
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, MANUSCRIPT ID 1

Version Control Systems:
An Information Foraging Perspective

Sruti Srinivasa Ragavan, Mihai Codoban, David Piorkowski, Danny Dig, Margaret Burnett

Abstract—Version Control Systems (VCS) are an important source of information for developers. This calls for a principled
understanding of developers’ information seeking in VCS—both for improving existing tools and for understanding requirements
for new tools. Our prior work investigated empirically how and why developers seek information in VCS: in this paper, we
complement and enrich our prior findings by reanalyzing the data via a theory’s lens. Using the lens of Information Foraging
Theory (IFT), we present new insights not revealed by the prior empirical work.

First, while looking for specific information, participants' foraging behaviors were consistent with other foraging situations in SE;
therefore, prior research on IFT-based SE tool design can be leveraged for VCS. Second, in change awareness foraging,
participants consumed similar diets, but in subtly different ways than in other situations; this calls for further investigations into
change awareness foraging. Third, while committing changes, participants attempted to enable future foragers, but the
competing needs of different foraging situations led to tensions that participants failed to balance: this opens up a new avenue
for research at the intersection of IFT and SE, namely, creating forageable information. Finally, the results of using an IFT lens
on these data provides some evidence as to IFT's scoping and utility for the version control domain.

Index Terms—Human factors in software desgin, Software engineering, Version control

—————————— u ——————————

1 INTRODUCTION
OFTWARE ENGINEERING (SE) is an information-in-
tensive activity. Empirical studies have revealed that, as

part of their day-to-day software engineering activities, de-
velopers ask several questions from “why is this code imple-
mented this way?” to “what are other team members working
on?” [27], [28], [52]. To answer such questions, developers
seek information from various sources, such as the web,
bug repositories, documentation or even other team mem-
bers. One such information source is the project’s version
control system (e.g., Git, Subversion, Mercurial) [28].

Version Control Systems (VCS) are a rich source of in-
formation: they contain the entire development history of
a project. SE researchers routinely leverage this rich infor-
mation to multiple ends, such as to predict bugs [50],
merge conflicts [6] and to recommend APIs to program-
mers [36], to name a few. However, even though studies
(e.g., [28]) reveal that developers do seek information in
VCS, surprisingly little research focuses on the details:
what information they seek, how and why. As a result, as
SE researchers, we are limited in our understanding of de-

velopers’ activities and, as tool builders, we do not under-
stand how well existing VCS tools support developers’
needs and where new tool opportunities lie.

To address this gap, our prior empirical work [12] char-
acterized the motivations, strategies and barriers to devel-
opers’ information seeking in VCS, lifting the results to a
three-lens model for software history. In this paper, we
complement our prior empirical work and overlay a new
perspective—that of a theory.

We re-analyze empirical data from our prior study [12]
from the perspective of Information Foraging Theory (IFT)
to gain fresh insights into how developers seek information
in VCS and how VCS tools can better aid developers.

1.1 Why Theory?
Our end goal is to better support developers’ information
seeking. For that, we need to build good tools that will solve
the right problems. Empirical studies, such as our prior
work [12] are great for revealing phenomena (including
problems), but they provide limited justifications for why the
phenomena/problems happen. Theories, on the other hand,
provide these justifications. This explanatory power of the-
ories can help tool builders identify the right problems—not
just the symptoms—that need to be solved. Further, because
theories can tell why something happens, they can also rea-
son in the opposite direction to predict what will happen in
a given situation [22]. This predictive power can be lever-
aged for engineering good tools: for example, tool builders
can theoretically reason about how a user will use a tool, or
evaluate early on whether and why a tool will work (or
not)—even before actually implementing the tool [22].

xxxx-xxxx/0x/$xx.00 © 200x IEEE Published by the IEEE Computer Society

S

————————————————
• Sruti Srinivasa Ragavan is with the School of Electrical Engineering and

Computer Science at Oregon State University, Corvallis, OR 97331. E-
mail: srinivas@eecs.oregonstate.edu.

• Mihai Codoban is with the Tools for Software Engineers group at Microsoft,
Redmond, WA 98052. Email: micodoba@microsoft.com.

• David Piorkowski is with IBM Research AI at IBM Thomas J Watson Re-
search Center, Yorktown Heights, NY 10598.
Email: david.piorkowski@ibm.com

• Danny Dig is with the School of Electrical Engineering and Computer Sci-
ence at Oregon State University, Corvallis, OR 97331.
E-mail: digd@eecs.oregonstate.edu.

• Margaret Burnett is with the School of Electrical Engineering and Com-
puter Science at Oregon State University, Corvallis, OR 97331.
E-mail: burnett@eecs.oregonstate.edu.

2 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, MANUSCRIPT ID

1.2 Why IFT?
Information Foraging Theory (IFT) exemplifies the explan-
atory and predictive powers a good theory brings. IFT has
successfully explained people’s information seeking behav-
iors in various domains (including SE [29], [30], [32], [37])
and its predictive powers have guided the practical design
and evaluation of various tools and information environ-
ments, such as websites and web search engines [10], [11],
information visualizations [8] and SE tools [10], [39]. These
prior successes of IFT in diverse domains encouraged our
choice of IFT for the VCS domain.

We also chose IFT because of its generalizability. Suc-
cessful solutions from one domain can be abstracted into
generic IFT vocabulary as design principles or patterns
(e.g., web design guidelines [53], principles for IDE navi-
gations [21], [41], SE tool design patterns [15], [34]) to be
reused in other domains. For this reuse, the phenomena in
the “target” domain have to be framed in an IFT’s vocabu-
lary: that is what this study achieves. We frame version
control activities in an IFT vocabulary so as to reuse exist-
ing IFT design patterns, without reinventing the wheel.

1.3 Does IFT apply to VCS?
Prior research has not applied IFT to the VCS domain and
so one of the key goals of this paper is to evaluate the scope
of validity of IFT in the VCS domain. By applying IFT to
VCS, we can evaluate how well IFT is able to explain and
predict phenomena related to version control foraging, and
thereby, we can gather evidence as to whether IFT’s scope
extends to version control activities (or not).

1.4 Contributions
The key contributions of this paper are:
• IFT-based reanalysis of data from [12] to gain fresh in-

sights into how developers seek information in VCS,
• evidence of the utility and appropriateness of apply-

ing IFT to the domain of version control.
• IFT-informed design solutions to address the barriers

to developers’ information seeking in VCS,
• discussion of new avenues for IFT research motivated

by version control activities.

2 BACKGROUND
Information Foraging Theory (IFT) [44] is a theory of how
people seek information. Rooted in evolutionary psychol-
ogy, IFT assumes that human information-seeking abilities
have evolved similar to animals’ food-foraging strategies.
Therefore, to explain information seeking, Pirolli and Card
turned to animals’ food foraging behaviors, eventually de-
riving IFT from the optimal food foraging theories [54].

2.1 Constructs
IFT uses a small set of constructs (summarized in Table 1).
Predator is the person (e.g., developer) hunting for infor-
mation or prey (e.g., bug location). Just like animals hunt
for their prey in foraging grounds, in IFT, a predator for-
ages for prey in the information environment (e.g., VCS).

According to IFT, the information in the environment
occurs in patches (e.g., commits, branches, files) and the
patches contain information features (e.g., words, colors).

The prey is actually a set of information features contained
in one or more patches. A predator can go from one patch
to another via a link (e.g., scrolling to go from one commit
to another, clicking on commit message open a commit).

Central to how predators forage for prey are the notions
of cues and scent. Cues are information features associated
with links: they tell the predator what information might
be found at the other end of the link (e.g., text on a hyper-
link, icons, file names, commit messages). Just as animals
sniff at various cues (e.g., hoofprints, fur bits) and take the
path with the strongest scent of prey, IFT posits that human
predators will also attend to use the scent from the cues to
guide them to their prey.

2.2 Cost-value proposition
More formally, according to IFT, a predator treats the infor-
mation foraging problem as an optimization problem, try-
ing to get to the prey in the most efficient manner.

In most information-rich environments (e.g., VCS), a
predator has several available foraging choices (e.g., sev-
eral possible patches s/he can go to, several links s/he can
follow), each bringing different informational value and at
different cost (i.e., time, no. of clicks, cognitive costs). IFT
says that, among these choices, a predator will choose the
option that will maximize the rate of gain of valuable in-
formation (or the value-to-cost ratio).

