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Spreadsheet languages, which include commercial spreadsheets and various research systems,
have had a substantial impact on end-user computing. Research shows, however, that
spreadsheets often contain faults; thus, we would like to provide at least some of the benefits
of formal testing methodologies to the creators of spreadsheets. This article presents a testing
methodology that adapts data flow adequacy criteria and coverage monitoring to the task of
testing spreadsheets. To accommodate the evaluation model used with spreadsheets, and the
interactive process by which they are created, our methodology is incremental. To accommo-
date the users of spreadsheet languages, we provide an interface to our methodology that does
not require an understanding of testing theory. We have implemented our testing methodology
in the context of the Forms/3 visual spreadsheet language. We report on the methodology, its
time and space costs, and the mapping from the testing strategy to the user interface. In an
empirical study, we found that test suites created according to our methodology detected, on
average, 81% of the faults in a set of faulty spreadsheets, significantly outperforming
randomly generated test suites.
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D.2.6 [Software Engineering]: Programming Environments; H.4.1 [Information Systems
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1. INTRODUCTION
Spreadsheet languages, which are also known as form-based languages in
some of the research literature, provide a declarative approach to program-
ming, characterized by a dependence-driven, direct-manipulation working
model [Ambler et al. 1992]. Users of spreadsheet languages create cells,
and define formulas for those cells. These formulas reference values contained
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in other cells and use them in calculations. When a cell’s formula is
defined, the underlying evaluation engine calculates the cell’s value and
those of other affected cells (at least those that are visible to the user), and
displays new results.

Spreadsheet languages include, as a subclass, commercial spreadsheet
systems. These systems are widely used by end-users, for a variety of
computational tasks. The spreadsheet paradigm is also a subject of ongoing
research. For example, there is research into using spreadsheet languages
for matrix manipulation problems [Viehstaedt and Ambler 1992], for pro-
viding steerable simulation environments for scientists [Burnett et al.
1994], for high-quality visualizations of complex data [Chi et al. 1997], and
for specifying full-featured GUIs [Myers 1991].

Despite the end-user appeal of spreadsheet languages and the perceived
simplicity of the paradigm, research shows that spreadsheets often contain
faults. For example, in an early spreadsheet study, 44% of “finished”
spreadsheets still had errors [Brown and Gould 1987]. A more recent
survey of other such studies reported errors in 38% to 77% of spreadsheets
at a similar stage [Panko and Halverson 1996]. Of perhaps even greater
concern, this survey also covers studies of field audits of “production”
spreadsheets, those actually in use for day-to-day decision-making, and
these studies all reported errors in at least 10% of the spreadsheets
audited. Although the exact definition of “error” varied among these
studies, the emphasis in most cases was on formulas that produced
incorrect values. A possible factor in this problem is the unwarranted
confidence creators of spreadsheets seem to have in the reliability of those
spreadsheets [Wilcox et al. 1997].

In spite of this evidence, we find no discussion in the research literature
of techniques for testing spreadsheets. In fact, there has been only a little
work on testing in other paradigms that follow declarative models. In the
domain of functional and dataflow programming, there has been work on
specification-based testing (e.g., Kuhn and Frank [1997] and Ouabdesselam
and Parissis [1995]), but creators of spreadsheets rarely employ formal
specifications. There has also been some recent research [Azem et al. 1993;
Belli and Jack 1995; Luo et al. 1992] that considers problems of testing and
reliability determination for logic programs written in Prolog. However,
although the logic paradigm is like the spreadsheet paradigm in that both
are declarative, several features of the logic paradigm, such as the bidirec-
tional nature of unification and backtracking after failure, are so different
from the spreadsheet paradigm that the testing techniques developed for
Prolog cannot be applied to the spreadsheet paradigm.

On the other hand, there has been extensive research on testing impera-
tive programs (e.g., Clarke et al. [1989], Duesterwald et al. [1992], Frankl
and Weiss [1993], Frankl and Weyuker [1988], Harrold and Soffa [1988],
Hutchins et al. [1994], Laski and Korel [1993], Ntafos [1984], Offutt et al.
[1996], Perry and Kaiser [1990], Rapps and Weyuker [1985], Rothermel and
Harrold [1997], Weyuker [1986; 1993], and Wong et al. [1995]), and it is in
this body of work that the methodology presented in this article has its
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roots. However, significant differences exist between the spreadsheet and
imperative programming paradigms, and these differences have ramifica-
tions for testing methodologies. These differences can be divided into four
classes. The first class pertains to evaluation order. Evaluation of spread-
sheets is driven by data dependencies between cells, and spreadsheets
contain explicit control flow only within cell formulas. The dependence-
driven evaluation model allows evaluation engines flexibility in the sched-
uling algorithms and optimization devices they might employ to perform
computations. One common such optimization device is value caching. A
methodology for testing spreadsheets must be compatible with this flexibil-
ity, and not rely upon any particular evaluation order.

The second class of differences pertains to language characteristics’
impact on how precisely and how efficiently source code analysis can be
done. Techniques for statically analyzing code, such as dataflow analysis
and slicing, can be useful for testing (e.g., Duesterwald et al. [1992], Gupta
et al. [1996], and Harrold and Soffa [1988]), but algorithms for performing
these analyses on imperative programs are complicated by the presence of
dynamically determined addressing and aliasing [Landi 1992; Landi and
Ryder 1991]. Spreadsheets may index into arrays (grids) in formula refer-
ences; however, for most spreadsheet languages, such references can be
resolved at formula entry time.1 Spreadsheets may have aliases to the
extent that multiple names may refer to a single cell; however, for most
spreadsheet languages these aliases, too, can be resolved statically. Fur-
thermore, spreadsheet formulas do not contain loops, or definitions that
“kill” other definitions, factors that add to the expense of analyses of
imperative programs. A methodology for testing can take advantage of
these simplifying factors, and obtain more efficient and precise analyses
than are possible for imperative programs.

The third class of differences pertains to interactivity: spreadsheet
systems are characterized by incremental visual feedback that is inter-
twined with the program construction process. The most widely seen
example of this is the “automatic recalculation” feature. This incremental
visual feedback invites the use of testing methodologies that support an
incremental input and validation process. For example, when a user
changes a formula, the testing subsystem should provide feedback about
how this affects the “testedness” of each visible portion of the program.
This raises the issue of dealing with evolving spreadsheets while maintain-
ing suitable response time.

The fourth class of differences pertains to users of spreadsheet lan-
guages. Imperative languages are most commonly used by professional
programmers who are in the business of producing software. These pro-

1Even table lookup formulas can be analyzed at formula entry time [Burnett et al. 1999]. This
can be done by reasoning conservatively about entire groups of cells in tables, which avoids
having to determine the exact table entry to which a formula refers. The approach is
facilitated in spreadsheets due to the ease of grouping cells based on which formulas are the
same (replicated or shared) among the table’s cells.
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grammers can be expected to know something about testing, and to place a
high priority on doing a reasonably good job of testing. On the other hand,
spreadsheet systems are used by a variety of users, many of whom are not
professional programmers and have no interest in learning formal testing
methodologies. Our goal is to provide at least some of the benefits of formal
testing methodologies to these users.

This article presents a methodology for testing spreadsheets. The meth-
odology takes advantage of the factors just described to promote efficient,
precise analyses of spreadsheets, adapting data flow adequacy criteria,
coverage monitoring, and dependence-based impact analysis to the task of
testing spreadsheets. To accommodate the evaluation models used with
spreadsheets and the interactive process by which they are created, our
methodology is incremental, performing analysis and collecting the data
required for testing whenever a formula is edited. To accommodate the user
base of these languages, we provide an interface to the methodology that
does not require an understanding of testing theory. This is accomplished
through a fine-grained integration with the spreadsheet environment to
provide testing information visually.

2. BACKGROUND AND DEFINITIONS

2.1 Spreadsheet Languages

Users of spreadsheet languages “program” by specifying the contents of a
spreadsheet. The contents of a spreadsheet are a collection of cells; each
cell’s value is defined by that cell’s formula. As the user enters a formula it
is evaluated, and the result is then displayed. The best-known examples of
spreadsheet languages are found in commercial spreadsheet systems, but
there are also many research systems (e.g., Burnett and Gottfried [1998],

Fig. 1. Spreadsheet for calculating student grades.
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Chi et al. [1997], Leopold and Ambler [1997], Myers [1991], Smedley et al.
[1996], and Viehstaedt and Ambler [1992]) based on this paradigm.

In this article, we present examples of spreadsheets in the research
language Forms/3 [Burnett and Gottfried 1998]. Figure 1 shows a tradition-
al-style spreadsheet used to calculate student grades in Forms/3. The
spreadsheet lists several students and several assignments performed by
those students. The last row in the spreadsheet calculates average scores
for each assignment; the rightmost column calculates weighted averages
for each student; and the lower-right cell gives the overall course average
(formulas not shown).

Figures 3 and 4 show how a user could construct a graphical clock in
Forms/3. Figure 3 shows each cell with its formula. Clock consists of 13
cells, including two input cells (upper left) that could eventually be re-
placed with references to the system clock, one output cell (middle left), and
several cells used in intermediate calculations (right). (We use the term
input cell to refer to cells whose formulas contain only constants.) After the
programming is finished, the cells that calculate intermediate results can
be hidden, and other cells rearranged, to reach the user view shown in
Figure 4.

