higher than what he had ex-
pected, and 3) he had no idea how much more it would cost 
him to get to his prey—at best, it might be just a few clicks 
away, but in the worst case, he might have to click through 
many, many code moves “without any end in sight” [41].  

Similar disappointments also surfaced as part of partic-
ipants’ value estimations, when the actual value was much 
lower than what the participants expected. For example, 
P9 encountered a commit that contained mostly white-
space changes, and few actual code changes. But he had no 
way of guessing that beforehand, without actually going 
through all the modifications within that commit. 

P9: “… we have our code style, so the tool reformats the code 
for you… you can have a 100 changed lines and only one is an 
actual code change [the rest are white-space changes].”  

Implications for tools:  These traditional foraging needs 
provide tool builders opportunities to harvest IFT design 
patterns that help developers with value and cost estima-
tion [34]. Some of these patterns, such as cue decoration, 
signpost and visualizations, are already present in existing 
tools, in the form of commit messages, change summaries 
on getting the latest version and branch visualizations. 
However, as the barriers in Table 3 reveal, gaps remain 
(e.g., due to white space and redundant changes or uniden-
tified code moves and renames) for which tools could bet-
ter support developers’ estimation needs.  

6.3 IFT-Informed VCS design: improving actual 
foraging costs and values 

Participants also faced difficulties because the actual costs 
of foraging in the environment were too high, or there was 
too little valuable information. In fact, as we shall see next, 
most of Table 3’s barriers were due to poor actuals.  

Information overload: low actual value. VCS history often 
contained too many commits (and, sometimes, commits 
contained too many changes). This excess of information 
led participants to experience information overload.  

The challenge with information overload is that the 
bulk of the available information might not be relevant to 
a predator’s foraging, resulting in low information value 
for the foraging. For example: 

P11: “…there could be some noise from commits I don’t care 
about. Sometimes it is hard to filter out changes … for the 
merging … if they did a big refactor so they renamed a bunch 
of fields, they are not the person I need to talk to … .”  

To improve the actual information value, Nabi et al.’s 
catalog [34] recommends capabilities for filtering out less 
valuable changes. Although most VCS tools provide some 
filtering capabilities—including branches and tags that of-
fer implicit filtering—it appears from our results that they 
might be insufficient and/or hard to find and use (P5), call-
ing for improvements. 

High foraging costs in understanding commits: Even with 
valuable information, foraging was sometimes hard due to 
high within-patch and between-patch costs. High within 
patch costs were mainly due to tangled changes, limited 
cues (e.g., line added vs. line moved) and the lack of group-
ing and filtering capabilities within commits (e.g., group all 
changes for a method rename). High between-patch costs 
were because important information needed to under-
stand commits were often scattered across other patches 
(e.g., other commits, branches) and even other environ-
ments (e.g., bug reports, emails, documents); developers 
had to navigate between these patches to obtain their prey. 

To bring down both between-patch and within-patch 
costs, IFT’s design patterns can help. For between-patch 
costs, tools such as Hipikat, CodeBroker and GitHub im-
plement gather together design pattern. Combined with 

TABLE 3. BARRIERS: IFT-BASED INTERPRETATIONS AND SOLUTIONS 

Barrier Meaning Interpretation as one of four fundamental 
improvements in IFT[40] Example solutions from Nabi et 

al.’s design pattern catalog [16] 
% of  

participants 
(N=217) 

Non-informative  
commit messages Lack of details in commit messages about 

the changes in a commit. Hard to estimate value in a commit Problems arise in committing  
changes, as discussed in Sec-
tion 7. 