In reality, however, the predator often does not know
the actual value or cost associated with an action (e.g., if a
predator has never visited a commit, s/he does not know
what value it exactly has). Therefore, to make foraging de-
cisions, the predator guesses the values and costs based on
cues available in the environment. This value-cost estima-
tion is what constitutes scent, i.e.:

𝑃𝑟𝑒𝑑𝑎𝑡𝑜𝑟(𝑠	𝑐ℎ𝑜𝑖𝑐𝑒 = Max(scent) = 𝑀𝑎𝑥 ;
Expected	value
𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑	𝑐𝑜𝑠𝑡 D	

This equation, called IFT’s cost-value proposition, is the
mechanism by which IFT makes predictions about how a
predator will forage.

As we will see in this paper, we can use this cost-value
proposition to: 1) understand how developers will forage,
2) evaluate and design tools and 3) gather evidence to as-
sess the scope of IFT’s validity in VCS domain.

TABLE 1: CONSTRUCTS OF IFT

Construct Definition Example in VCS
Predator Person foraging for

information Software developer
Prey Information that the predator

is seeking When was this bug
introduced?

Information
environment Environment where the

foraging happens Version control system
Patch Locations in the environment,

contains information features. Commit,
list of commits

Link Connection between patches Clicking on (link) commit
message opens the commit.

Cues Provide hints about what
information might be at the
other end of the link.

Words in commit
messages, timestamp

Scent Predator’s estimate of value /
cost ratio (in their heads) Similar words =

higher scent

RAGAVAN ET AL.: VERSION CONTROL SYSTEMS: AN INFORMATION FORAGING PERSPECTIVE 3

3 RELATED WORK
3.1 Information Foraging Theory
Pirolli and colleagues derived IFT to explain information
seeking in large document collections [42] and information
visualizations [8]. They then applied IFT extensively to the
web domain, to explain and predict people’s web browsing
behaviors [10] and to evaluate websites [9], [11], eventually
laying the foundations for web usability [53].

In the software engineering (SE) domain, Ko et al. first
suggested IFT as a theory for developers’ information
seeking [27]. Ever since, researchers have applied IFT to ex-
plain information-seeking in various SE tasks, such as re-
quirements engineering [37], debugging [31], [32] and pro-
gram maintenance [40]. Recent work has also investigated
programmers’ foraging among program variants during
exploratory programming [45], [46].

Although the majority of IFT work in SE is on explain-
ing developer behavior via empirical studies or computa-
tional models, researchers have also leveraged IFT for SE
tool building: Piorkowski et al. adopted PFIS2, an IFT com-
putational model, to recommend methods to programmers
[39], Henley et al. leveraged IFT to design IDE navigation
affordances [20] and Perez et al. used IFT to guide the de-
sign of Pangolin, a program comprehension tool [38].

Researchers have also gone beyond specific tools and
lifted IFT’s insights to generic and reusable design princi-
ples and patterns. Notable examples include a community-
curated IFT design patterns catalog for SE tools [16, 34],
principles for IDE navigation design [20] and Piorkowski
et al.’s four fundamental ways of improving tool design
[41]. These patterns and principles are framed in generic
IFT vocabulary and are transferable to other domains.

This paper builds on prior IFT research, particularly the
design patterns catalog [34], to understand developers’ for-
aging in VCS and to improve VCS tools. Along the way,
this paper also evaluates the scope of IFT in the version
control domain (where IFT has not been applied before).

3.2 Information seeking in VCS
SE practitioners have used VCS tools for over three dec-
ades, but few studies have investigated how developers
forage in version control history. Our prior study [12], on
which this paper is built, is one of the first studies to do so.
However, researchers have investigated and aimed to sup-
port specific version control activities, which we summa-
rize in the rest of this section.

3.2.1 Change awareness
Empirical studies have looked into developers’ collabora-
tive needs in SE, including change awareness. Notable pa-
pers in this area include Guzzi et al.’s study of developers’
collaboration practices [18], Gutwin et al.’s categorization
of general vs. specialized change awareness needs [16] and
DeSouza et al.’s characterization of developers’ forward
and backward impact management needs [14].

Based on these empirical studies, researchers have also
built tools to meet developers’ collaboration needs. Some
tools, such as ProjectWatcher [17] and Bellevue [18], sup-
port developers’ general change awareness, while others,

such as FastDash [4], Cassandra [23] and Palantir [48], spe-
cifically focus on conflict detection and awareness.

3.2.2 Locating specific commits
Studies have revealed that developers ask several ques-
tions about code (e.g., why is some code the way it is),
(e.g., [52], [28]), but research has largely overlooked ques-
tions such as: what kinds questions do developers ask in
VCS, how do they find answers to those questions or how
to support them. A notable exception is [55], in which Tao
et al. discuss how developers understand the changes in a
commit and how tools can aid this activity. Our prior study
[12] also began investigating these activities.

3.2.3 Committing changes
In the realm of committing changes, some studies have at-
tempted to understand the nature of commits developers
create. For example, Alali et al. investigated the character-
istics of a typical commit [1], Brindescu et al. [5] investi-
gated the commit sizes made by Git and SVN users,
Kawrykow and Robillard studied commits to understand
the nature of changes made on a project [24] and Kirinuki
et al. investigated tangling of changes in commits [26].

Other researchers have used commit characteristics,
such as commit sizes [33], commit message content [25] or
pull request information [56] to predict the nature of
changes in the commit(s).

Even others have attempted to help developers in the
commit process, such as by automatically generating com-
mit messages [13]. Yet, these studies do not look into how
developers create commits, and why.

In summary, existing literature is largely focused on
specific version control activities, in contrast, we treat ver-
sion control activities as a whole. We also differ from exist-
ing work in that we bring to version control activities a the-
ory: as a result, we emphasize on whys: why developers
need the information they are looking for, why they go
about looking for it the way they do, why they face chal-
lenges and why existing tools meet (or not) developers’
needs. Answering these why questions are important for
tools builders, who might otherwise make incomplete or
inaccurate assumptions about developers and their needs.

4 METHODOLOGY
As mentioned earlier, this paper presents the results from
an IFT-based re-analysis of the data from a prior study [12].
Therefore, we first discuss the methodology of the original
study and then discuss the reanalysis procedure.

4.1 Prior study: Interviews
We recruited 14 developers from across 11 companies via
convenience sampling. On an average, participants had
~13 years of professional software development experi-
ence. They used diverse VCS (Git, SVN, TFS, Bazaar) and
clients (e.g., command line, Github, Stash).

We used semi-structured interviews: we started with a
fixed set of anchoring questions (listed in the study’s web-
site [57]), but followed interesting tangents based on par-
ticipants’ responses [51]. Each interview lasted 40-90
minutes. Each participant received $50 in compensation.

4 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, MANUSCRIPT ID

For analysis, we used qualitative methods. Since ours
was the first study on the subject, we did not have a prior
codeset. So, we used open coding to build our codeset, fol-
lowing Campbell et al.’s advice [7] for segmentation, code-
book evolution and inter-rater agreement issues.

First, we transcribed the interviews. We then segmented
the transcripts topically: each time the interviewer asked a
new question, or participant changed the topic of the con-
versation, we created a new segment. Since segmentation
required subjective interpretation and contextualization of
the participants’ responses [7], the second author, who also
conducted the interviews, performed the segmentation.

After all interviews were transcribed and segmented,
the first and second authors coded the transcripts proceed-
ing one at a time. During each coding session, the two cod-
ers independently coded each segment, allowing multiple
codes per segment. Since a prior code set was not available,
the coders coded participants’ motivations, strategies and
barriers using their own code names and schemes.

After independently coding a transcript, the coders
compared their code sets. First, they resolved disagree-
ments in code names: for example, one coder used a code
name “why is this this way”, while the other coder used the
name “change rationale”; eventually, the coders agreed on
the name “why is this this way” and updated both the code
set and the coded transcripts. After such renaming, the
coders received an inter-rater agreement (IRR) of 65% (Jac-
card index) averaged across all sessions. These IRR levels
are consistent with the measures Campbell et al. report [7].

The coders then resolved any disagreements in code as-
signment via “negotiated agreement”, discussing the code
assignment until they reached agreement [7]. Along the
way, they added new codes, removed or merged existed
codes and disambiguated code descriptions. For such
codebook changes, the coders recoded previously-coded
interviews to reflect the updated code book.

With such a process, the codebook changed at the end
of each coding session. The final codebook from each ses-
sion became the starting codebook for the next session.
Consistent with prior studies involving semi-structured in-
terviews [7], it took 10 interviews for the codebook to sta-
bilize. The final codebook is provided in [57].

At the end of all coding sessions, the coders achieved an
IRR of 97.4%. The coders then grouped the codes into
larger emerging themes.