In this article, we consider a “pure” spreadsheet language model, which
includes ordinary spreadsheet-like formulas such as those described by the
grammar given in Figure 2, but excludes advanced programmer-oriented
features such as macros, imperative sublanguages, indirect addressing, and
recursion. The grammar shown in Figure 2 reflects a subset of Forms/3, a
Turing-complete spreadsheet language following this model [DuPuis and
Burnett 1997]. The subset shown uses ordinary spreadsheet formulas for
both numeric and graphical computations; the figures presented in this
article were programmed using this subset. From this grammar, it is clear

Fig. 2. Grammar for formulas in this article. A cell with no formula is equivalent to a cell
with formula BLANK; the result of evaluating such a formula is a distinguished value that we
term NOVALUE. The “else”-less version of an ifExpr (e.g., IF A5B THEN “A and B are the
same”) is simply a syntactic shortcut for the same formula with “ELSE BLANK” appended
(e.g., IF A5B THEN “A and B are the same” ELSE BLANK). Parsing ambiguities do not arise
in this simple language because multitoken subexpressions are always wrapped in parentheses.
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that the only dependencies between one cell and another are data depen-
dencies. Because of this fact, cells can be scheduled for evaluation in any
order that preserves these dependencies.

2.2 Evaluation Strategies for Spreadsheet Languages

The evaluation strategies used in spreadsheet languages have a great deal
of latitude regarding execution sequence, provided that all dependencies
are preserved. Thus, the evaluation order of the cells in a spreadsheet
depends on the data flow between source and sink cells and on whether the
evaluator is using an eager or a lazy evaluation strategy, and a variety of
optimizations and variations are possible. Eager evaluation is driven by
changes: whenever a value of cell X is changed, the change is propagated to
every cell that is affected by the change. For example, if a user edits cell X’s
formula, then if cell Y references X in its formula then Y is also recom-
puted, which in turn causes cells that refer to Y to be recomputed, and so
on. Determining which cells are affected is usually done conservatively, i.e.,
from a static perspective.

In contrast to this strategy, lazy evaluation is driven by output: the first
time a cell X is displayed, it is computed, and so is every cell that X needs. For
example, if cell X is moved onto the screen through window manipulations,

Fig. 3. Programming a clock in Forms/3.
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every cell that it needs is computed (and every cell that they need, and so
on) in order to finally calculate X. Whether X “needs” Y is usually
determined dynamically. For example, if X’s formula is “TRUE or Y,” then
the reference to Y will not be needed if the evaluation engine evaluates the
first operand before the second. It has been shown that lazy evaluation
produces the same answers as eager evaluation, provided that both termi-
nate. However, lazy evaluation computes fewer cells.

Because spreadsheet languages tend to be visual and to display the
current value of many of the cells, these values are often cached. This
means that an evaluation engine also needs to keep track of which cached
values are up-to-date if the user has started changing formulas. There are
several methods for doing so (which are surveyed in Burnett et al. [1998]),
but their mechanism is not relevant to the issues in this article.

In spreadsheet languages, some cells will be on the screen, while some
will not. There are both static and dynamic mechanisms for determining
which are on the screen. For example, in some languages it is possible to
statically “hide” cells; in most languages the user can also scroll or
otherwise move cells on and off the screen at runtime through direct
manipulation. Which cells are on-screen can influence the user’s testing
behavior, because it determines which input cells a user can notice and
attend to, and which output cells the user can see. In the case of languages
following lazy evaluation, which cells are on-screen also determines which
cells will be computed, since lazy evaluation is output-driven.

Fig. 4. The user view of the clock in Forms/3. On the input cells, formula tabs have been left
visible to encourage inputting new hour and minute values. The formula tab has been hidden
on the output cell.
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2.3 A Model for Spreadsheets

Test adequacy criteria provide help in selecting test data and in deciding
whether a program has been tested “enough.” Test adequacy criteria are
often defined on models of programs rather than on code itself. We have
created such a model for spreadsheet languages [Rothermel et al. 1997]; we
call our model a cell relation graph (CRG). A CRG is a pair (V, E), where V
is a set of formula graphs, and E is a set of directed edges connecting pairs
of elements in V. Figure 5 depicts the CRG for Clock .2

Each formula graph in V models flow of control within a cell’s formula,
and is comparable to a control flow graph representing a procedure in an
imperative program [Aho et al. 1986; Rapps and Weyuker 1985]. There is
one formula graph for each cell in the spreadsheet. The process of translat-
ing an abstract syntax tree representation of an expression into its control
flow graph representation is well known [Aho et al. 1986]; a similar
translation applied to the abstract syntax tree for each formula in a
spreadsheet yields that formula’s formula graph.3 For example, Figure 5
shows the formula graphs for the cells in Clock , delimited by dotted
rectangles. In these graphs, nodes labeled “E” and “X” are entry and exit
nodes, respectively, and represent initiation and termination of evaluation
of formulas. Nodes with multiple out-edges (represented as rectangles) are
predicate nodes. Other nodes are computation nodes. Edges within formula
graphs represent flow of control between expressions, and edge labels
indicate the value to which conditional expressions must evaluate for
particular branches to be taken. In Figure 5, we have added numeric labels
to the nodes to facilitate subsequent references.

The set E of edges in the CRG consists of cell dependence edges, which
model data dependencies between cells. Figure 5 depicts these edges by
dashed lines. Each edge encodes the fact that the destination cell refers to
the source cell in its formula; thus, the arrows show direction of dataflow.
Note that cell dependence information is typically available to evaluation
engines within spreadsheet systems as a consequence of the need to
evaluate formulas; thus, this information need not be specially calculated
in order to construct CRGs.

Cell dependence edges do not represent control flow; this distinguishes
the CRG from the control flow graphs and interprocedural control flow
graphs [Landi and Ryder 1992] used to represent procedures and programs,
respectively, in imperative programs. In a control flow graph or interproce-
dural control flow graph, an edge encodes information on execution order:
the fact that a node n2 is an immediate successor of a node n1 in such a
graph implies that execution of n2 immediately follows execution of n1. In a

2In addition to supporting test adequacy criteria, the CRG has also been used to support the
application of slicing-and-dicing algorithms to spreadsheets, for use in fault localization and
debugging [Reichwein et al. 1999].
3One language feature that merits special treatment in spreadsheet languages is the condi-
tional subexpression. Appendix A presents details on construction of CRGs for this language
feature.

A Methodology for Testing Spreadsheets • 117

ACM Transactions on Software Engineering and Methodology, Vol. 10, No. 1, January 2001.



cell dependence graph, the fact that formula graph F2 is an immediate
successor (along a cell dependence edge) of formula graph F1 does not imply
that execution of F2 immediately follows execution of F1; evaluation
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Fig. 5. Cell relation graph for Clock . Dotted rectangles enclose formula graphs. Solid edges
depict control flow within formulas, and dashed edges depict data dependencies between cells.
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engines might execute various other cells subsequent to F1 and prior to F2,
as long as the execution preserves cell dependencies.4

In fact, for evaluation engines following a lazy strategy, it is not possible
to determine control flow between cells statically. This is because the user’s
runtime navigations such as scrolling and rearranging windows are deter-
miners of which cells must be executed, since visibility on the screen is
what initiates execution. Hence, a static control flow graph of cells could
not model a spreadsheet’s execution under lazy evaluation.

Finally, we require a way to associate execution of formulas with CRG
components. Let F be a formula with formula graph F# , and let Fe and Fx be
the entry and exit nodes, respectively, of F# . An evaluation of F traverses a
path through F# , beginning at Fe and ending at Fx. We call this path the
execution trace for that evaluation. The existence of this execution trace is a
consequence of (and attests to) the fact that, unlike the CRG as a whole, a
formula graph does represent control flow, but only within a single formula.
As the definitions of formula graph nodes in the next section will make
clear, the granularity of the formula graph is sufficiently coarse that the
formula graph can correctly model control flow within a single formula,
regardless of whether evaluation is lazy or eager.

2.4 A Test Adequacy Criterion for Spreadsheets

Test adequacy criteria have been well researched for imperative languages,
and various criteria have been proposed (e.g., see Clarke et al. [1989],
Frankl and Weyuker [1988], Laski and Korel [1993], Ntafos [1984], Perry
and Kaiser [1990], and Rapps and Weyuker [1985]). In Rothermel et al.
[1997], we explored the application of several of these criteria to spread-
sheets. We argued that dataflow adequacy criteria (e.g., Duesterwald et al.
[1992], Laski and Korel [1993], Ntafos [1984], and Rapps and Weyuker
[1985]), which relate test adequacy to interactions between definitions and
uses of variables in the source code (definition-use associations), can be
particularly appropriate for spreadsheets.