66 
Tangled changes Multiple, not necessarily coherent, changes 

tangled in the same commit. High within-patch costs in understanding a 
commit 54 

Information  
overload Too much, and often, more irrelevant than 

relevant, information. Low value,  due to too many irrelevant 
changes Filtering to weed out irrelevant 

information 47 
Traceability to  

versions Fragmented history of a line due to code 
move, file moves or renames. High between patch costs going between 

the fragments Gather together related frag-
ments  32 

Interpreting diffs Limited cues, lack of filtering within com-
mits, making them hard to understand.  High within-patch costs  while understand-

ing a commit Feature decoration to highlight  
intents, move vs. add changes 32 

Tool limitations Missing tool features (e.g., filter, group,  
visualize). [Discussed as part of other barriers.] 20 

Traceability to  
requirement Fragmented information makes it hard to re-

late a change to requirements (or vice versa) High between patch costs going between 
commits and requirements Gather together related frag-

ments  20 
Traceability to  

architecture Limited support to view a change in the con-
text of the entire project / its dependencies High between patch costs going between 

commits and architectural details Visualization showing changes 
vs. entire project 17 
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other patterns such as structural relatedness, impact location 
and lexical similarity, these tools gather together disparate, 
but related artifacts (e.g., bug reports, issues, related com-
mits) to be recommended to developers. For within-patch 
costs, most VCS tools decorate the information features to 
allow easy processing: for example, in most VCS, changed 
code is decorated with surrounding code and code modifi-
cations are decorated in red and green. Similarly, HistoRef 
[19] implements feature tracing to decorate changes with 
similar intent with colors and numbers and 
ChangeDistiller [24] groups within-commit changes to 
eliminate “non-essential” changes (e.g., all method oc-
curences affected by a method rename). 

Insight #4: VCS tools offer several opportunities for improve-
ments, both in terms of cost/value estimates as well as in terms 
of actual costs and values. Nabi et al.’s catalog [34] contain de-
sign patterns that achieve each of these improvements.  

Implications for SE research: However, as other research-
ers [47], [35] have pointed out, state-of-the-art VCS tools 
suffer from fundamental limitations: (1) they only capture 
coarse grained changes and not fine grained changes as de-
velopers edit code, (2) the changes are primary text-based 
and not AST-based (e.g., as in [19]). These, in turn, limit our 
ability to implement some of the existing patterns, such as 
reduce duplicate information (e.g., replace multiple in-
stances of a method rename as one refactoring change). 
Our results, from an IFT’s perspective, reiterate the need 
for overcoming these limitations to better support devel-
opers’ foraging activities. 

Finally, as a word of caution in interpreting this section,  
our intent in this section is not completeness. In fact, one of 
the limitations in this section is that we do not explore all 
possible interpretations of the barriers, consider all possi-
ble solutions among IFT design patterns, or include other 
information environments (e.g., emails, bug reports) par-
ticipants foraged in. Instead, the main point of this section is 
the formative evidence that IFT might apply to VCS foraging 
and that tool builders could profit from existing IFT re-
search for building and improving VCS tools.  

7. CREATING PATCHES FOR FUTURE FORAGING 
7.1 Committing changes: will future foraging be 

easy?  
In VCS, developers not only consume, but also produce the 
information that others, or themselves, might forage in at 
a later time. Therefore, participants as information 
producers took extra care to enable their new patches 
(commits) and cues (commit messages) to support the 
needs of future foragers (consumers), even if these efforts 
increased their own costs in their current task.  

These attempts are consistent with the value/cost per-
spectives underlying IFT: participants aimed to increase 
the value, or decrease the costs of future foraging. For ex-
ample, participants separated their changes into small, sin-
gle-intent commits to reduce within-patch costs, they 
wrote detailed commit messages to help future foragers 
understand or estimate the value in commits, and, when 
they committed important changes, they notified their 

team about the availability of change awareness prey. 
In spite of well-intentioned efforts like these, foraging 

difficulties due to nondescriptive commit messages and 
tangled commits persisted—they comprise the top two 
barriers in Table 3. Although it might be tempting to attrib-
ute these persisting barriers to “bad developer citizens” 
who did not adhere to good commit practices, our results 
reveal that there might be deeper underlying reasons. 

7.2 Tensions: which future foraging need should a 
developer satisfy?  

Different foraging situations might benefit from different 
characteristics in patches and cues. In our case, different 
future foraging situations placed conflicting demands of 
commits and commit messages, requiring participants to 
balance different kinds of tensions.  

Tension #1: Short vs. Detailed Commit Message. Over 
60% of our survey participants preferred detailed commit 
messages, to better estimate the value in a commit, or to 
understand the changes within it.  