4.2 Prior study: Survey
Interviews provided rich data about VCS usage, but only
from a small sample size. To validate and quantify our in-
terview findings with a broader demographic, we de-
signed a survey based on our interview findings. The sur-
vey consisted of multiple-choice questions (except for one
open-ended question on commit messages). For each mul-
tiple-choice question, we included an “other” field to cap-
ture any new data that did not surface in the interviews.
The survey questions are available on [57].

We advertised the survey via Reddit and Twitter. Of the
217 survey repondents, 80% had > 5 years of software de-
velopment experience and 84% were from the industry.

As mentioned earlier, the survey contained an open-

ended question on what a commit message should contain.
We analysed the responses to this question qualitatively,
via open coding. The first and second authors coded the
data and, via negotiations, reached 93.5% agreement. This
codeset is also found in the accompanying website [57].

4.3 Re-analysis procedure
For the reanalysis, we mapped high-level codes (code cat-
egories) from the prior study [12] to an IFT vocabulary.
Specifically, (1) motivation codes from [12] were about why
developers seek information in VCS; in IFT, these reasons
are called foraging goals. (2) Strategy codes were about how
participants foraged from the perspectives of costs and val-
ues, patches, cues and/or diet and (3) enabler codes were
what helped them do so; we mapped both these codes to
foraging strategy codes that participants adopted and/or
that tools supported. (4) Barrier codes captured partici-
pants’ difficulties and (5) wishes codes were what partici-
pants wanted (but didn’t have), so we mapped both to for-
aging barriers. The above list is the entire list of high-level
codes from the prior codeset, and the low-level codes did
not change. Since coding in [12] was done on the low-level
codes, no recoding was necessary. The entire codeset and
code mappings are available in the study’s website [57].

This codeset mapping resulted in coded data instances
that correspond to IFT (e.g., patches, diet, foraging goals).
Given this, the rest of the re-analysis was to use the in-
stances in the data of IFT concepts predicted using the the-
ory’s predictions, and to analyze whether and how these
predictions were realized in the data.

5 RESULTS 1. CHANGE AWARENESS FORAGING
Participants engaged in three main foraging activities: 1)
foraging for change awareness, 2) foraging for specific infor-
mation and 3) creating commits with future foraging in mind.
This section discusses the first of these, and Sections 6 and
7 discuss the other two.

5.1 Change awareness foraging: a diet problem
Change awareness—staying up-to-date with the latest
changes on a project—has previously been established to
be important to developers (e.g., [12], [16], [28]), who tend
to use version control systems to achieve it [12]. For our
participants, their change awareness efforts amounted to
solving what IFT terms the “diet problem” [43].

The IFT diet problem is a predator deciding what prey,
among all available preys, he/she should consume as part
of his/her “information diet” to get the maximum value
per cost [43]. Applied to change awareness, the IFT diet se-
lection problem is a developer selecting the changes to gain
awareness about, within the time s/he want to spend on it.

IFT’s diet models predict for optimal diet selection: a
predator will choose to consume high value prey and ex-
clude low value prey, even if the latter might be abundant
and/or cheap to consume. This pattern has indeed been
shown in other software engineering settings [40], and in
our participants' foraging also it appeared. As Fig. 1 shows,
participants did not waste time consuming all available
changes; they selected only the changes most relevant to
them to be part of their information diet.

RAGAVAN ET AL.: VERSION CONTROL SYSTEMS: AN INFORMATION FORAGING PERSPECTIVE 5

P12: “I do not read every single commit … If something does
not look as [if] it is needed, I shall ignore it.”

Of course, what was relevant varied for each particular de-
veloper in each particular situation.

Insight #1: Participants’ dietary choices were consistent with
traditional IFT diet models. This provides evidence that IFT
might apply to change awareness foraging, and allows prior
IFT results on diets to be leveraged for change awareness tools.

Implication for tools: Since the selection of diet in change
awareness matched well to other IFT work on diet selec-
tion, tool builders can leverage IFT-oriented design solu-
tions to support diet selection, such as the IFT-based design
patterns compiled by Nabi et al. [34]. These design patterns
crystallize decades of prior IFT research, abstracting de-
signs in multiple successful SE tools so that they can be re-
used in tools for other similar situations, including for
change awareness diet selection.

For example, the above compilation provides patterns
such as specification matcher, notifier, dashboard, struc-
tural relatedness, recommendations and impact location
that tool builders can leverage to help developers locate in-
teresting (or high value) changes. There is already some ev-
idence that doing so is appropriate for change awareness:
several existing change awareness tools, such as GitHub’s
watch, Palantir’s notifications and FastDash’s dashboard,
that are empirically shown to be successful, already imple-
ment some combination of these design patterns.

5.2 Change awareness’s foraging: differences from
many other SE foraging situations

Change awareness foraging also differed in nuanced ways
from traditional notions of foraging.

Difference #1: The prey is easy to find. In traditional forag-
ing, the prey is often elusive. For example, a developer
might forage through a large codebase, seeking prey from
multiple places in the code, using a combination of cues
and experience to find relevant locations, with many
deadends likely along the way (e.g., [42]). In contrast, in
VCS, the prey is simply “what changed?”, which most VCS
environments present to developers with a single user ac-
tion (e.g., via a pull action).

Difference #2: Foraging to ease future foraging costs. Since
the prey is so easy to find, why do developers need to for-
age at all in VCS tasks? The answer for our participants
was that, in their change awareness foraging, they foraged
to ease future foraging costs, mostly in the following two
ways. They either foraged the changes to understand
which ones will and will not require them to forage for its
details at a future time (next, or much later); or, they for-
aged to avoid additional costs in future foraging situations
(e.g., avoid merge conflicts, which can impose extensive
foraging costs to resolve). For example, P4 foraged to avoid
future merge conflicts:

P4: “If I … need to be more cautious, then I’ll do a TkDiff <on>
the files that are most crucial, see what changes have been
made since I last looked.” (emphasis added.)

Difference #3: Consume prey now, or save it for later? The
third difference was in when predators consumed the prey.
In traditional notions of foraging, a predator finds and con-
sumes the prey within a task context; e.g., when debug-
ging, a developer finds the bug location(s) and works with
the found code to fix the bug. In contrast, during change
awareness, participants used the found prey mostly to
make timing decisions on when to consume it, based on
the value/cost of now vs. later. For example, sometimes
they consumed the prey immediately, other times they de-
cided it could be consumed as part of a later diet (which
they might actually consume later or not). P12 explains
these value/cost decisions on the change awareness prey
which arrived via his emails:

P12: “I go through email typically twice a day... [But] I have a
couple of folders of email that, if I get any email, I’ll look at it
fairly quickly, within like 30 minutes or so… those are changes
that are introduced to an important repo and I want to know fairly
quickly if something happened”. (emphasis added).

Difference #4: Lightweight. The final difference was in
how participants allocated their time. In other SE research
on foraging, the predator may be required to stubbornly
pursue a specific prey often at high costs, as the needed
prey may only exist in a specific patch (e.g., exact location
of a bug). However, in change awareness situations, partic-
ipants often had to become aware of multiple high-value
changes. As a result, they adopted a lightweight approach:
for each relevant change, they mostly spent only low costs,
to gain only incomplete or “partially thorough” (P1) un-
derstanding of changes.

P6: “[I] look at the history really quick, see what has happened.”

P9: “... each commit that you care about sends you an email,
just scan the subject lines … you can kind of see the direction that
the code base is going.” [emphasis added in both quotes].

Insight #2: Change awareness foraging showed several differ-
ences from most SE foraging:
1) the prey is easy to find,
2) much of the foraging is to ease future foraging,
3) actually prey consumption might be immediate or later, and
4) foragers adopted a lightweight approach.

Tool design implication: One view of the low-cost light-
weight strategy supported so well by VCS tools is as a

0%

20%

40%

60%

80%

100%

A
ff

ec
tin

g
m

y
cu

rr
en

t t
as

k

B
re

ak
in

g
ch

an
ge

s

A
ff

ec
tin

g
sp

ec
ifi

c
co

de

en
tit

y

A
ll

ch
an

ge
s

on
 th

e
pr

oj
ec

t

%
 o

f p
ar

tic
ip

an
ts

 (N
=2

17
)

Not Important

Of Little Importance

Moderately Important

Important

Very Important

Fig. 1. Change awareness diet. Participants’ change awareness diets
were highly selective (i.e., they did not want to learn about all
changes) and personalized (e.g., changes affecting my task).