There are several reasons for this appropriateness. The first reason
involves the types of faults that occur in spreadsheets, the largest percent-
age of which have been observed to involve errors in cell references [Panko
and Halverson 1996]. Data flow adequacy criteria directly address this
class of faults, whereas criteria analogous to the statement or decision
coverage criteria commonly used for imperative programs only indirectly

4Another graph that might be compared to the CRG is the program dependence graph (PDG)
[Ferrante et al. 1987]. However, there is little similarity between PDGs and CRGs. The CRG
uses control flow edges within formula graphs—these edges are not typically present in the
PDG at all. The CRG does not include control dependence edges, which are of central
importance in the PDG. Both graphs indeed use data dependence edges, but not at the same
level of granularity: in the PDG the data dependence edges are between nodes that represent
statements or basic blocks; in the CRG the data dependence edges are between cells. If the
CRG represented data dependence edges between the individual nodes in formula graphs,
then those edges would resemble those used in the PDG.
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test cell references. Second, it is easy to show, that for spreadsheets, as well
as for imperative programs, dataflow adequacy criteria can produce test
suites that are stronger than (subsume) criteria analogous to statement or
decision coverage criteria. A third advantage of dataflow criteria involves
their (relative) ease of application to spreadsheets. As mentioned in Section
1, the characteristics of spreadsheet languages allow algorithms for per-
forming data flow analysis or slicing of spreadsheets to be more efficient
and more precise than their counterparts for imperative languages (a fact
that shall become more clear in the next section). Thus, the effectiveness
benefits of dataflow testing can be realized, for spreadsheets, with less cost
than for imperative programs, removing an obstacle that could render it
less preferable to criteria based on statement or decision coverage.

To define a dataflow test adequacy criterion for spreadsheets, one ap-
proach would be to adapt the “all-uses” dataflow test adequacy criterion
defined for imperative programs [Rapps and Weyuker 1985]. The all-uses
criterion requires that test inputs be found that cause each executable
definition-use association in the program to be exercised (“covered”) by at
least one path. Applied to spreadsheets, however, this criterion has draw-
backs. Since end-users are not trained software engineers, it is unreason-
able to assume that they will notice or pass judgment on every output that
appears, even during a test. For example, in testing the formula for a
student’s course grade, the user may not attend to whether the overall
average of all students in the class is correct. Further, in a spreadsheet,
cells may be hidden or off the screen. Depending on the evaluation engine
employed and the dependencies among cells, it is possible that a set of test
inputs could be applied to input cells, causing definitions to reach uses that
occur in hidden or off-screen cells, even though the computation involving
these definitions and uses may not affect any visible output cells. Under
the all-uses criterion, however, any definition-use associations exercised by
a set of test inputs are considered validated, whether or not they have been
observed to participate in the production of a valid output.

Instead, following the notion of the “output-influencing-All-du” adequacy
criterion of Duesterwald et al. [1992], we define a data flow test adequacy
criterion for spreadsheets in terms of definition-use associations that
influence cell outputs. To define this criterion precisely for spreadsheets,
however, we must modify several of the basic definitions of testing termi-
nology used in the imperative programming context. In the remainder of
this section we provide precise definitions, while explaining the differences
between these and previous definitions, and the factors in spreadsheet
testing that motivate these different definitions.

First, we define a test case for spreadsheet S to be a tuple ~I, C!, where I
is a vector of input values (constant formulas) whose elements correspond
to the input cells in S, and C is a cell whose value the user has examined
for correctness under that input configuration. In this context, a test (the
application of a test case by the user) is an explicit decision by the user that
C ’s value is correct or incorrect, given the current configuration I of input
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cell values. The user’s act of communicating this correctness is a valida-
tion. After the user performs a validation act on C, C is said to be
validated.

These definitions do not imply that to perform a test (to apply a test
case), the user must first enter values into all input cells. Rather, the
application of a test case involves entering values into zero or more input
cells, while retaining the values currently contained in other input cells,
and then validating (or judging incorrect) a cell value. One reason these
definitions differ from those used in the imperative world is that they must
formally account for the fact that spreadsheet users may not attend to any
or all of the affected outputs; hence the notion of a test must include an
explicit decision by the user on any one of the affected cells. A second
reason is that the user’s act of communicating a decision is the most
important trigger for invoking the algorithms that compute coverage. A
third reason these definitions differ is that they facilitate incremental
testing, allowing a test to involve entering values into only a small subset
of the potentially enormous set of input cells in a spreadsheet.

Next, we define definition-use associations for spreadsheets. In spread-
sheets, cells serve as variables, and the value for cell C can be defined only
by expressions in C ’s formula. Let C be a cell in spreadsheet S, with

formula F and formula graph F# . Because formula graphs that do not
contain predicate nodes always consist of exactly three nodes, if C is an

input cell, then F# contains only one node other than entry and exit nodes,
and that node is a definition of C. If C is not an input cell, then each

computation node in F# that represents an expression referring to cell D is a

c-use (computation use) of D and a definition of C. Each edge in F# that has
as its source a predicate node n such that n represents a conditional
expression referring to another cell D is a p-use (predicate use) of D.

Let S be a spreadsheet with CRG G. A definition-use association (du-
association) links a definition in G with a use in which that definition may
reach. Two types are of interest. A definition-c-use association is a triple
~n1, n2, C!, where C is a cell, n1 is a definition of C, and n2 is a c-use of C.
A definition-p-use association is a triple ~n1, ~n2, n3!, C!, where C is a cell,
n1 is a definition of C, and ~n2, n3! is a p-use of C.

There are three points to consider about these definitions. First, in our
definition of du-associations, the distinction between p-uses and c-uses lets
us track whether a test suite that exercises all du-associations in a
spreadsheet also exercises both outcomes of each predicate that contains a
cell reference. For example, if a cell has a formula such as “if x .100 then
100 else x ,” treating the edges out of “x.100 ” as p-uses enables us to
track whether both the “then ” and the “else ” clauses have been executed.

Second, a subtle difference between these definitions of du-associations
and their analogous definitions for imperative programs is that they do not
require that a path exist from the definition to the use in the CRG that is

A Methodology for Testing Spreadsheets • 121

ACM Transactions on Software Engineering and Methodology, Vol. 10, No. 1, January 2001.



“definition-clear”; that is, they do not specify that the defined cell cannot be
redefined (“killed”) between the definition and the use. In fact, the defini-
tions do not require a reference to “paths through the CRG” at all. Such
requirements are not necessary in the pure spreadsheet languages that we
are considering, because in the absence of state-modifying constructs,
multiple definitions of a cell do not arise along any particular path in the
CRG. This difference is one factor that facilitates more efficient analysis of
spreadsheets than of imperative programs, as will be seen in Section 3.1.5

Third, even though our CRG is not a control-flow graph, our definition of
du-associations, like the definition of du-associations for imperative pro-
grams in Rapps and Weyuker [1985], specifies static du-associations,
defining these associations in terms of a graph representing a program. In
imperative programs, such du-associations can be determined by standard
static reaching-definitions data flow analysis such as that performed by
many compilers; in spreadsheets, a similar approach applies. However, in
imperative programs, not all static du-associations are executable: there
may be no assignment of input values to a program that will cause a
definition of variable v to reach a particular use of v. Determining whether
such du-associations are executable is provably impossible in general and
frequently infeasible in practice [Frankl and Weyuker 1988; Weyuker
1993]; thus, data flow test adequacy criteria typically require that test data
exercise (cover) only executable du-associations. In this respect, our crite-
rion (as we shall show) is no exception. Spreadsheets, though typically
“simpler” in many ways than programs in imperative languages, can indeed
contain nonexecutable du-associations; we further examine issues involving
nonexecutable du-associations in spreadsheets in Section 4.4.3. In the rest
of this article, to distinguish the subset of the static du-associations in a
spreadsheet that are executable, we refer to them as executable du-
associations.

We next require a definition of what it is for a test case to exercise (cover)
a du-association. This definition in turn requires (1) a definition of what it
is for a test case (when applied) to “execute” that du-association, and (2) a
definition of what it is for a du-association to “influence a cell output.”

Toward (1), we first define an active definition as the definition, in a cell’s
formula graph, that was executed (and thus, contributed the current value
to the cell that contains it) when that cell was last evaluated. Similarly, we
define an active use as a use, in a cell’s formula graph, that was executed
(and thus, contributed to the computation of the current value in the cell)
when that cell was last evaluated. (If the use is a p-use ~n2, n3!, this
implies that the predicate node n2 was evaluated such that n3 was the next
node executed.) Let t 5 ~I, C2! be a test case for spreadsheet S. A du-
association ~n1, n2, C1! (or ~n1, ~n2, n3!, C1!) in S is executed by t if the

5Nevertheless, to accommodate spreadsheets containing “impure” features such as imperative-
language macros, the definitions can be stated in terms of “paths through CRGs” and
“definition-clear paths,” and thereby support dataflow testing of those spreadsheets.
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presence of input values I in the input cells in S caused (dynamically) n1

and n2 (or n1 and ~n2, n3!), to be active. Note that the absence of
definitions that “kill” other definitions, and the dependence-driven evalua-
tion model in spreadsheets, implies that if n1 and n2 (or n1 and ~n2, n3!)
are both active, n1 “reaches” n2 (or n1 and ~n2, n3!)—that is, n1 has
provided the current definition of C1 that is used as a value for C1 in n2

when the expression containing n2 is evaluated.
Next we consider (2), what it is for a du-association to “influence a cell

output.” Informally, for a du-association to influence the output of cell C2,
it must directly or transitively contribute to the computation of the defini-
tion of C2. More formally, let S be a spreadsheet containing du-association
~n1, n2, C1! (or ~n1, ~n2, n3!, C1!); we say that ~n1, n2, C1! (or ~n1, ~n2,
n3!, C1!) directly influences the output of cell C2 if n1 and n2 (or n1 and

~n2, n3!) are active, and if C2 is the cell containing n2 (or ~n2, n3!). We then
say (recursively) that ~n1, n2, C1! (or ~n1, ~n2, n3!, C1!) influences the
output of cell C2 if ~n1, n2, C1! (or ~n1, ~n2, n3!, C1!) directly influences
the output of C2, or if ~n1, n2, C1! (or ~n1, ~n2, n3!, C1!) influences the
output of some cell C3 that directly influences the output of C2.