S3: “High level statement of code changes with a detailed state-
ment of the intent behind each change.” 

However, other participants found that detailed commit 
messages could take longer to read and process, especially 
when there were too many commits to read. To avert these 
costs, they preferred shorter and concise commit messages.  

P11: “Commit messages are often read in the command line ap-
plication so they need to be very short.” 

Tension #2: Small vs. Large commits. Similar tensions sur-
faced in terms of commit sizes. Some participants preferred 
smaller commits with a single intent, to ease understand-
ing of changes or to cherrypick specific changes.  

P6: “I try to keep all of my commits topical in nature. I try not 
to have different unrelated changes in the same commit… be-
cause that captures the history of development a little bit better.  
Not always, but it also makes it easier to prune out changes 
that were not necessarily beneficial. 

However, other participants preferred larger commits (e.g., 
one commit per entire feature), to avoid fragmentation of 
related changes across commits, and to ease reviewing and 
merging code and for easier collaboration. 

P10: “I think that it helps reviewing because you can open the 
change set and you can see all the corresponding things that 
have changed as part of that change set. It is easier for the re-
viewers to coordinate that set of changes and pull them to-
gether .” 

Tension #3: Current Task vs. Future Foraging. Sometimes a 
developer’s current tasks needs were directly at odds with 
creating commits and commit messages for the future. For 
example, P2 attempted not to pollute his version control 
history with exploratory commits, but in doing so, he in-
curred additional costs from throwing away and reimple-
menting some changes:  

P2: “…I just threw the whole thing away… had I had finer 
grained commits where I could say this little part I would like 
and this little part… but I did not have the infrastructure to do 
that with just committing on the master branch.”  



RAGAVAN ET AL.: VERSION CONTROL SYSTEMS: AN INFORMATION FORAGING PERSPECTIVE 9 

 

In another instance, well-intentioned commit practices that 
aimed to ease future foraging actually hurt P11’s ability to 
collaborate on a task:  

P11: “some people that feel that everything that is committed 
should compile and have running tests all the time… I had 
something that wasn’t compiling that I needed to share with 
another developer.”  

Note that all these tensions are less about the prefer-
ences of individual developers, and more about costs and 
values in different foraging situations. Any attempt by the 
information producer to decrease the cost (or increase the 
value) for one foraging activity ended up disadvantaging 
another foraging activity, thereby making it hard for devel-
opers to balance these tensions and to meet the needs of all 
future foraging and current task activities.  

Insight #5: Participants’ commit practices were largely sound: 
they aimed to increase the value or lower the costs for future 
foraging activities. But, they failed to balance the tensions be-
tween different foraging situations: 1) large vs. small commits, 
2) detailed vs. concise commit messages and 3) current task 
completion vs. supporting future foraging. 

Implication for tools:  Unfortunately, IFT has little to offer 
by way of solutions for solving these tensions, but it offers 
some insights on how tools can improve costs and values 
for the future. For example, the design patterns catalog in-
clude patterns such as “rename methods” or “extract meth-
ods” that modify existing information in ways that could 
ease future foraging. The patterns could be lifted up to 
more general “extract patches” and “rename patches” to 
also include commits and commit messages. In fact, tools 
like HistoRef implement the extract patch idea for commits 
to refactor existing commits. But it is an open problem how 
tools should support creation of new commits in VCS.  

8 DISCUSSION 
In this section, we consider our results from a higher-level 
view. 

8.1 IFT and the three-lens model 
The three foraging activities we have considered in this pa-
per add "hows" to the conceptual three-lens model pre-
sented in our earlier work [12] and summarized in Table 4. 
Specifically: 1) for the "awareness" lens, participants used 
lightweight foraging to learn about latest changes, 2) for the 
"archaeology" lens, participants looked for specific infor-
mation using traditional foraging activities, and 3) for the 
"immediate" lens, participants looked into how they could 
create commits that will optimize costs and values for the 
future. These results not only ground the three-lens model 
in IFT’s theoretical foundations, but also reveal new oppor-
tunities for tools in the awareness and immediate lens (e.g., 
bulk change awareness, balancing tensions), possible ways 
forward toward realizing those opportunities (namely, via 
IFT’s design patterns) and some open research problems. 