6 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, MANUSCRIPT ID

model of good design for other foraging tools. Version con-
trol tools allow developers to easily maximize their value-
to-cost ratio by enabling them to forage for high value in-
formation across multiple patches at very low cost. Specif-
ically, the cost of gaining high-value information in a patch
(e.g., reading commit message summary) as well as the
cost of going from one patch to another (e.g., by scrolling
through a list) are both low to enable this foraging. Such
low costs in the environment can be viewed as an examplar
for other SE tools (e.g., for debugging, IDEs) to strive for in
supporting similar foraging needs in other SE tasks.

5.3 An unfulfilled foraging need: bulk change
awareness

A foraging problem participants' version control tools did
not address was their need for bulk change awareness. Par-
ticipants' need for change awareness "in bulk" arose when
they had too many changes to catch up with (e.g., after a
vacation, or in large open source projects). In these cases,
even though participants spent even less than usual time
foraging within each commit, their overall foraging costs
were high because of the high volume of commits.

The situation was so burdensome that some partici-
pants came up with explicit foraging strategies just to deal
with it. Some participants kept up with commits and
emails even during vacations:

P3: “Look at emails to keep track… while on vacation.”

Others who caught up with changes after the vacation,
skimmed pull requests and release tags (groups of com-
mits) which were far lesser in number than commits.

P12: “I found that Github pull requests are one of the most
helpful ways to do that… I’ll look at all the pull requests that
have been opened or changed since I was out…I’ll go quickly
through the merged and closed ones just to see what happened,
then save the still opened ones for later...”

Even preferred to meet with other team members (adding
to the team member’s cost) to catch up with changes in-
stead of foraging through all that data:
P6: “...If I am just getting back and there has been a lot going on, I
will usually prefer to have a one-to-one meeting with various individ-
uals that are involved ...” (Emphasis added.)

Implication for tools: Our results suggest that tools for
change awareness should facilitate deferred prey con-
sumption (e.g., implement the cart pattern for developers
collect to changes for future vetting), help developers esti-
mate the future value of change awareness (e.g., based on
an open issue or upcoming feature) and aid bulk change
awareness. Existing tools have largely overlooked these as-
pects, leaving gaps for new change awareness tools to fill.

6. RESULTS 2: FORAGING FOR SPECIFIC
INFORMATION

6.1 Foraging Traditionally for Specific Information
When looking for specific information, our participants’
foraging needs (Table 2), are consistent with questions
developers asked in other foraging studies in SE [31], [40],
[46] (e.g., where is the bug located?, what does this code

do?, what are the dependencies?, where shoud I reuse code
from?). Thus, in seeking answers to those questions, our
participants engaged in foraging behaviors consistent with
those in prior studies. For example, consider P3’s foraging
behaviors during a debugging task:

P3: “[I] …looked at commits for the last couple of days, looked
at a particular solution, read the messages, read the diffs, talked
to people.”

Here, the foraging activities P3 mentions fall into tradi-
tional foraging categories:

• enrichment, to modify the environment for conven-
ient foraging (e.g., filtering),

• between-patch foraging, to choose a profitable patch to
forage in next (e.g., read commit message to choose
which commit to go to), and

• within-patch foraging, to assimilate the information
within a patch (e.g., read diffs to grasp a commit).

This similarity with traditional notions of foraging sug-
gests that, to support foraging for specific information,
VCS tool builders can harvest prior IFT tool design pat-
terns or improvements. To demonstrate the feasibility and
utility of such transfer of results, we employ Nabi et al.’s
design patterns catalog [34] to address existing problems
in VCS (listed as barriers in Table 3).

Insight #3: While foraging for specific information, partici-
pants’ foraging goals and activities were consistent other kinds
of foraging in SE, suggesting that IFT might apply to these
kinds of version control activities.

We place our suggestions under the four fundamental
ways in which, according to IFT, tools can support foragers
in their traditional foraging activities [41]:

1) helping developers accurately estimate costs,
2) helping developers accurately estimate values,
3) reducing actual foraging costs, and
4) increasing actual value in the environment.

6.2 IFT-Informed VCS design: supporting
developers’ estimates of cost and value

In IFT, a predator’s ability to forage efficiently depends on
how well he/she can estimate costs and values for various
actions. In our study also, accurate estimates allowed par-
ticipants to make informed and efficient foraging choices,
whereas inaccurate estimates sometimes caused them to
make poor foraging choices, leading to disappointment.

TABLE 2. FORAGING FOR SPECIFIC INFORMATION
(TRADITIONAL FORAGING BEHAVIORS)

Foraging
 goal Definition Where participants

foraged
Selectively
compose
changes

Find specific commits (e.g.,
bug, feature) to cherry-pick
into other branches.

Commits pertaining to a
specific bug or feature to
that need to be cherry-
picked.

Change
impact

analysis
Find which areas of code are
impacted by a change,
what tests need to be run.

Commits relevant to the
specific changes (e.g.,
other commits modifying
same code or tests).

Debug Find when a bug was intro-
duced, how the code at that
time was. Bug-introducing commit.

Understand
code / change

rationale
Understand why a code snip-
pet was implemented a certain
way.

Commit where the code
was added or modified.

RAGAVAN ET AL.: VERSION CONTROL SYSTEMS: AN INFORMATION FORAGING PERSPECTIVE 7

P4 faced such disappointment when he could not esti-
mate costs while foraging for when a certain line of code
came into being (Table 3: traceability to history). At first he
navigated to the oldest version of that line, expecting that
to be all his foraging costs. But once there, P4 realized the
line had been moved from elsewhere, and he had to trace
the history of the file the code had been moved from.

P4: “…that line came into being in such and such a version but
the reason it came into being is that a chunk of code got moved
from here to there. So then you need to look at the previous
version to see when that line came into being and that will refer
you back farther … what CVS tells you is not actually true.”

At this stage, P4 was disappointed because: 1) he could
not find the prey in the location he had expected to find it,
2) the foraging costs were higher than what he had ex-
pected, and 3) he had no idea how much more it would cost
him to get to his prey—at best, it might be just a few clicks
away, but in the worst case, he might have to click through
many, many code moves “without any end in sight” [41].

Similar disappointments also surfaced as part of partic-
ipants’ value estimations, when the actual value was much
lower than what the participants expected. For example,
P9 encountered a commit that contained mostly white-
space changes, and few actual code changes. But he had no
way of guessing that beforehand, without actually going
through all the modifications within that commit.

P9: “… we have our code style, so the tool reformats the code
for you… you can have a 100 changed lines and only one is an
actual code change [the rest are white-space changes].”

Implications for tools: These traditional foraging needs
provide tool builders opportunities to harvest IFT design
patterns that help developers with value and cost estima-
tion [34]. Some of these patterns, such as cue decoration,
signpost and visualizations, are already present in existing
tools, in the form of commit messages, change summaries
on getting the latest version and branch visualizations.
However, as the barriers in Table 3 reveal, gaps remain
(e.g., due to white space and redundant changes or uniden-
tified code moves and renames) for which tools could bet-
ter support developers’ estimation needs.

6.3 IFT-Informed VCS design: improving actual
foraging costs and values

Participants also faced difficulties because the actual costs
of foraging in the environment were too high, or there was
too little valuable information. In fact, as we shall see next,
most of Table 3’s barriers were due to poor actuals.

Information overload: low actual value. VCS history often
contained too many commits (and, sometimes, commits
contained too many changes). This excess of information
led participants to experience information overload.

The challenge with information overload is that the
bulk of the available information might not be relevant to
a predator’s foraging, resulting in low information value
for the foraging. For example:

P11: “…there could be some noise from commits I don’t care
about. Sometimes it is hard to filter out changes … for the
merging … if they did a big refactor so they renamed a bunch
of fields, they are not the person I need to talk to … .”

To improve the actual information value, Nabi et al.’s
catalog [34] recommends capabilities for filtering out less
valuable changes. Although most VCS tools provide some
filtering capabilities—including branches and tags that of-
fer implicit filtering—it appears from our results that they
might be insufficient and/or hard to find and use (P5), call-
ing for improvements.

High foraging costs in understanding commits: Even with
valuable information, foraging was sometimes hard due to
high within-patch and between-patch costs. High within
patch costs were mainly due to tangled changes, limited
cues (e.g., line added vs. line moved) and the lack of group-
ing and filtering capabilities within commits (e.g., group all
changes for a method rename). High between-patch costs
were because important information needed to under-
stand commits were often scattered across other patches
(e.g., other commits, branches) and even other environ-
ments (e.g., bug reports, emails, documents); developers
had to navigate between these patches to obtain their prey.

