
Burnett and Rothermel - 1 - December 5, 1999

Applying a “What You See Is What You Test” (WYSIWYT) Technology

to Commercial Spreadsheet Packages:
Several Scenarios

Margaret Burnett and Gregg Rothermel
Oregon State University

Introduction

The “What You See Is What You Test” (WYSIWYT) methodology is a new approach to
software engineering in highly visual problem-solving environments such as spreadsheets. The
methodology is designed to support end users as well as more sophisticated developers. It
integrates the knowledge of testing and debugging procedures into such an environment, to allow
a user to become more effective at testing and debugging, even without prior training in software
engineering principles.

The WYSIWYT methodology has already been integrated into the research spreadsheet language
Forms/3. Here are a few scenarios illustrating how it might look if integrated into commercial
spreadsheet packages.

Scenario 1: An end user figures out and tests her income taxes

An end user has a printout of a tax form from the IRS such as in Figure 1 in front of her, and she
wants to use a spreadsheet to figure out the answers. To do this, she has created a spreadsheet
such as the one in Figure 2.

Although this spreadsheet is simple, there are several ways the user could end up reporting the
wrong answer. Like many taxpayers, she may be struggling to gather up all the required data,
and may change her mind about the right data values to enter. If she has been taking shortcuts
with the formulas, basing them upon the conditions present in her first version of the data (such
as not bothering to use a max operator in line 5 to prevent negatives), the formulas are probably
not very general, and may cause problems if her data changes. For example, if she entered “line
4 - line 3” as the formula for line 5, but later changes line 4 to 5500 because her parents tell her
they did not claim her this year after all, then the formula for line 5 will not give the correct
answer. Similar problems could arise if she discovers that she entered data from the wrong box
of her W-2, and so on.

Burnett and Rothermel - 2 - December 5, 1999

Form

1040EZ

Name &
Address

Report
your
income

Attach
Copy B of
Form(s)
W-2 here.
Attach tax
payment on
top of
Form(s) W-2.

Note: You
must check
Yes or No.

Department of the Treasury - Internal Revenue Service

Income Tax Return for
Single Filers With No Dependents 1991
Use the IRS label (see page 10). If you don't have one, please print.

 Print your name (first, initial, last)

 Home address (number and street). (If you have a P.O. box, see page 11).) Apt. no.

 City, town or post office, state, and ZIP code. (If you have a foreign address, see page 11.)

Please see instructions on the back. Also, see the
Form 1040EZ booklet.

Presidential Election Campaign (see page 11)
Do you want $1 to go to this fund?

L
A
B
E
L

H
E
R
E

Your social security number

1 Total wages, salaries, and tips. This should be shown in Box
10 of your W-2 form(s). (Attach your W-2 form(s).)

2 Taxable interest income of $400 or less. If the total is more
than $400, you cannot use Form 1040EZ.

3 Add line 1 and line 2. This is your adjusted gross income.
4 Can your parents (or someone else) claim you on their return?
 Yes. Enter amount from line E here.
 No. Enter 5,550.00. This is the total of your standard
 deduction and personal exemption.

5 Subtract line 4 from line 3. If line 4 is larger than line 3, enter
0. This is your taxable income.

Yes No

Figure 1: A portion of a tax form from the IRS.

1040EZ calculations:

Presidential election? yes
1. Total wages $5,132
2. Taxable interest $297
3. Adjusted gross $5,429
4. Parents? $1,500 Line E $1,500
5. Taxable income $3,929

Figure 2: The user’s spreadsheet to figure out the taxes. The first few cells are simply data values. Line 3’s formula
is line 1 + line 2, line 4’s formula is a reference to line E, and line 5’s formula is line 3 - line 4.

Even in this simple case, the WYSIWYT methodology can help. Figure 3 shows a mock-up of
how it might be incorporated into a popular spreadsheet package. All cells containing formulas
(as opposed to data values) are initially red-bordered with checkboxes, as in Figure 3(a). The
first time the user sees a red border, she moves her mouse over it and the tool tips inform her that
“red borders mean untested and blue borders mean tested. You can check cells off when you
approve of their values.” The user checks off a value that she is sure is correct, and a checkmark
(√) appears as in Figure 3(b). Further, the border of this explicitly-approved cell, as well as of

Burnett and Rothermel - 3 - December 5, 1999

cells contributing to it, becomes blue. If she then changed some data, any affected checkmarks
would be replaced with question marks (?). This would remind her to check again the cells
whose values she thought were important enough to check off before. But instead of replacing a
data value, suppose the user makes the formula change alluded to above in line 4, changing the
previous formula to the constant 5500 instead of the former reference to line E. Since the change
she made involved a formula (the one she just changed to a data value), the affected cells’
borders revert to red and downstream √s and ?s disappear, indicating that these cells are now
completely untested again. See Figure 3(c). The maintenance of the “testedness” status of each
cell throughout the editing process, as illustrated in Figure 3(c), is an important benefit of the
approach. Without this feature, the user may not realize that the testing she did before became
irrelevant with her formula change and now needs to be redone.

A primary goal of this approach is to reduce overconfidence about the correctness of spreadsheet
formulas. Our empirical work (e.g., [Rothermel et al. 1999]) shows that the methodology does
significantly reduce overconfidence about how tested the spreadsheet is, as well as improving
effectiveness and efficiency of testing and debugging.