8.2 Open problem: IFT for change awareness  
In change awareness foraging, participants were con-
cerned with consuming as much high-value changes 

within limited time (or cost)—an optimization problem 
consistent with IFT. One mechanism in which they accom-
plished this optimization was by carefully choosing what 
prey to consume. Several tools and IFT patterns address 
this kind of problem—namely, helping developers choose 
which high value information to consume. However, lim-
ited support exists for another of their foraging mecha-
nisms, namely lightweight foraging. 

We advocate for research harvesting design patterns 
from existing tools in diverse change awareness domains 
to be added to the IFT design patterns catalog [34], as a way 
forward towards a more coherent body of practical 
knowledge about supporting people's information forag-
ing. For example, our results revealed the reliance on com-
mit messages or email subject lines (instead of entire com-
mits) for change awareness foraging. This behavior is re-
lated to news foraging, where people heavily relied on 
headlines and summaries instead of reading entire news ar-
ticles [49]. Such efforts provide benefits such as richer ex-
amples for the development of specific design patterns, 
and perhaps more importantly, help identify gaps in the 
design pattern catalog. 

8.3 Open problem: the producer side 
One of the new insights IFT brings to version control activi-
ties concerns information producers. Participants as infor-
mation producers, recognized that the way information is 
created can impact how easy it will be to forage in that in-
formation in the future. Therefore, they attempted to create 
information in ways that will meet future foraging needs 
(even if that meant extra cost in creating that information).  

Lens Key
activities New insights from IFT

Aw
ar

en
es

s l
en

s

Staying up to 
date with the 
recent changes 

• Traditional dietary choices, suggestive of 
IFT’s applicability to change awareness

• Lightweight foraging, future vetting and 
future cost-value considerations different 
from traditional foraging. 

• Existing design patterns leverageable for 
selective, individual diet selection in tools. 

• Open problem: Extracting new design 
patterns from other change awareness 
domains to be added to Nabi et al.’s list [43].

• Open problem: Better understand 
cost/value aspects of lightweight and future-
oriented foraging in change awareness.

A
rc

ha
eo

lo
gy

 le
ns

Foraging for 
specific 
information, 
mostly in old 
commits

• Traditional foraging behaviors, suggesting 
IFT might apply to these activities.

• Traditional IFT’s improvements [40] 
(accurate cost/value estimation, improve 
actual cost/value estimates) to address 
participants’ barriers to foraging. 

• Existing design patterns [43] leverageable 
for addressing barriers and improving tools.

Im
m

ed
ia

te
 le

ns

Creating 
commits and 
commit 
messages

• Creating patches and cues to increase value / 
decrease cost for future foragers. 

• Conflicting needs for different foraging 
situations, leading to tensions: 
• Large vs. small commits
• Detailed vs. concise commit messages
• Current task completion vs. support 

future foraging activities
• Open problem: Understand and balance 

tensions (e.g., via Social IFT) to build tools 
to support committing changes. 

TABLE 4. RELATIONSHIP TO THE THREE-LENS MODEL. 
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 However, participants’ attempts at producing forageable 
information were largely unsuccessful, because they failed 
to balance tensions arising from conflicting needs (e.g., be-
tween different foragers, between different future foraging 
situations or between current and future tasks). Balancing 
these tensions is important to meet diverse foraging needs 
of developers, yet IFT provides little intuition as to how de-
velopers (or tools) can achieve this balance.  

Our results call for further enquiries into the producer 
side of information and how we can better support produc-
ers in creating forageable information. IFT’s notions of costs 
and values could explain phenomena in these areas also, 
however, traditional IFT will not suffice.  

Traditional foraging mostly treats predators to be solitary 
foragers: while this view sufficiently captures certain kinds 
of foraging in SE (e.g., individual developer foraging in 
code), it is not sufficient for collaborative situations (e.g., 
there is no construct for team). However, social IFT, a variant 
of IFT for cooperating groups, fills this gap.  