To bring down both between-patch and within-patch
costs, IFT’s design patterns can help. For between-patch
costs, tools such as Hipikat, CodeBroker and GitHub im-
plement gather together design pattern. Combined with

TABLE 3. BARRIERS: IFT-BASED INTERPRETATIONS AND SOLUTIONS

Barrier Meaning Interpretation as one of four fundamental
improvements in IFT[40] Example solutions from Nabi et

al.’s design pattern catalog [16]
% of

participants
(N=217)

Non-informative
commit messages Lack of details in commit messages about

the changes in a commit. Hard to estimate value in a commit Problems arise in committing
changes, as discussed in Sec-
tion 7.

66
Tangled changes Multiple, not necessarily coherent, changes

tangled in the same commit. High within-patch costs in understanding a
commit 54

Information
overload Too much, and often, more irrelevant than

relevant, information. Low value, due to too many irrelevant
changes Filtering to weed out irrelevant

information 47
Traceability to

versions Fragmented history of a line due to code
move, file moves or renames. High between patch costs going between

the fragments Gather together related frag-
ments 32

Interpreting diffs Limited cues, lack of filtering within com-
mits, making them hard to understand. High within-patch costs while understand-

ing a commit Feature decoration to highlight
intents, move vs. add changes 32

Tool limitations Missing tool features (e.g., filter, group,
visualize). [Discussed as part of other barriers.] 20

Traceability to
requirement Fragmented information makes it hard to re-

late a change to requirements (or vice versa) High between patch costs going between
commits and requirements Gather together related frag-

ments 20
Traceability to

architecture Limited support to view a change in the con-
text of the entire project / its dependencies High between patch costs going between

commits and architectural details Visualization showing changes
vs. entire project 17

8 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, MANUSCRIPT ID

other patterns such as structural relatedness, impact location
and lexical similarity, these tools gather together disparate,
but related artifacts (e.g., bug reports, issues, related com-
mits) to be recommended to developers. For within-patch
costs, most VCS tools decorate the information features to
allow easy processing: for example, in most VCS, changed
code is decorated with surrounding code and code modifi-
cations are decorated in red and green. Similarly, HistoRef
[19] implements feature tracing to decorate changes with
similar intent with colors and numbers and
ChangeDistiller [24] groups within-commit changes to
eliminate “non-essential” changes (e.g., all method oc-
curences affected by a method rename).

Insight #4: VCS tools offer several opportunities for improve-
ments, both in terms of cost/value estimates as well as in terms
of actual costs and values. Nabi et al.’s catalog [34] contain de-
sign patterns that achieve each of these improvements.

Implications for SE research: However, as other research-
ers [47], [35] have pointed out, state-of-the-art VCS tools
suffer from fundamental limitations: (1) they only capture
coarse grained changes and not fine grained changes as de-
velopers edit code, (2) the changes are primary text-based
and not AST-based (e.g., as in [19]). These, in turn, limit our
ability to implement some of the existing patterns, such as
reduce duplicate information (e.g., replace multiple in-
stances of a method rename as one refactoring change).
Our results, from an IFT’s perspective, reiterate the need
for overcoming these limitations to better support devel-
opers’ foraging activities.

Finally, as a word of caution in interpreting this section,
our intent in this section is not completeness. In fact, one of
the limitations in this section is that we do not explore all
possible interpretations of the barriers, consider all possi-
ble solutions among IFT design patterns, or include other
information environments (e.g., emails, bug reports) par-
ticipants foraged in. Instead, the main point of this section is
the formative evidence that IFT might apply to VCS foraging
and that tool builders could profit from existing IFT re-
search for building and improving VCS tools.

7. CREATING PATCHES FOR FUTURE FORAGING
7.1 Committing changes: will future foraging be

easy?
In VCS, developers not only consume, but also produce the
information that others, or themselves, might forage in at
a later time. Therefore, participants as information
producers took extra care to enable their new patches
(commits) and cues (commit messages) to support the
needs of future foragers (consumers), even if these efforts
increased their own costs in their current task.

These attempts are consistent with the value/cost per-
spectives underlying IFT: participants aimed to increase
the value, or decrease the costs of future foraging. For ex-
ample, participants separated their changes into small, sin-
gle-intent commits to reduce within-patch costs, they
wrote detailed commit messages to help future foragers
understand or estimate the value in commits, and, when
they committed important changes, they notified their

team about the availability of change awareness prey.
In spite of well-intentioned efforts like these, foraging

difficulties due to nondescriptive commit messages and
tangled commits persisted—they comprise the top two
barriers in Table 3. Although it might be tempting to attrib-
ute these persisting barriers to “bad developer citizens”
who did not adhere to good commit practices, our results
reveal that there might be deeper underlying reasons.

7.2 Tensions: which future foraging need should a
developer satisfy?

Different foraging situations might benefit from different
characteristics in patches and cues. In our case, different
future foraging situations placed conflicting demands of
commits and commit messages, requiring participants to
balance different kinds of tensions.

Tension #1: Short vs. Detailed Commit Message. Over
60% of our survey participants preferred detailed commit
messages, to better estimate the value in a commit, or to
understand the changes within it.

S3: “High level statement of code changes with a detailed state-
ment of the intent behind each change.”

However, other participants found that detailed commit
messages could take longer to read and process, especially
when there were too many commits to read. To avert these
costs, they preferred shorter and concise commit messages.

P11: “Commit messages are often read in the command line ap-
plication so they need to be very short.”

Tension #2: Small vs. Large commits. Similar tensions sur-
faced in terms of commit sizes. Some participants preferred
smaller commits with a single intent, to ease understand-
ing of changes or to cherrypick specific changes.

P6: “I try to keep all of my commits topical in nature. I try not
to have different unrelated changes in the same commit… be-
cause that captures the history of development a little bit better.
Not always, but it also makes it easier to prune out changes
that were not necessarily beneficial.

However, other participants preferred larger commits (e.g.,
one commit per entire feature), to avoid fragmentation of
related changes across commits, and to ease reviewing and
merging code and for easier collaboration.

P10: “I think that it helps reviewing because you can open the
change set and you can see all the corresponding things that
have changed as part of that change set. It is easier for the re-
viewers to coordinate that set of changes and pull them to-
gether .”

Tension #3: Current Task vs. Future Foraging. Sometimes a
developer’s current tasks needs were directly at odds with
creating commits and commit messages for the future. For
example, P2 attempted not to pollute his version control
history with exploratory commits, but in doing so, he in-
curred additional costs from throwing away and reimple-
menting some changes:

P2: “…I just threw the whole thing away… had I had finer
grained commits where I could say this little part I would like
and this little part… but I did not have the infrastructure to do
that with just committing on the master branch.”

RAGAVAN ET AL.: VERSION CONTROL SYSTEMS: AN INFORMATION FORAGING PERSPECTIVE 9

In another instance, well-intentioned commit practices that
aimed to ease future foraging actually hurt P11’s ability to
collaborate on a task:

P11: “some people that feel that everything that is committed
should compile and have running tests all the time… I had
something that wasn’t compiling that I needed to share with
another developer.”

Note that all these tensions are less about the prefer-
ences of individual developers, and more about costs and
values in different foraging situations. Any attempt by the
information producer to decrease the cost (or increase the
value) for one foraging activity ended up disadvantaging
another foraging activity, thereby making it hard for devel-
opers to balance these tensions and to meet the needs of all
future foraging and current task activities.

Insight #5: Participants’ commit practices were largely sound:
they aimed to increase the value or lower the costs for future
foraging activities. But, they failed to balance the tensions be-
tween different foraging situations: 1) large vs. small commits,
2) detailed vs. concise commit messages and 3) current task
completion vs. supporting future foraging.

Implication for tools: Unfortunately, IFT has little to offer
by way of solutions for solving these tensions, but it offers
some insights on how tools can improve costs and values
for the future. For example, the design patterns catalog in-
clude patterns such as “rename methods” or “extract meth-
ods” that modify existing information in ways that could
ease future foraging. The patterns could be lifted up to
more general “extract patches” and “rename patches” to
also include commits and commit messages. In fact, tools
like HistoRef implement the extract patch idea for commits
to refactor existing commits. But it is an open problem how
tools should support creation of new commits in VCS.

8 DISCUSSION
In this section, we consider our results from a higher-level
view.

8.1 IFT and the three-lens model
The three foraging activities we have considered in this pa-
per add "hows" to the conceptual three-lens model pre-
sented in our earlier work [12] and summarized in Table 4.
Specifically: 1) for the "awareness" lens, participants used
lightweight foraging to learn about latest changes, 2) for the
"archaeology" lens, participants looked for specific infor-
mation using traditional foraging activities, and 3) for the
"immediate" lens, participants looked into how they could
create commits that will optimize costs and values for the
future. These results not only ground the three-lens model
in IFT’s theoretical foundations, but also reveal new oppor-
tunities for tools in the awareness and immediate lens (e.g.,
bulk change awareness, balancing tensions), possible ways
forward toward realizing those opportunities (namely, via
IFT’s design patterns) and some open research problems.