Next, we say that test case t 5 ~I, C2! exercises (covers) du-association
~n1, n2, C1! (or ~n1, ~n2, n3!, C1!) if the following three conditions hold: (i)
t executes ~n1, n2, C1! (or ~n1, ~n2, n3!, C1!), (ii) ~n1, n2, C1! (or ~n1, ~n2,
n3!, C1!) influences the output of C2, and (iii) the output of C2 is explicitly

judged by the user to be correct under input configuration I.
Note that the CRG edges are not explicitly used in these definitions,

since the most straightforward definitions are directly in terms of the
relationships involved. However, other adequacy criteria that relate di-
rectly to CRG edges are also possible, and these might be defined most
easily in terms of CRG edges.

Given the above definitions, we can define our adequacy criterion. Let S
be a spreadsheet, and let T be a test suite for S. T is OI-All-du-adequate for
spreadsheet S if and only if, for each executable du-association x in S,
there exists at least one test case t 5 ~I, C! [ T that exercises x. For
brevity, in the rest of this article we abbreviate “OI-All-du-adequate” as
“du-adequate.”

3. A METHODOLOGY FOR TESTING SPREADSHEETS

In Section 1, we described four classes of differences between the spread-
sheet language paradigm and traditional imperative paradigm. To accom-
modate these differences, we have developed a testing methodology based
on the use of the du-adequacy criterion that is incremental, performing
analysis and collecting the data required for testing as the program is being
created. We have integrated support for this methodology into the spread-
sheet environment at a fine granularity, providing the following function-
alities:
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—The ability to incrementally determine the (static) du-associations in an
evolving spreadsheet whenever a new cell formula is entered.

—The ability to automatically track execution traces, which provide the
information necessary to determine the executable du-associations that
currently influence output values.

—A user-accessible facility for pronouncing outputs “validated” at any
point during spreadsheet development, and the abilities both to deter-
mine the du-associations that should be considered exercised as a result
of this validation and to immediately communicate to the user how well
exercised the visible section of the spreadsheet is.

—The ability to determine the (static) du-associations affected by a spread-
sheet change, and immediately depict their altered validation status in
the visible section of the spreadsheet.

—The ability to recalculate (static) du-associations and validation informa-
tion when an entire preexisting spreadsheet is loaded, or when a large
portion of a spreadsheet is modified by a single user action.

We next discuss how our methodology provides these functionalities to
spreadsheet languages. We present the material in the context and se-
quence of an integrated spreadsheet development-and-testing session.

3.1 Task 1: Collecting Du-Associations

Suppose, starting with an empty spreadsheet, that the user begins to build
the Clock application discussed in Section 2.1 by entering cells and
formulas, reaching the state shown in Figure 6. Assume that the user does
not change any formulas, but simply continues to add new ones. (We
remove this restriction later.)

Because it would be expensive to exhaustively compute the du-associa-
tions for the entire spreadsheet after each new formula is added, in our
methodology these are computed incrementally. Several algorithms for
incremental computation of data dependencies exist for imperative pro-
grams (e.g., Marlowe and Ryder [1990] and Pollock and Soffa [1989]), and
we could adapt one of these algorithms to our purpose. For example, we
could place all definitions and uses in the new formula on a worklist, and
propagate them forward and backward along CRG edges. However, there
are two attributes of spreadsheet systems that allow a more efficient
approach.

First, as described in Section 2.4, in spreadsheet languages the syntax of
cell formulas ensures that all definitions of C appear in C ’s own formula,
and none of these definitions may be “killed” by any other definition.
Second, in spreadsheet systems, the evaluation engine must be called
following each formula edit to keep the display up-to-date, visiting at least
all cells that directly reference the new cell (which we will term the direct
consumers of the new cell) and all visible cells that are directly referenced
by (are the direct producers of) the new cell. At this time, the engine can
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record local definition-use information for the new cell, that is, the defini-
tions and uses that are explicit in the cell’s formula. Together, these two
attributes mean that (static) du-associations can be incrementally collected
following the addition of a cell C simply by linking all definitions in C with
all uses of C in direct consumers of C, and linking all definitions in direct
producers of C with all uses of those cells in C.6

A hash table can efficiently store the following data for each cell C:
C.DirectConsumers, the cells that reference C; C.DirectProducers, the cells that
C references; C.LocalDefs, the local definitions in C ’s formula; C.LocalUses,
the local uses in C ’s formula; C.ValidatedID and C.UnValidatedID, integer
flags whose uses are described later; C.DUA, a set of pairs (du-association,
exercised) for each du-association ~d, u! such that u is in C.LocalUses, and
such that exercised is a boolean that indicates whether that association has
been exercised; C.Trace, which records dynamic trace information for C;
and C.ValTab, which records validation status. It is reasonable to rely on
the formula parser and the evaluation engine to provide the first four of
these items, because they are already needed to efficiently update the
display and cached value statuses after each edit. The remaining items can
be calculated by the testing subsystem.

Algorithm CollectAssoc of Figure 7 is triggered when a new formula is
added, to collect new du-associations. Lines 2–5 collect du-associations
involving uses in C. Lines 6–9 collect du-associations involving definitions
(of C) in C. For example, referring back to Figure 6, suppose that the most

6See Marlowe and Ryder [1990] for a different view of incremental computation of du-
associations as applied within the imperative language paradigm.

Fig. 6. Clock at an early stage. Part of the spreadsheet has been entered.
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recent formula entered is that for cell minutey . Note that its value is
displayed, even though the spreadsheet has not been completely entered;
when the evaluation engine is triggered to display this value, it collects
C.DirectConsumers, C.DirectProducers, C.LocalDefs, and C.LocalUses for
minutey (as done previously for the other cells on display when their
formulas were entered). Called with cell minutey , CollectAssoc employs
this information to collect six new du-associations, described using the node
numbers of Figure 5 as: (2,(19,20),minute ), (2,(19,21),minute ),
(2,20,minute ), (2,21,minute ), (20,50,minutey ), and (21,50,minutey ).

CollectAssoc runs in time O~ud~DirectProducers 1
DirectConsumers!!, where DirectProducers and DirectConsumers are the
number of direct producers and direct consumers respectively of C, and u
and d are the maximum number of uses and definitions per cell, respec-
tively, in those cells. In practice, u and d are small, bounded by the
maximum length of a single formula, which is constant-bounded in most
spreadsheet languages. In this case the algorithm’s time complexity is
O~DirectProducers 1 DirectConsumers!.

3.2 Task 2: Tracking Execution Traces

To track execution traces, which enable the incremental computation of
du-associations that have been exercised, it is sufficient to insert a probe
into the evaluation engine. When cell C executes, this probe records the
execution trace on C ’s formula graph, storing it in C.Trace, adding only
O(1) to the cost of execution. For example, in the case of Clock , at the
moment depicted in Figure 6, the execution trace stored for cell minutey ,
described in terms of Figure 5’s node numbers, is (18,19,20,22). If the cell is
subsequently reevaluated, the old execution trace is replaced with the new
one. Storing only the most recent execution trace in C.Trace is sufficient for
coverage computation because the cumulative coverage in C.DUA is up-
dated incrementally during validation, as we shall describe in our discus-
sion of Task 3.

3.3 The Impact of Tasks 1 and 2 on Spreadsheet Efficiency

The importance of the time complexity of our testing methodology should
not be underestimated, because unlike previous approaches to automated

Fig. 7. Algorithm for Task 1, collecting (static) du-associations.
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testing support, the costs of our testing algorithms are borne by the user
during program entry and execution. Thus, for viability with spreadsheet
users, it is important for any costs that are noticeable to always result in
immediate, visible benefits.

Tasks 1 and 2 are necessary preparatory tasks for user testing, but they
do not themselves produce any visible benefits for users. Thus, their impact
on efficiency is critical in two ways: First, if these “rewardless” preparatory
tasks slowed the user down in entering formulas or seeing results, the user
would probably simply turn off the testing subsystem. Second, if imple-
menting this testing methodology in a spreadsheet language precluded use
of a particular evaluation strategy or of value-caching optimizations, it
might not be viable for commercial use.