Social IFT has allowed researchers to leverage the intelli-
gence of the crowd in social tagging systems [44], to under-
stand stakeholder interactions in requirements engineering 
[2] and to balance the tradeoffs between small vs. large open 
source projects to predict optimal team sizes [3]. Given that 
social IFT acknowledges, and has been applied to, tensions 
that arise in foraging situations, we believe that it might be 
a feasible framework for version control tensions also.  

However, to make progress in this direction, research is 
needed to operationalize Social IFT to SE situations, given 
that Social IFT has not yet been widely operationalized. 
Also, Social IFT itself is nascent: therefore, research needs to 
start extending the theory’s models for various collaboration 
situations as they arise in different domains. Addressing 
these issues could eventually inform tool builders in new 
ways about designing VCS tools for information producers. 

8.4 Threats to validity 
Every study has threats to validity.  

One potential threat to external validity (the generality 
of our findings beyond this study [51]) is that our inter-
views included only 14 participants. We countered this 
threat in part by conducting a survey with 217 program-
mers from diverse backgrounds. Even so, the interview 
and survey responses could be biased due to limitations of 
human memory, the tools participants had used, and/or 
that their experiences probably did not cover all possible 
use cases. Therefore, our results might not generalize to all 
VCS tools, information-seeking strategies and situations.  

Another potential threat to external validity is our 
study’s focus on information foraging in only one environ-
ment, namely version control systems. Developers gather 
information from other environments also, and further 
studies would be needed to generalize our findings to 
other environments (e.g., bug repositories, emails) and to 
how developers synthesize information across them.  

Another type of threat is reliability; a study is reliable if 
it yields the same results when conducted by other re-
searchers [51]. One potential threat to reliability is the con-
venience and self selection (internet) sampling we used to 
recruit interview and survey participants respectively. 

Other researchers might not reach the same kinds of par-
ticipants using these methods. 

Another potential threat to reliability is that we re-ana-
lyzed data collected for a different purpose, not specific to 
IFT. As a result, some foraging-specific phenomena (e.g., 
cost-value considerations) might not have surfaced in our 
data, but might surface in a different study conducted with 
IFT in mind.  Also, since we introduced IFT much later, we 
could not triangulate our IFT-based interpretations with 
the survey data. Only future studies leveraging IFT to VCS 
design can confirm the reliability of our findings.  

Finally, this paper is a theoretical treatment of infor-
mation seeking in version control systems; it does not im-
plement or empirically evaluate the predictions and rec-
ommendations of the theory. However, this threat is par-
tially addressed by other papers that have leveraged IFT’s 
predictions for SE tool building (e.g., [38], [39], [53]). 

9.CONCLUSION 
In this paper, we have used an information foraging theory 
perspective to reveal new insights into developers’ infor-
mation seeking in VCS. Among the key results were: 
• Participants engaged in traditional foraging behavior 

while foraging for specific commits. Here, IFT insights 
from earlier work can inform the design of VCS tools to 
support such foraging activities.  

• To keep up with the latest changes, participants used 
lightweight foraging strategies to meet their highly selec-
tive and personalized information needs. This calls for 
change-awareness tools that provide low-cost af-
fordances for less-detailed understanding of specific 
changes of interest. 

• When committing their changes, participants attempted 
at the same time to ease future foraging activities. How-
ever, evidence suggests that they were not successful. 
One reason may be lack of awareness of the tensions in-
volved in future foraging, such as individual vs. team, 
immediate vs. later, and different foraging strategies. 
This issue presents an open opportunity for VCS tools 
aiming to support developers' VCS foraging activities. 

• Viewed from an IFT perspective, the participants’ forag-
ing adds “hows” to the “whats” in the conceptual three-
lens model proposed in our earlier work [12], revealing 
implications for designing tools for each of these lenses. 
Finally, our results provide some evidence that IFT’s 

scope extends to the version control domain, but two open 
problems call for further research in this area. First, partici-
pants’ lightweight change-awareness foraging was subtly 
different from traditional foraging; this calls for further in-
quiry into developers' lightweight foraging strategies for 
tasks like these. Second, our results reveal several "future-
foraging" tensions developers were not successful in han-
dling. These results open new avenues for research in the 
cost-value aspects of foraging in VCS environments, from 
both IFT and social IFT perspectives. 
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