1040EZ calculations:

Presidential election? yes
1. Total wages $5,132
2. Taxable interest $297

3. Adjusted gross $5,429

4. Parents? $1,500 Line E $1,500

5. Taxable income $3,929

(a)

1040EZ calculations:

Presidential election? yes
1. Total wages $5,132
2. Taxable interest $297

3. Adjusted gross $5,429

4. Parents? $1,500 Line E $1,500

5. Taxable income $3,929√

(b)

1040EZ calculations:

Presidential election? yes
1. Total wages $5,132
2. Taxable interest $297

3. Adjusted gross $5,429

4. Parents? $5,500 Line E $1,500

5. Taxable income - $ 7 1

(c)

Figure 3: A mock-up of a popular spreadsheet package if enhanced by the WYSIWYT technology: (a): All cells
containing formulas are initially red, meaning untested.
(b): Whenever the user makes a decision that some data value is correct, she checks it off. The checkmark appears
in the cell she explicitly validated, and all the borders of cells contributing to that correct value become more tested
(closer to pure blue). This example has such simple formulas, only the two colors red and blue are needed.
(c): The user changes the formula in line 4 to a constant. This change causes affected cells to be considered untested
again.

Burnett and Rothermel - 4 - December 5, 1999

Scenario 2: The user tests her income tax spreadsheet as she
makes it more reusable

The next year, the user may want to improve the spreadsheet so that she can use it year after year
without having to redesign each formula in the context of the current year’s data values. For
example, she adds the yes/no box from the IRS form’s line 4 to her spreadsheet’s line 4 and uses
the if operator in the formula for line 4. Because of this if, she will need to try at least 2 test
cases for line 4’s cell to be considered tested: one that exercises the “yes” case and one that
exercises the “no” case. (See [Rothermel et al. 1998] for a description of the coverage criteria
currently in use as well as other possible criteria that can alternatively be employed.)

Because of this, when the user checks off one data value as in Figure 4, the border for lines 4 and
5 turn purple (50% blue and 50% red). To figure out how to make the purple cells turn blue, the
user selects one of them and hits a “show details” key. The system then draws arrows pertaining
to the subexpression relationships, with colors depicting which cases still need to be tested. The
arrow from the last subexpression is red, telling the user that the “no” case still needs to be tried.

1040EZ calculations:

Presidential election? yes
1. Total wages 5132
2. Taxable interest 297

3. Adjusted gross =C4+C5

4. Parents? yes =IF(B7="yes",F7,5550) Line E 1500

5. Taxable income =C6-C7 √

Figure 4: Some cells require more than one test value to become completely tested, as this formula view with purple
cell borders and red and blue arrows between subexpressions shows.

Scenario 3: A template developer tests an income tax
spreadsheet for sale

It is well documented that many production spreadsheets contain bugs. To help address this
problem, a developer with a full suite of income tax spreadsheet templates for sale could use the
methodology to achieve organized test coverage of these income tax spreadsheets. This would
not only be valuable when first developing the spreadsheets, but also in making sure that each
formula change in subsequent years’ revisions had been entered and tested.

Replicated formulas

When the user has a collection of formulas that have been replicated, such as a teacher’s
spreadsheet of students’ course grades in a course of 100 students, testing each cell with a
formula replicated from another, previously-tested cell does not seem not productive. Instead,
what is needed is a way to track testing of each formula rather than each cell. The WYSIWYT
technology includes a way to do this that brings greater efficiency than cell-by-cell testing to
both the user and the system, and yet is as visual and straightforward to use as are the above
scenarios. See [Burnett et al. 1999] for details.

Burnett and Rothermel - 5 - December 5, 1999

Debugging

We have expanded the WYSIWYT technology so that it also helps the user track down bugs by
process of elimination. The user’s input into this process is that, besides entering a √ for a value
that is correct, she can also enter an X when she discovers a value that is incorrect. The system
“subtracts” the set of correct cells from the set of incorrect cells in a manner similar to dicing to
find and highlight the cells in which the bug could reside. See [Reichwein et al. 1999] for
details.

Additional information

The WYSIWYT technology is being developed at Oregon State University by Margaret Burnett,
Gregg Rothermel and several students, in collaboration with Curtis Cook and Thomas Green.
For more information on this project, see http://www.cs.orst.edu/~grother/vptestdebug.html.
Patents pending.

References

[Burnett et al. 1999] M. Burnett, A. Sheretov, and G. Rothermel, “Scaling Up a ‘What You See
is What You Test’ Methodology to Spreadsheet Grids,” 1999 IEEE Symposium on Visual
Languages, Tokyo, Japan, pp. 30-37, September 13-16, 1999.

[Reichwein et al. 1999] J. Reichwein, G. Rothermel, and M. Burnett, “Slicing Spreadsheets: An
Integrated Methodology for Spreadsheet Testing and Debugging,” Conference on Domain-
Specific Languages, Austin, Texas, pp. 25-38, October 3-5, 1999.

[Rothermel et al. 1998] G. Rothermel, L. Li, C. DuPuis, and M. Burnett, “What You See is What
You Test: A Methodology for Testing Form-Based Visual Programs,” International
Conference on Software Engineering, pp. 198-207, April 1998.

[Rothermel et al. 1999] K. Rothermel, C. Cook, M. Burnett, J. Schonfeld, T. Green, and G.
Rothermel, “WYSIWYT Testing in the Spreadsheet Paradigm: An Empirical Evaluation,”
TR 99-60-08, Oregon State University, Computer Science Department, December 1999.