8.2 Open problem: IFT for change awareness
In change awareness foraging, participants were con-
cerned with consuming as much high-value changes

within limited time (or cost)—an optimization problem
consistent with IFT. One mechanism in which they accom-
plished this optimization was by carefully choosing what
prey to consume. Several tools and IFT patterns address
this kind of problem—namely, helping developers choose
which high value information to consume. However, lim-
ited support exists for another of their foraging mecha-
nisms, namely lightweight foraging.

We advocate for research harvesting design patterns
from existing tools in diverse change awareness domains
to be added to the IFT design patterns catalog [34], as a way
forward towards a more coherent body of practical
knowledge about supporting people's information forag-
ing. For example, our results revealed the reliance on com-
mit messages or email subject lines (instead of entire com-
mits) for change awareness foraging. This behavior is re-
lated to news foraging, where people heavily relied on
headlines and summaries instead of reading entire news ar-
ticles [49]. Such efforts provide benefits such as richer ex-
amples for the development of specific design patterns,
and perhaps more importantly, help identify gaps in the
design pattern catalog.

8.3 Open problem: the producer side
One of the new insights IFT brings to version control activi-
ties concerns information producers. Participants as infor-
mation producers, recognized that the way information is
created can impact how easy it will be to forage in that in-
formation in the future. Therefore, they attempted to create
information in ways that will meet future foraging needs
(even if that meant extra cost in creating that information).

Lens Key
activities New insights from IFT

Aw
ar

en
es

s l
en

s

Staying up to
date with the
recent changes

• Traditional dietary choices, suggestive of
IFT’s applicability to change awareness

• Lightweight foraging, future vetting and
future cost-value considerations different
from traditional foraging.

• Existing design patterns leverageable for
selective, individual diet selection in tools.

• Open problem: Extracting new design
patterns from other change awareness
domains to be added to Nabi et al.’s list [43].

• Open problem: Better understand
cost/value aspects of lightweight and future-
oriented foraging in change awareness.

A
rc

ha
eo

lo
gy

 le
ns

Foraging for
specific
information,
mostly in old
commits

• Traditional foraging behaviors, suggesting
IFT might apply to these activities.

• Traditional IFT’s improvements [40]
(accurate cost/value estimation, improve
actual cost/value estimates) to address
participants’ barriers to foraging.

• Existing design patterns [43] leverageable
for addressing barriers and improving tools.

Im
m

ed
ia

te
 le

ns

Creating
commits and
commit
messages

• Creating patches and cues to increase value /
decrease cost for future foragers.

• Conflicting needs for different foraging
situations, leading to tensions:
• Large vs. small commits
• Detailed vs. concise commit messages
• Current task completion vs. support

future foraging activities
• Open problem: Understand and balance

tensions (e.g., via Social IFT) to build tools
to support committing changes.

TABLE 4. RELATIONSHIP TO THE THREE-LENS MODEL.

10 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, MANUSCRIPT ID

 However, participants’ attempts at producing forageable
information were largely unsuccessful, because they failed
to balance tensions arising from conflicting needs (e.g., be-
tween different foragers, between different future foraging
situations or between current and future tasks). Balancing
these tensions is important to meet diverse foraging needs
of developers, yet IFT provides little intuition as to how de-
velopers (or tools) can achieve this balance.

Our results call for further enquiries into the producer
side of information and how we can better support produc-
ers in creating forageable information. IFT’s notions of costs
and values could explain phenomena in these areas also,
however, traditional IFT will not suffice.

Traditional foraging mostly treats predators to be solitary
foragers: while this view sufficiently captures certain kinds
of foraging in SE (e.g., individual developer foraging in
code), it is not sufficient for collaborative situations (e.g.,
there is no construct for team). However, social IFT, a variant
of IFT for cooperating groups, fills this gap.

Social IFT has allowed researchers to leverage the intelli-
gence of the crowd in social tagging systems [44], to under-
stand stakeholder interactions in requirements engineering
[2] and to balance the tradeoffs between small vs. large open
source projects to predict optimal team sizes [3]. Given that
social IFT acknowledges, and has been applied to, tensions
that arise in foraging situations, we believe that it might be
a feasible framework for version control tensions also.

However, to make progress in this direction, research is
needed to operationalize Social IFT to SE situations, given
that Social IFT has not yet been widely operationalized.
Also, Social IFT itself is nascent: therefore, research needs to
start extending the theory’s models for various collaboration
situations as they arise in different domains. Addressing
these issues could eventually inform tool builders in new
ways about designing VCS tools for information producers.

8.4 Threats to validity
Every study has threats to validity.

One potential threat to external validity (the generality
of our findings beyond this study [51]) is that our inter-
views included only 14 participants. We countered this
threat in part by conducting a survey with 217 program-
mers from diverse backgrounds. Even so, the interview
and survey responses could be biased due to limitations of
human memory, the tools participants had used, and/or
that their experiences probably did not cover all possible
use cases. Therefore, our results might not generalize to all
VCS tools, information-seeking strategies and situations.

Another potential threat to external validity is our
study’s focus on information foraging in only one environ-
ment, namely version control systems. Developers gather
information from other environments also, and further
studies would be needed to generalize our findings to
other environments (e.g., bug repositories, emails) and to
how developers synthesize information across them.

Another type of threat is reliability; a study is reliable if
it yields the same results when conducted by other re-
searchers [51]. One potential threat to reliability is the con-
venience and self selection (internet) sampling we used to
recruit interview and survey participants respectively.

Other researchers might not reach the same kinds of par-
ticipants using these methods.

Another potential threat to reliability is that we re-ana-
lyzed data collected for a different purpose, not specific to
IFT. As a result, some foraging-specific phenomena (e.g.,
cost-value considerations) might not have surfaced in our
data, but might surface in a different study conducted with
IFT in mind. Also, since we introduced IFT much later, we
could not triangulate our IFT-based interpretations with
the survey data. Only future studies leveraging IFT to VCS
design can confirm the reliability of our findings.

Finally, this paper is a theoretical treatment of infor-
mation seeking in version control systems; it does not im-
plement or empirically evaluate the predictions and rec-
ommendations of the theory. However, this threat is par-
tially addressed by other papers that have leveraged IFT’s
predictions for SE tool building (e.g., [38], [39], [53]).

9.CONCLUSION
In this paper, we have used an information foraging theory
perspective to reveal new insights into developers’ infor-
mation seeking in VCS. Among the key results were:
• Participants engaged in traditional foraging behavior

while foraging for specific commits. Here, IFT insights
from earlier work can inform the design of VCS tools to
support such foraging activities.

• To keep up with the latest changes, participants used
lightweight foraging strategies to meet their highly selec-
tive and personalized information needs. This calls for
change-awareness tools that provide low-cost af-
fordances for less-detailed understanding of specific
changes of interest.

• When committing their changes, participants attempted
at the same time to ease future foraging activities. How-
ever, evidence suggests that they were not successful.
One reason may be lack of awareness of the tensions in-
volved in future foraging, such as individual vs. team,
immediate vs. later, and different foraging strategies.
This issue presents an open opportunity for VCS tools
aiming to support developers' VCS foraging activities.

• Viewed from an IFT perspective, the participants’ forag-
ing adds “hows” to the “whats” in the conceptual three-
lens model proposed in our earlier work [12], revealing
implications for designing tools for each of these lenses.
Finally, our results provide some evidence that IFT’s

scope extends to the version control domain, but two open
problems call for further research in this area. First, partici-
pants’ lightweight change-awareness foraging was subtly
different from traditional foraging; this calls for further in-
quiry into developers' lightweight foraging strategies for
tasks like these. Second, our results reveal several "future-
foraging" tensions developers were not successful in han-
dling. These results open new avenues for research in the
cost-value aspects of foraging in VCS environments, from
both IFT and social IFT perspectives.

ACKNOWLEDGMENTS
The authors wish to thank the reviewers; their feedback
and suggestions greatly improved this paper. This work

RAGAVAN ET AL.: VERSION CONTROL SYSTEMS: AN INFORMATION FORAGING PERSPECTIVE 11

was supported by DARPA #N66001-17-2-4030, NSF
#1314384 and NSF CCF-1553741. Any opinions, findings,
conclusions or recommendations expressed are the au-
thors’ and do not necessarily reflect the views of NSF,
DARPA, the Army Research Office, or the US government.