Task 1 is invoked whenever a new formula is typed in. Its time complex-
ity of O~DirectProducers 1 DirectConsumers! is no more than the order
required by most evaluation engines’ cell traversal needed to maintain a
correct display and process cached values when a new formula is added—
the event that triggers CollectAssoc . To see why this is true, consider the
possible evaluation engine strategies. As discussed in Section 2.2, the two
overall strategies possible are eager evaluation, in which the new formula’s
result is “pushed” to the cell’s consumers, and lazy evaluation, in which
visible cells “pull” results from their producers when needed for output.
Hence, eager evaluation must read the direct producers in order to compute
the result of the new formula, and must access the consumers (both direct
and transitive) in order to push the new result along (which also ensures
that the value cache is up-to-date).

Lazy evaluation also must read the direct producers in order to compute
the new result and display it, because a cell must be on the screen to be
edited. However, under lazy evaluation there are several possibilities for
how to manage the cache information, and this determines whether the
direct consumers will be accessed. The most widely used value-caching
mechanism with lazy evaluation is lazy evaluation with eager marking
(LazyEM), in which consumers of a newly computed result are eagerly
marked out-of-date (but not actually recomputed until needed, because
evaluation itself is lazy).7 LazyEM thus, like eager evaluation, accesses all
consumers (both direct and transitive).

Although these are the two evaluation approaches widely used for
languages in this class, and both require at least O~DirectProducers 1
DirectConsumers! time, other approaches are possible that instead access
consumers visible on the screen (both direct and transitive), some of whose
bounds are greater and some fewer than the total number of visible and
nonvisible direct consumers. See Burnett et al. [1998] for a description and
performance comparison of eager evaluation and LazyEM, as well as
several other variations on lazy evaluation, in the context of a class of

7The LazyEM algorithm is formally presented and analyzed in Hudson [1991], in which it is
shown to be optimal in the number of computations performed, although not optimal in
overhead.
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visual languages that includes spreadsheet languages. The presence of
these possibilities shows that O~DirectProducers 1 DirectConsumers! is
not a lower bound for spreadsheet evaluation and cache maintenance.
However, we have found reports only of eager evaluation and LazyEM
being actually used to respond to the trigger of a new formula entry, and
O~DirectProducers 1 DirectConsumers! is less than their time costs. This
allows the cost of collecting the du-associations to potentially be masked by
the cost of evaluation activity, at least under these two widely used
evaluation approaches.

Regarding Task 2, we have already pointed out that this task is accom-
plished simply by inserting a probe into the evaluation engine, at a cost of
O(1), so we turn our attention to the issue of compatibility (in terms of
correctness) with various evaluation strategies. The following discussion
explains why our approach to Task 2 functions correctly for all varieties of
evaluation engines—i.e., whether the engine eagerly or lazily evaluates
cells, following any dependence-preserving evaluation sequence, all cells
have associated with them their most recent execution trace.

The correctness of this approach for any evaluation engine rests upon two
attributes of this strategy. First, each cell’s execution trace is a set rather
than a list, rendering any difference in order of execution irrelevant.
Second, the granularity of the nodes in the formula graph (and hence in the
execution trace) is coarser than the level at which subtle differences among
evaluation approaches occur.

To illustrate the second attribute, consider execution of C. C ’s entry
point and exit point (both of which are unique) are by definition always
executed. If C ’s interior (nonentry/exit) nodes do not contain any condition-
als (“if” expressions) then there is only one interior node, which contains
the entire expression and which, because it is executed at least in part, is
recorded in the trace. On the other hand, if there are conditionals, the
strategy is the same eager or lazy—execute the condition node and either
the “then” or the “else” node but not both. (Although it may seem that eager
evaluation would execute both the “then” and the “else,” this could lead to
runtime errors, and hence even eager approaches employ “short circuit”
evaluation to execute conditionals. An example of a formula that must be
executed lazily to avoid such runtime errors is “if A150 then 0 else 10/A1.”)

Note, that, due to the fact that the execution traces are stored for each
cell, an evaluation engine’s particular caching optimizations do not change
the execution traces. If cell D is executed because cell C ’s execution
requires it, there are only two possibilities: either D has a cached value or
it does not. If D has a cached value, then D ’s stored execution trace is still
up-to-date. If D does not have a cached value, then D will be executed and
its execution trace stored. In neither case does the execution of D affect the
execution trace of C. Hence, whether D was executed now or at some
previous time does not change the trace stored for C or the trace stored for D.
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3.4 Task 3: Pronouncing Outputs “Validated”

In this section, we show how the data collected in Tasks 1 and 2 can be
used to provide test adequacy information to the user in a way that
requires no understanding of formal notions of testing, and uses visual
devices to draw attention to untested sections of the evolving spreadsheet.

In the desktop clock programming scenario, suppose that the user looks
at the values displayed on the screen and decides that the minuteHand cell
contains the correct value. To document this fact, the user clicks on the
validation tab in the upper right corner of that cell. As Figure 8 shows, one
immediately visible result of this action is the appearance of a checkmark
in the validation tab. If the user enters another input in cell minute ,
minuteHand ’s validation checkmark changes to a question mark as in
Figure 9, which means the current value has not been validated but some
previously displayed value has. (Any evaluation engine must visit at least
on-screen consumers of the new input to keep the displayed values up-to-
date, so changing the checkmark to a question mark during these visits
adds only O(1) to the cost of each.) The third possible appearance, a blank
validation tab, means no validations have been done since the last formula
change to C or to a noninput cell affecting C. Thus, the validation tab keeps
the user apprised of which cells have been explicitly validated and which
have not, given the current collection of formulas.8

8Of course, in validating a cell output, a user may make an incorrect judgment. The “oracle
problem” [Weyuker 1982] of determining whether or not an output is correct is significant, and
with spreadsheets, where specifications typically do not exist, may be less amenable to
solution than with traditional imperative programs. This problem, however, exists widely, and
is also present with the ad hoc approaches currently utilized by spreadsheet users.

Fig. 8. The evolving Clock spreadsheet at an early stage, after the minuteHand cell has been
validated.
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Propagating the implications of the user’s validation involves test ade-
quacy. Whenever a du-association influences the production of a validated
value, the exercised flag for that du-association (the second item of data
kept for each du-association in the .DUA set for the cell in whose formula
the use occurs) is set to “true .” The percentage is then calculated of the
du-associations, whose uses occur in the cell, that have been exercised. This
percentage is used to determine the cell’s border color on a continuum from
red (untested) to blue (100% of the du-associations whose uses occur in the
cell having been exercised). (In this black-and-white article, the continuum
is light gray to black.) With each validation that exercises a previously
unexercised du-association, the border becomes less red (darker in these
figures), indicating a greater degree of “testedness” for that cell. This visual
feedback appears in all cells that contributed to the computation of the
value in the validated cell.

In the example shown in Figure 8, the computation of minuteHand ’s
validated value involved two of the four du-associations that end in
minutey , two of the seven du-associations that end in minuteHand , and
four of the 13 du-associations that end in minutex . Thus, because the user
validated minuteHand , the cell borders were darkened using these frac-
tions. Input cells are, by definition, fully exercised. When borders are
entirely blue, the user can see that each cell reference pattern (du-
association) has been tested (i.e., exercised with validation) at least once.

At the point reached in Figure 8, the user has been performing tasks
(entering formulas and validating) at the granularity of cells, which is the
usual granularity for spreadsheet tasks. But, as we have pointed out, the
system’s reasoning about testedness is actually taking place at the granu-
larity of du-associations (patterns of cell references, in spreadsheet users’
terminology). Figure 9 shows how the system can provide help to a user
puzzled as to how to achieve the desired blue borders, by explicitly
depicting which cell reference patterns (du-associations) still need to be
tested.

As the figure shows, the user can display arrows for any cell, in order to
see cell reference patterns (du-associations). These arrows point from
definitions to uses and are colored using the same scheme as the borders.
For example, the four du-associations involving uses of minute in minutey
are depicted by three arrows. The top in-arrow represents definition-p-use
associations (2,(19,20),minute ) and (2,(19,21),minute ), one of which has
been exercised and one of which has not; hence that arrow is purple (50%
blue and 50% red). The middle in-arrow represents definition-c-use associ-
ation (2,20,minute ), which was exercised by the previous validation. The
bottom in-arrow, representing definition-c-use association (2,21,minute ), is
red because it has not yet been exercised. The user can see arrows at this
granularity for any visible formula. When the user undisplays a formula, as
for cell minutex , du-association arrows pointing into and out of that cell
coalesce, thereby summarizing at the granularity of cells. The fact that the
arrows are colored makes explicit which cell reference patterns still need to
be tested. As the red (pale gray) bottom arrow into cell minutey shows, one
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way to darken minutey ’s border color would be for the user to next choose
a value of minute that exercises the “else” clause in minutey , and then
validate one of the cells influenced by the du-association from minute to
the “else” clause.

Figure 10 displays our algorithm Validate , which is invoked when the
user pronounces a displayed value valid. The algorithm uses the du-
association information and execution traces, previously calculated and
stored as discussed in the descriptions of Tasks 1 and 2, to calculate the
du-associations that influence C ’s current value, and to update borders of
participating cells.9 As the algorithm proceeds, it adds to stored .DUA data
that indicates the du-associations that have influenced validated cells thus
far. This coverage information is accumulated and retained across a succes-
sion of tests, even though cell execution traces change as subsequent tests
are applied.

Variable ValidatedID, referenced in the algorithm, can be set to 0 when
the spreadsheet environment is first activated. Then, when cells are
created or added to the spreadsheet, their .ValidatedID fields are initial-
ized to 0. On each invocation of Validate , ValidatedID is incremented

9A generalization of this algorithm related to the approach of Duesterwald et al. [1992] uses
slicing to locate the expressions that contribute to the computation of the validated output,
and identifies the du-associations involved in the computation from that slice. This general-
ized approach is applicable to languages with recursion, iteration, and redefinitions of
variables.

Fig. 9. The evolving Clock spreadsheet after a new value has been entered into the Minute
cell, and after the user has clicked on cells to display their arrows.
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(line 1). The .ValidatedID fields for all cells visited are assigned this value
of ValidatedID, which prevents duplicate visits to the same cell.10

The use of ValidatedID ensures that ValidateCoverage is called no
more than once per cell, and that Validate terminates in worst-case time
proportional to the number of du-associations that have influenced a
validated cell. Because the set of uses in a cell’s trace corresponds to a set
of definitions in that cell’s direct producers, which in turn lead to that cell’s
indirect producers, the cost of validation is bounded by the number of direct
and transitive producers of a cell. This is less than or equal to the cost of
calculating the cell’s value the first time (when no reusable values are
present in the cache). However, the algorithm is triggered by a user
interaction that does not require evaluation, so, unlike the other algo-
rithms we have presented, its cost cannot be masked by the cost of the
evaluation process.

3.5 Task 4: Adjusting Test Adequacy Information

So far, we have focused on how our methodology handles cell formulas as
they are added to a spreadsheet. We now consider the other basic edits
possible with spreadsheets, namely, deleting a cell or changing a cell’s
formula. Changes to a constant-formula cell are equivalent to the applica-
tion of a new test input (which may or may not be followed by validations
by the user), and require no action beyond that involved in recalculating
execution traces as discussed under Task 2. Deletion of a cell is equivalent
to modifying that cell’s formula to BLANK. Thus, we need only consider
modifications to nonconstant formulas.

Suppose that the user has done quite a bit of testing, and has discovered
a fault that requires a formula modification with far-reaching conse-
quences. The user may believe that the spreadsheet is still fairly well

10By using an integer rather than a boolean, and incrementing it on each invocation of the
algorithm, we avoid the need to initialize the flag for all cells in the spreadsheet on each
invocation. We assume that ValidatedID will not overflow, to simplify the presentation.

Fig. 10. Algorithm for Task 3, updating test adequacy information following a validation
action.
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tested, and not realize the extent to which the modification invalidates
previous testing.

To address this lack of awareness, a system must immediately reflect the
new test adequacy status of the spreadsheet whenever a cell is modified.11

To accomplish this, the system must (1) update C ’s du-association and
execution trace information, and (2) update the exercised flags on all
du-associations that may be affected by the modification, allowing calcula-
tion and display of new border and arrow colors to reflect the new
“testedness” status of the spreadsheet. Validation tab statuses on visited
cells must also be adjusted, changing all checkmarks to question marks if
the cell retains any exercised du-associations after affected du-associations
have been reset, or to blank if all the cell’s exercised flags are now unset.
For example, in the completed Clock spreadsheet, if the user changes cell
minutex ’s formula, then the du-associations involving minutex , and the
validation statuses for minutex , minuteHand , and theClock , must all be
adjusted.

Our methodology handles item (2) first, removing the old information
before adding the new. Let C be the modified cell. We use a conservative
approach that recursively visits potentially affected cells. The algorithm,
UnValidate , given in Figure 11, is similar to Validate , but instead of
using dynamic information to walk backward through producers, it uses
static information to walk forward through consumers. As the algorithm
walks forward, it changes the exercised flag on each previously exercised

11In this context, the problem of interactive, incremental testing of spreadsheets resembles the
problem of regression testing imperative programs, and we could adapt techniques for
incremental dataflow analysis (e.g., Marlowe and Ryder [1990] and Pollock and Soffa [1989])
and incremental dataflow testing of imperative programs (e.g., Gupta et al. [1996], Harrold
and Soffa [1988], and Rothermel and Harrold [1994]) to generalize our approach. This
generalized approach would apply to spreadsheet languages in which cell references can be
recursive or in which formulas contain iteration. In the absence of such features, the simpler
approach that we present here suffices.

Fig. 11. Algorithm for Task 4, updating test adequacy information following a modification.
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du-association it encounters to “false ,” and keeps track of each cell visited
in AffCells. On finishing the work for all the cells, the algorithm updates
the border and arrow colors and validation tab for each cell in AffCells.

At this point, the du-association and trace information stored with C can
be updated. First, all stored du-associations involving C are deleted; these
du-associations are found in the information stored for C and for cells in
C.DirectConsumers. This deletion also guarantees that du-associations that
end in C are no longer marked “exercised.” Having removed the old
du-associations, it is necessary only to reinvoke CollectAssoc as de-
scribed in Section 3.1 to add new associations. Finally, stored execution
traces are automatically updated via the evaluation engine as described
earlier.

Because UnValidate ’s processing is consumer-driven, then as with Task
1, the cell visits required by it are already required for display and value
cache maintenance under eager evaluation and under LazyEM, but not
necessarily by other evaluation engines that may be possible. However, in
the cases of eager evaluation and LazyEM, the time cost of the algorithm
increases only by a constant factor the cost of other work being performed
by the environment when a formula is edited.

3.6 Task 5: Batch Computation of Information

Test information can be saved when a spreadsheet is saved; then, when the
spreadsheet is reloaded later for further development, it is not necessary to
analyze it exhaustively to continue the testing process. Still, there are some
circumstances in which it may be necessary to calculate du-association
information for a whole spreadsheet or section of a spreadsheet, such as
when the user does a block copy/paste of cells, or imports a spreadsheet
from another environment that does not accumulate the necessary data.
One possible response to such an action is to iteratively call the Collec-
tAssoc algorithm presented earlier for each cell in the new spreadsheet
section. This approach, however, may visit cells more times than necessary.

Figure 12 presents a more efficient approach, BatchCollectAssoc , that
takes an entire set U of cells as input, collects (from the spreadsheet
environment) the set V of cells that are direct producers of cells in U, and
then makes a single pass over V to update information on du-associations
and validation status.12 Although this algorithm has the same worst-case
runtime as CollectAssoc , when there are interrelationships among the
cells its set-driven approach allows it to eliminate some duplicated visits to
cells.

12Another approach to this problem is to propagate definitions forward, and uses backward,
across flow and cell dependence edges in the CRG; this approach applies to spreadsheet
languages in which cell references can be recursive or in which formulas contain iteration or
redefinitions of variables. In the absence of such features, the simpler approach that we
present here is more efficient.

134 • G. Rothermel et al.

ACM Transactions on Software Engineering and Methodology, Vol. 10, No. 1, January 2001.



3.7 Visual Representation Devices

The visual representation of testedness used in this article reflects three
constraints on the visual representation that we believe to be important for
integration into spreadsheet environments. We derived these constraints
using representation design metrics drawn from literature on cognitive
aspects of programming [Green and Petre 1996; Yang et al. 1997]. The
constraints we placed upon the visual representation are that first the
visual representation should be frugal enough of screen space that it does
not significantly decrease the number of cells that can be displayed.
Second, the visual representation should maintain consistency with the
current formulas in the visible cells. Third, the visual representation
devices should be accessible to as wide an audience as possible, including
those with mild visual impairments.

In the prototype used to create the figures in this article, we used the
following representation devices to satisfy these constraints. To satisfy the
first constraint, we chose to encode testedness information with cell border
colors rather than display it in textual summaries, and to encode validation
status with the presence or absence of checkmarks or question marks. The
auxiliary colored arrows are optional and transient; they can be displayed
or undisplayed by clicking on a cell, and do not permanently occupy screen
space.

To satisfy the second constraint, the display of testedness is automati-
cally updated whenever any action by the user or by the system changes
testedness status. Thus, outdated testedness information is never left on
the screen.

To satisfy the third constraint, we selected border colors along a red-blue
continuum to be used against the usual white background for spreadsheets.
The colors red and blue are easily discriminated [Christ 1975] and because,
due to the physiology of the human eye, red stands out while blue recedes
[Shneiderman 1998], they further our goal of drawing users’ attention to
untested cells. The blue can also be desaturated to enhance this effect.
Also, because red and blue differ in two of the three RGB components of
screen color, this device should be usable by some red-deficient or blue-
deficient users [Murch 1984]; the gray-black continuum of this article is
also an option for color-deficient users.

An additional visual device we employed to emphasize the differences
among the three categories of no testedness, partial testedness, and complete

Fig. 12. Algorithm for Task 5, batch collection of (static) du-associations.
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testedness was to use a quadratic formula that separates the 0% and 100%
colors from the partial testedness colors. Of course, while this furthers the
goal of drawing overall attention to untested cells, the exact degree of
testedness for a particular cell is not likely to be readily discernible by most
users. We are considering an additional optional thermometer-like indica-
tor along a border for when a user wishes to see more exact information
about a cell’s testedness.