REFERENCES
[1] A. Alali, H. Kagdi, and J.I. Maletic, "What's a typical commit? a char-

acterization of open source software repositories," Proc. Intl. Conf. Pro-
gram Comprehension (ICPC ’08), pp. 182-191, 2008.

[2] T. Bhowmik, N. Niu, P. Singhania, and W. Wang, "On the role of
structural holes in requirements identification: an exploratory study
on open-source software development," ACM Trans. Management In-
formation Systems (TMIS) 6, no. 3 (2015): 10, doi:10.1145/2795235.

[3] T. Bhowmik, N. Niu, W. Wang, J.C. Cheng, L. Li, and X. Cao, "Op-
timal group size for software change tasks: a social information forag-
ing perspective," IEEE Trans. Cybernetics 46, no. 8 (2016): 1784-
1795, doi:10.1109/TCYB.2015.2420316.

[4] J.T. Biehl, M. Czerwinski, G. Smith, and G.G. Robertson, "FAST-
Dash: a visual dashboard for fostering awareness in software teams,"
Proc. SIGCHI Conf. Human factors in computing systems (CHI ’07),
pp. 1313-1322, 2007, doi:10.1145/1240624.1240823.

[5] C. Brindescu, M. Codoban, S. Shmarkatiuk, and D. Dig, "How do
centralized and distributed version control systems impact software
changes?" Proc. 36th Intl. Conf. Software Engineering (ICSE ’14), pp.
322-333, 2014, doi:10.1145/2568225.2568322.

[6] Y. Brun, R. Holmes, M.D. Ernst, and D. Notkin, "Proactive detection
of collaboration conflicts," Proc. 19th ACM SIGSOFT Symp. and the
13th European Conf. Foundations of software engineering (FSE ’11),
pp. 168-178, 2011, doi:10.1145/2025113.2025139.

[7] J.L. Campbell, C. Quincy, J. Osserman, and O.K. Pedersen, "Coding
in-depth semistructured interviews: Problems of unitization and inter-
coder reliability and agreement," Sociological Methods & Research 42,
no. 3 (2013), pp. 294-320, doi:10.1177/0049124113500475.

[8] S.K. Card, J. Mackinlay, "The structure of the information visualization
design space," Proc. IEEE Symp. Information Visualization, 1997,
pp. 92-99, doi: 10.1109/INFVIS.1997.636792.

[9] E.H. Chi, J. Pitkow, J. Mackinlay, P. Pirolli, R. Gossweiler, and S.K.
Card, "Visualizing the evolution of web ecologies," Proc. SIGCHI
Conf. on Human factors in computing systems (CHI ’98), pp. 400-
407, doi:10.1145/274644.274699.

[10] E.H. Chi, P. Pirolli, K. Chen, and J. Pitkow, "Using information scent
to model user information needs and actions and the Web," Proc.
SIGCHI Conf. Human factors in computing systems (CHI ’01), pp.
490-497, doi:10.1145/365024.365325.

[11] E.H. Chi, A. Rosien, G. Supattanasiri, A. Williams, C. Royer, C.
Chow, E. Robles, B. Dalal, J. Chen, and S. Cousins, "The blood-
hound project: automating discovery of web usability issues using the
InfoScent! simulator," Proc. SIGCHI Conf. Human factors in compu-
ting systems (CHI ’03), pp. 505-512.

[12] M. Codoban, S.S. Ragavan, D. Dig, and B. Bailey, "Software history
under the lens: a study on why and how developers examine it," IEEE
Intl. Conf. Software Maintenance and Evolution (ICSME’ 15), 2015,
pp. 1-10, doi:10.1109/ICSM.2015.7332446.

[13] L.F.C. Coy, M.L. Vásquez, J. Aponte, and D. Poshyvanyk, "On au-
tomatically generating commit messages via summarization of source
code changes," Intl. Working Conf. Source Code Analysis and Manip-
ulation (SCAM), 2014, pp. 275-284, doi:10.1109/SCAM.2014.14.

[14] C. de Souza, D.F. Redmiles, "An empirical study of software develop-
ers' management of dependencies and changes," Proc. 30th Intl. Conf.

Software engineering (ICSE ’08), pp. 241-250.
 [15] S.D. Fleming, C. Scaffidi, D. Piorkowski, M. Burnett, R. Bellamy,

J. Lawrance, and I. Kwan, “An information foraging theory perspec-
tive on tools for debugging, refactoring, and reuse tasks," ACM Trans.
Software Engineering and Methodology (TOSEM) 22, no. 2 (2013):
14.

 [16] C. Gutwin, R. Penner, and K. Schneider, "Group awareness in dis-
tributed software development," Proc. 2004 ACM conference on Com-
puter supported cooperative work (CSCW ’04), pp. 72-81, 2004.

[17] C. Gutwin, K. Schneider, D. Paquette, and R. Penner, "Supporting
group awareness in distributed software development,", Intl. Workshop
on Design, Specification, and Verification of Interactive Systems, pp.
383-397, 2004, doi:10.1007/11431879_25.

[18] A. Guzzi, A. Bacchelli, Y. Riche, and A. van Deursen, "Supporting
developers' coordination in the IDE," Proc. 18th ACM Conf. on Com-
puter Supported Cooperative Work & Social Computing, pp. 518-532.

[19] S.Hayashi, D. Hoshino, J. Matsuda, M. Saeki, T. Omori and K.
Maruyama, “Historef: A tool for edit history refactoring”, Proc. 22nd
International Conference on Software Analysis, Evolution and Reen-
gineering (SANER’ 2015), pp. 469-473.

[20] A.Z. Henley, A. Singh, S.D. Fleming, and M.V. Luong, "Helping
programmers navigate code faster with Patchworks: A simulation
study," IEEE Symp. Visual Languages and Human-Centric Compu-
ting (VL/HCC ‘14), pp. 77-80, 2014, doi: VLHCC.2014.6883026.

[21] A.Z. Henley, S.D. Fleming, and M.V. Luong, "Toward Principles for
the Design of Navigation Affordances in Code Editors: An Empirical
Investigation," Proc. 2017 CHI Conf. Human Factors in Computing
Systems (CHI ’17), pp. 5690-5702, doi:10.1145/3025453.3025645.

[22] P. Johnson, M. Ekstedt I. Jacobson, “Where's the theory for software
engineering?”, IEEE software, 29(5), pp.96-96, 2012.

[23] B.K. Kasi, and A. Sarma, "Cassandra: Proactive conflict minimization
through optimized task scheduling," Proc. 2013 Intl. Conf. Software
Engineering (ICSE ’13), pp. 732-741, 2013.

[24] D. Kawrykow, and M.P. Robillard, "Non-essential changes in ver-
sion histories," Proc. 33rd Intl. Conf. Software Engineering (ICSE
’11), pp. 351-360, 2011, doi:10.1145/1985793.1985842.

[25] S. Kim, E.J. Whitehead Jr, and Y. Zhang, "Classifying software
changes: Clean or buggy?" IEEE Trans. Software Engineering 34, no.
2 (2008): 181-196, doi:10.1109/TSE.2007.70773.

[26] H. Kirinuki, Y. Higo, K. Hotta, and S. Kusumoto, “Hey! are you
committing tangled changes?” Intl. Conf. Program Comprehension
(ICPC 2014), pp. 262-265, doi: 10.1145/2597008.2597798.

 [27] A.J. Ko, B.A. Myers, M.J. Coblenz, and H.H. Aung, "An explora-
tory study of how developers seek, relate, and collect relevant infor-
mation during software maintenance tasks," IEEE Trans. software en-
gineering, 32, no. 12 (2006), doi: 10.1109/TSE.2006.116.

[28] A.J. Ko, R. DeLine, and G. Venolia, "Information needs in collocated
software development teams," 29th Intl. Conf. Software Engineering
ICSE ’07), pp. 344-353, 2007, doi:10.1109/ICSE.2007.45.

[29] S.K. Kuttal, A. Sarma, and G. Rothermel, "Predator behavior in the
wild web world of bugs: An information foraging theory perspective,"
IEEE Symp. Visual Languages and Human-Centric Computing
(VL/HCC ‘13), pp. 59-66, doi: 10.1109/VLHCC.2013.6645244.

[30] J. Lawrance, R. Bellamy, and M. Burnett, "Scents in programs: Does
information foraging theory apply to program maintenance?" IEEE
Symp. Visual Languages and Human-Centric Computing (VL/HCC
’07), pp. 15-22.