An issue we have yet to address is whether users will confuse “tested-
ness” (as depicted with colors) with “correctness.” We suspect that this is
likely, because it occurs in other kinds of informal testing situations. A
possible way to communicate the difference between these two concepts
might be to let the user select different levels of testing to try, ranging from
“novice” to (unachievable) “guaranteed correctness.” These could be imple-
mented behind the scenes via a progression of increasingly stronger ade-
quacy criteria. For example, a novice level could be implemented via a very
simple criterion such as cell adequacy, some higher level implemented via
du-adequacy, and so on. The “guaranteed” highest level could then be
implemented via a message saying that testing can never actually guaran-
tee that all of the faults have been revealed. User studies are planned to
further investigate the effectiveness of these devices for communicating
effectively about testedness.

4. EMPIRICAL STUDY

Our visual feedback is designed to help users achieve du-adequate testing,
which is what is needed for borders to turn blue. However, we have not yet
presented evidence that du-adequate testing will reveal a reasonable
percentage of faults in spreadsheets, or that it will function any more
effectively than a random testing approach. These are fundamental issues
to study, because if du-adequate testing does not detect faults effectively
there may be no reason to pursue it further. To address these issues, we
consider the following research questions.

Q1: How effective are du-adequate test suites at revealing faults in
spreadsheets?

Q2: How do du-adequate test suites compare to randomly created test
suites of the same size in terms of their effectiveness at revealing
faults in spreadsheets?

4.1 Measures

A test suite’s efficacy is a measure of its ability to detect faults. In general,
a test suite’s efficacy cannot be measured directly, and is often approxi-
mated by various coverage or adequacy measures. In our experiments,
however, we work with spreadsheets that contain single known faults;
thus, test suite efficacy can be measured by determining how many of these
known faults a test suite can detect.
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More precisely, let S be a spreadsheet, and let SF 5 $S1, S2, . . . , Sk% be
a set of k faulty versions of S, each containing a single fault. Let T be a test
suite for S, that detects j ~ j # k! of the faults in the versions in SF. The
efficacy of T is the percentage of faulty versions in SF whose faults are
detected by T, and is given by j / k*100.

This efficacy measure requires a definition of what it is for a fault to be
detected by a test suite. Recall that we define a test case t to be a tuple
~I, C!, where I is an assignment of values to input cells, and C is a cell
whose output value has been examined by the user for correctness. Given a
correct spreadsheet S, faulty version Sj of S, and test suite T for S, we say
that T detects the fault in Sj if there exists some test case t 5 ~I, C! [

T that, applied to S and Sj, causes cell C to display a different value in Sj

than in S.
This measure lets us measure and compare test suites’ ability to reveal

faults in spreadsheets. Similar measures have been used in previous
studies of the efficacy of test suites created by various test adequacy
criteria [Frankl and Weiss 1993; Hutchins et al. 1994].

4.2 Experiment Instrumentation

4.2.1 Subject Spreadsheets. Because our methodology has been imple-
mented within the Forms/3 programming environment, that was the envi-
ronment used for our study. In keeping with this fact, for our study we
obtained eight Forms/3 spreadsheets from experienced Forms/3 users.
Table I lists details about these spreadsheets. Three of the spreadsheets—
TimeCard, Grades, and Sales—are modeled after spreadsheets written in
commercial spreadsheet systems. FitMachine and MicroGen are simple
simulations. Clock is a graphical desktop clock. Digits is a number-to-digits
splitter, and Solution is a quadratic equation solver. Table I also lists the
numbers of cells, expressions (equivalent to the number of nonentry,
nonexit nodes in CRGs), conditions (equivalent to the number of predicate
nodes in CRGs) and du-associations (pairs consisting of a definition node
and a c-use node, or a definition node and a labeled edge out of a p-use

Table I. Experiment Subjects

Spreadsheet
Name

No. of
Cells

No. of
Expressions

No. of Du-
Associations

No. of
Faulty

Conditions
No. of

Versions

Test
Pool
Size

Avg. Test
Suite Size

Clock 13 33 64 7 7 250 11.3
Digits 7 35 89 14 10 230 22.7
FitMachine 9 33 121 12 11 367 30.2
Grades 61 61 55 0 10 80 9.8
MicroGen 6 16 31 5 10 170 10.4
Sales 30 30 28 0 9 176 10.4
Solution 7 20 32 7 11 99 12.0
TimeCard 12 33 92 12 8 240 16.7
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node, as defined in Section 2.4) in the spreadsheets. Of the spreadsheets,
all but Grades and Sales utilized conditional computations.

4.2.2 Faulty Versions, Test Cases, Test Pools, and Test Suites. To ad-
dress our research questions, we required faulty versions of our spread-
sheets, du-adequate test suites, and randomly created test suites of the
same size. To obtain these, we followed a procedure similar to that utilized
by Hutchins et al. [1994] in their study of the fault-detecting abilities of
several varieties of test suites applied to imperative programs. The proce-
dure was as follows.

We asked seven users experienced with Forms/3 and commercial spread-
sheets, working without knowledge of one another’s work, to manually seed
faults into our subject spreadsheets which, in their experience, are repre-
sentative of faults found in spreadsheets. This process yielded between 7
and 11 faulty versions of each subject program, as noted in Table I.

We next asked a Forms/3 user who had no knowledge of these specific
faults to generate, for each of the eight nonfaulty subject spreadsheets, a
large “test pool” containing possible test cases for these spreadsheets. To
populate each test pool, the user first created an initial pool of test cases
exercising the spreadsheet’s functionality. He then measured the du-
adequacy of this initial pool, and augmented the pool to ensure that each
executable du-association in the spreadsheet was exercised by at least five
test cases in the pool. The user ensured that the test pools contained no
duplicate test cases. For each test case, he also verified that validated cells
in the original program produced correct values. The resulting test pools
ranged in size from 80 to 367 test cases, as shown in Table I.

We next used our test pools to create du-adequate test suites for our
spreadsheets. To do this, we first determined, for each test case t in the test
pool, the du-associations exercised by t. We then created a test suite T by
randomly selecting a test case from the test pool, and adding it to T only if
it added to the cumulative coverage achieved by test cases added to T thus
far, repeating this process until T was du-adequate. We discarded duplicate
test suites. This process yielded between 10 and 15 du-adequate test suites
for each of our subject spreadsheets; Table I lists the average sizes of these
test suites.

Finally, to create randomly selected test suites, for each spreadsheet S,
for each du-adequate test suite T for S, we randomly selected ?T? test cases
from the test pool for S. This process yielded, for each spreadsheet S, a set
of randomly selected test suites of the same sizes as the du-adequate test
suites for S.

4.3 Experiment Procedure

The experiment was run using an 8 3 2 factorial design with between 10
and 15 test suite efficacy measures per cell; the two categorical factors
were:
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—The subject spreadsheet (8 programs, each with a variety of faulty
versions).

—The variety of test suite utilized (du-adequate or randomly generated).

For each spreadsheet S and each variety of test suite V we applied the
following procedure:

for each test suite T of variety V for spreadsheet S
(1) we ran all test cases in T on S, saving outputs,
(2) for each faulty version Si of S:

(a) we ran all test cases in T on Si, saving outputs,
(b) we recorded that T detected the fault in Si if the output of the

validated cell for some test case t in T executed on Si differed
from the output of that cell when t was executed on S.

We counted the number of times that T had been determined to detect (in
step 2(b)) that a version of S was faulty. We then divided this number by
the number of faulty versions k and multiplied that result by 100. This
yielded our measure of the efficacy of T—the percentage of faulty versions
of S whose faults were detected by T—as defined in Section 4.1.

4.4 Data and Analysis

4.4.1 Test Suite Efficacy. Table II presents the mean test suite effica-
cies calculated for the eight subject spreadsheets for du-adequate and
randomly generated test suites, and the p-values obtained from applying
the Wilcoxon Rank-Sum Test to the test suite efficacy data. As the table
indicates, on all eight spreadsheets, du-adequate test suites outperformed
randomly generated test suites of the same size: differences in average
efficacies ranged from 8.4% on TimeCard to 29% on MicroGen. The Wilc-
oxon test indicates that these differences were statistically significant ~ p
, 0.05! on five of the eight spreadsheets.

Table II. Mean Test Suite Efficacies for Du-Adequate and Randomly Generated Test
Suites, for the Eight Subject Spreadsheets, and p-Values from Wilcoxon Rank-Sum Test

Spreadsheet Name

Mean Test Suite
Efficacy (Du-Adequate

Suites)

Mean Test Suite
Efficacy (Randomly
Generated Suites)

p-Values from
Wilcoxon Rank-Sum

Test

Clock 96.2 74.3 0.0001
Digits 80.0 68.0 0.0053
FitMachine 98.8 81.2 0.0001
Grades 77.0 59.0 0.1724
MicroGen 73.0 44.0 0.0133
Sales 95.5 73.3 0.0028
Solution 70.0 60.0 0.1375
TimeCard 56.7 48.3 0.1454
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Figure 13 contains boxplots depicting the ranges and medians of these
data. The graph on the left presents results for du-adequate test suites; the
graph on the right presents results for randomly generated test suites.
Each graph contains eight boxplots: one for each of the eight subject
spreadsheets studied.13 The boxplots illustrate wider variances in the
efficacies of randomly generated test suites in comparison to the efficacies
of du-adequate test suites, on all spreadsheets other than Digits. The
boxplots also illustrate that the median efficacies exhibited by randomly
generated test suites were lower than those exhibited by du-adequate test
suites.