[31] J. Lawrance, R. Bellamy, M. Bumett, and K. Rector, "Can infor-
mation foraging pick the fix? A field study," IEEE Symp. Visual Lan-
guages and Human-Centric Computing (VL/HCC ’08), pp. 57-64.

12 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, MANUSCRIPT ID

[32] J. Lawrance, M. Burnett, R. Bellamy, C. Bogart, and C. Swart, "Re-
active information foraging for evolving goals," Proc. SIGCHI Conf.
Human Factors in Computing Systems (CHI ’10), pp. 25-34.

[33] M. Marzban, Z. Khoshmanesh, and A. Sami, "Cohesion between
size of commit and type of commit," In Computer Science and Conver-
gence, pp. 231-239, 2012, doi:10.1007/978-94-007-2792-2_22.

[34] T. Nabi, K. Sweeney, S. Lichlyter, D. Piorkowski, C. Scaffidi, M.
Burnett, and S. D. Fleming, "Putting information foraging theory to
work: Community-based design patterns for programming tools,"
IEEE Symp. Visual Languages and Human-Centric Computing
(VL/HCC’16), pp. 129-133.

[35] S. Negara, M. Vakilian, N. Chen, R.E., Johnson, R. E. and D. Dig,
“Is it dangerous to use version control histories to study source
code evolution?” Proc. European Conference on Object-Oriented
Programming (ECOOP’12), pp. 79-103.

[36] A.T. Nguyen, M. Hilton, M. Codoban, H.A. Nguyen, L. Mast, E.
Rademacher, T. N. Nguyen, and D. Dig, "API code recommenda-
tion using statistical learning from fine-grained changes," Proc. 24th
ACM SIGSOFT Intl. Symp. Foundations of Software Engineering
(FSE ’16), pp. 511-522, doi: 10.1145/2950290.2950333.

[37] N. Niu, A. Mahmoud, Z. Chen, and G. Bradshaw, "Departures
from optimality: understanding human analyst's information foraging
in assisted requirements tracing," Proc. of the 2013 Intl. Conf. Soft-
ware Engineering (ICSE ’13), pp. 572-581.

[38] A. Perez and R. Abreu, “A diagnosis-based approach to software
comprehension,” Proc. 22nd Intl. Conf. Program Comprehen-
sion (ICPC ‘14), pp. 37-47, doi:10.1145/2597008.2597151.

[39] D. Piorkowski, S. Fleming, C. Scaffidi, C. Bogart, M. Burnett, B.
John, R. Bellamy, and C. Swart, "Reactive information foraging: An
empirical investigation of theory-based recommender systems for pro-
grammers," Proc. SIGCHI Conf. Human Factors in Computing Sys-
tems (CHI ’12), pp. 1471-1480, doi: 10.1145/2207676.2208608.

[40] D. Piorkowski, S. D. Fleming, I. Kwan, M. M. Burnett, C. Scaffidi,
R. Bellamy, and J. Jordahl, "The whats and hows of programmers'
foraging diets," Proc. SIGCHI Conf. Human Factors in Computing
Systems (CHI ’13), pp. 3063-3072, doi:10.1145/2470654.2466418.

[41] D. Piorkowski, A.Z. Henley, T. Nabi, S.D. Fleming, C. Scaffidi, M.
Burnett, "Foraging and navigations, fundamentally: developers' pre-
dictions of value and cost," Proc. 2016 24th ACM SIGSOFT Intl.
Symp. Foundations of Software Engineering (FSE ’16), pp. 97-108.

[42] P. Pirolli, and S. Card, "Information foraging in information access
environments," Proc. SIGCHI Conf. Human factors in computing sys-
tems (CHI ’95), pp. 51-58, doi: 10.1145/223904.223911.

[43] P. Pirolli, and S. Card, "Information foraging," Psychological re-
view 106, no. 4 (1999): 643.

[44] P. Pirolli, Information foraging theory: Adaptive interaction with infor-
mation, Oxford University Press, 2007.

[45] S.S. Ragavan, S.K. Kuttal, C. Hill, A. Sarma, D. Piorkowski, and
M. Burnett, "Foraging among an overabundance of similar variants,"
Proc. 2016 Conf. Human Factors in Computing Systems (CHI ’16),
pp. 3509-3521, doi: 10.1145/2858036.2858469.

[46] S.S. Ragavan, B. Pandya, D. Piorkowski, C. Hill, S.K. Kuttal, A.
Sarma, and M. Burnett, "PFIS-V: Modeling Foraging Behavior in
the Presence of Variants," Proc. of the 2017 Conf. on Human Factors
in Computing Systems, pp. 6232-6244, doi:3025453.3025818.

[47] R. Robbes, and M. Lanza, “A change-based approach to software
evolution” Electronic Notes in Theoretical Computer Science, 166,
93-109. (2007).

[48] A. Sarma, D.F. Redmiles, and A.V.D. Hoek, "Palantir: Early detec-
tion of development conflicts arising from parallel code changes," IEEE

Trans. on Software Engineering 38, no. 4 (2012): 889-908.
[49] A.J. Sellen, R. Murphy, and K.L. Shaw, "How knowledge workers use

the web," Proc. SIGCHI conference on Human factors in computing
systems (CHI ’02), pp. 230-234, doi:10.1145/503376.503418.

[50] S. Shivaji, E.J. Whitehead, R. Akella, and S. Kim, "Reducing fea-
tures to improve code change-based bug prediction," IEEE Trans. Soft-
ware Engineering 39, no. 4 (2013): 552-569.

[51] F. Shull, J. Singer, and D. I. Sjøberg, “Guide to advanced empirical
software engineering”, 2008.

[52] J. Sillito, G.C. Murphy, and K.D. Volder, "Questions programmers
ask during software evolution tasks," Proc. 14th ACM SIGSOFT Intl.
Symp. Foundations of software engineering (FSE ’06), pp. 23-34

[53] J.M. Spool, C. Perfetti, and D. Brittan, "Designing for the Scent of
Information: The Essentials Every Designer Needs to Know About
How Users Navigate Through Large Web Sites," User Interface Engi-
neering (2004).

[54] D.W. Stephens, and J.R. Krebs, Foraging theory, Princeton Univer-
sity Press, 1986.

[55] Y. Tao, Y. Dang, T. Xie, D. Zhang, and S. Kim, "How do software
engineers understand code changes? : an exploratory study in indus-
try," Proc. Intl. Symp. on the Foundations of Software Engineering
(FSE ’12), p. 51.

[56] M.B. Zanjani, G. Swartzendruber, and H. Kagdi, "Impact analysis
of change requests on source code based on interaction and commit his-
tories," Proc. 11th Working Conf. Mining Software Repositories, pp.
162-171, 2014, doi:10.1145/2597073.2597096.

[57] S.S. Ragavan, “Software History” at https://web.engr.oregon-
state.edu/~srinivas/software-history.html, 2018.

Sruti Srinivasa Ragavan is a Ph.D candidate at Oregon State Uni-
versity. Her research interests lie at the intersection of Human Com-
puter Interaction and Software Engineering, in leveraging human be-
havioral theories to understand and support programmers. Prior to
graduate school, she worked as a senior software developer at
ThoughtWorks, building bespoke solutions for various businesses.

Mihai Codoban received the B.S. in Computer and Information Tech-
nology from Politehnica University of Timisoara in 2011, and the M.S.
in Computer Science from Oregon State University in 2015. He joined
Microsoft in 2015 where he is working on build engines as part of the
Tools for Software Engineers group. His interests are in understanding
programmers’ needs and in building tools to fulfill those needs.

David Piorkowski received his PhD in Computer Science from Ore-
gon State University in 2016. He is a Research Staff Member at IBM
Research. His research interests focus on understanding and support-
ing developers' debugging tasks. Recently he's been working on un-
derstanding how software developers cope with AI models. He is a
member of the IEEE.

Danny Dig is an associate professor of computer science at Oregon
State University, and an adjunct professor at University of Illinois. He
pioneered interactive program transformations and opened the field of
refactoring to new domains such as mobile, component-based, and
end-user programming. He earned his Ph.D. from the University of
Illinois at Urbana-Champaign where his research won the best Ph.D.
dissertation award, and the First Prize at the ACM Student Research
Competition Grand Finals. He did a postdoc at MIT.

Margaret Burnett is an OSU Distinguished Professor at Oregon State
University. She co-founded the area of end-user software engineering,
pioneered the use of information foraging theory in software debug-
ging, and leads the team that created GenderMag. Burnett is an ACM
Fellow, a member of the ACM CHI Academy, and an award-winning
mentor. She also serves on the Academic Alliance Advisory Board of
the National Center for Women In Technology (NCWIT).