In summary, the efficacy data gathered in the study support the claim
that, for the spreadsheets, versions, and test cases utilized, du-adequate
test suites generated for the spreadsheets possess higher efficacies than
randomly generated test suites of the same size. Further, these du-
adequate test suites seem to be more consistent in their ability to reveal
faults than their randomly generated counterparts.

4.4.2 Results per Fault. Both du-adequate and randomly generated test
suites were observed to miss faults in our experiment; thus, we also
examined the extent to which the faults in our spreadsheets could be
detected by those test suites. Figure 14 depicts relevant data; the figure
contains a separate graph for each of the eight subject spreadsheets. In
each graph, each faulty version of the spreadsheet occupies a position along
the x-axis and is represented by a pair of vertical bars. The two bars depict

13A boxplot is a standard statistical device for representing data distributions [Johnson 1992].
In these plots, each data set’s distribution is represented by a box. The box’s height spans the
central 50% of the data, and its upper and lower ends mark the upper and lower quartiles. The
middle of the three horizontal lines, depicted as a dashed line, represents the median. The
vertical lines attached to the box indicate the tails of the distribution. Consider, for example,
the boxplot for Digits in the graph of du-adequate test suite results. This boxplot shows that
the median test suite efficacy measure among the 10 test suites for Digits was 80%, with half
of the test suites exhibiting efficacies evenly distributed between 70% and 90%, and with the
efficacies of the 10 suites ranging overall from 50% to 100%.

spreadsheet spreadsheet
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Fig. 13. Test suite efficacy data for du-adequate (left) and randomly generated (right) test
suites.
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the percentage of the du-adequate test suites (black bars) and the percent-
age of the randomly generated test suites (gray bars) for that spreadsheet,
respectively, that detected the fault in that faulty version.

Altogether, our study involved 76 faulty versions. As Figure 14 illus-
trates, among these versions, there were 51 in which the du-adequate test
suites were more successful than their randomly generated counterparts at
revealing the faults; there were only 9 in which the randomly generated
test suites were more successful than their du-adequate counterparts. On
22 versions, randomly generated test suites were over 50% less successful
at revealing the fault than du-adequate test suites; there were no cases in
which du-adequate test suites were over 50% less successful than randomly
generated suites. There were 44 versions in which the fault was revealed by
every du-adequate test suite; there were only 9 of these versions in which
the fault was revealed by every randomly generated test suite. There were
no versions in which the fault was never revealed by any du-adequate
suite. These findings further indicate the greater effectiveness of du-
adequate test suites relative to randomly generated test suites of the same
size.

It would be useful to be able to characterize the faults that, in our study,
were more or less easily detected by du-adequate test suites, as well as
those faults that were more easily detected by randomly generated suites
than by du-adequate test suites. Inspection of the faults in our programs,
however, yielded no obvious, consistent categorization scheme.

4.4.3 Nonexecutable Du-Associations. A significant problem in dataflow
testing involves (static) du-associations that are recognized by the testing
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Fig. 14. Percentages of test suites that revealed faulty versions, per spreadsheet, per version.
Black bars depict results for du-adequate test suites; gray bars depict results for randomly
generated test suites.
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system’s analysis, but that are nonexecutable. We discovered that 70
(13.7%) of the 512 du-associations in our subject spreadsheets were nonex-
ecutable; Table III provides data on these. The number of nonexecutable
du-associations varied widely, however, across spreadsheets: Digits and
FitMachine each contained over 20 nonexecutable du-associations; Grades
and Sales, which contain no conditional expressions, contained none. The
13.7% overall average rate of nonexecutability among du-associations is
lower than the average rates of 26% and 27% observed in two studies of
imperative programs reported in Weyuker [1993]; nevertheless, the pres-
ence of these du-associations could be difficult to explain to users. Future
work will address the possibility of applying techniques such as those of
Clarke [1976] to help automatically identify (to the extent possible) these
nonexecutable du-associations.

4.5 Threats to Validity

Finally, we discuss several threats to the validity of our experiment. In this
experiment, our measurements of test suite efficacy were highly accurate,
but test suite efficacy is not the only possible measure of the quality of test
suites. For one thing, we have focused on measuring the effectiveness of
du-adequate test suites, without measuring their cost. Ultimately, because
efficacy only partially captures the aspects of test suite quality in which we
are interested, we will need to also consider other measures.

Other threats to validity are centered around the issue of how represen-
tative the subjects of our experiments are. More generally, it is reasonable
to ask whether our results are dependent on the way in which our
spreadsheets, faulty versions, test pools, and test suites were created. Our
subject spreadsheets are not large, and may not be representative of a
larger class of spreadsheets. The fact that the faults placed in the spread-
sheets were synthetic (seeded) may also affect our ability to generalize
results pertaining to the efficacies of our test suites.

Our test cases are constructed to cover the du-associations in the original
spreadsheets; the faulty versions may contain different du-associations,
and thus, test suites that are du-adequate for the original spreadsheets
may not be adequate for the faulty versions. Perhaps of greatest significance,

Table III. Nonexecutable Du-Associations in the Subject Spreadsheets

Spreadsheet Name
Number of Du-

Associations

Number of
Nonexecutable Du-

Associations
Percentage

Nonexecutable

Clock 64 9 14.1
Digits 89 28 31.5
FitMachine 121 20 16.5
Grades 55 0 0.0
MicroGen 31 3 9.7
Sales 28 0 0.0
Solution 32 2 6.3
TimeCard 92 8 8.7
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our du-adequate test suites may not be representative of those that would
be constructed by typical users of our methodology. Random selection of
test suites from pools ensured that we studied a range of du-adequate test
suites, but we cannot claim that the composition of those individual test
suites is necessarily representative of suites that would be created by users
of our methodology. Nor can we claim that the randomly generated suites
represent test suites that users not in possession of our methodology would
create: informed “ad hoc” test design by users may improve test suite
efficacy even in the absence of a testing environment supporting a more
rigorous methodology.

In general, however, threats involving subject representativeness can be
addressed only by additional studies on additional subjects.

5. CONCLUSION

Due to the popularity of commercial spreadsheets, spreadsheet languages
are being used to produce software that influences important decisions.
Further, due to recent advances from the research community that expand
its capabilities, the use of this paradigm is likely to continue to grow. We
believe that the fact that such a widely used and growing class of software
often has faults should not be taken lightly.

To address this issue, we have developed a methodology that brings some
of the benefits of formal testing to this class of software. Key to its
appropriateness for the spreadsheet paradigm are four features. First, our
methodology accommodates the dependence-driven evaluation model, and
is compatible with evaluation engine optimizations, such as varying evalu-
ation orders and value-caching schemes. Second, our collection of algo-
rithms is structured such that their work can be performed incrementally,
and hence can be tightly integrated with the highly interactive environ-
ments that characterize spreadsheet programming. Third, our algorithms
are reasonably efficient given their context, because the triggers that
require immediate response from most of the algorithms also require
immediate response to handle display and/or value cache maintenance, and
the same data structures must be traversed in both cases. The only
algorithm that adds more than a constant factor is Validate , whose cost is
the same order as the cost of recalculating the cell being validated. Finally,
our methodology does not require knowledge of testing theory; instead, our
algorithms track the “testedness” of the spreadsheet incrementally, and use
visual devices to call attention to insufficiently tested interactions.

The methodology presented in this article addresses only one of the
important problems in dealing with spreadsheet errors. Other testing
problems have been examined in the context of the imperative language
paradigm, including the problems of generating test inputs, validating test
outputs, automating the replay of tests for regression testing, detecting
nonexecutable code, and integrating testing and debugging. These prob-
lems are also important in the context of the spreadsheet language para-
digm, and in our ongoing work we are investigating them. We are also

A Methodology for Testing Spreadsheets • 143

ACM Transactions on Software Engineering and Methodology, Vol. 10, No. 1, January 2001.



working on a way to scale up the methodology by taking into account blocks
of cells whose formulas are shared or copies of one other, and appropriately
sharing information about their testedness [Burnett et al. 1999].

Our empirical results suggest that our methodology can achieve fault
detection results comparable to those achieved by analogous techniques for
testing imperative programs. These results are important, because they
imply that the potential benefit of this approach to spreadsheet users may
be substantial. However, these results do not address the ability of users to
utilize our methodology. Thus, we are continuing our work on the imple-
mentation of our methodology, and it will soon be robust enough to allow a
series of user studies.

We intend to examine the relative effectiveness of our approach among
different user groups. Although a large proportion of the users creating
spreadsheets are nonprogrammers, a significant number of complex
spreadsheets are also created by programmers, including some that are
sold or otherwise disseminated as templates. We might expect users that
have programming experience to perform differently in testing tasks than
users who do not have such experience. We hope ultimately to provide
effective testing methodologies to both of these user populations.

APPENDIX

CRG CONSTRUCTION FOR CONDITIONAL SUBEXPRESSIONS

One form of expression apparent in the grammar shown in Figure 2 has not
been treated in a manner suitable for the needs of end-users by the
literature on imperative programs, and merits special attention.

In spreadsheet languages, because there are only expressions and hence
no statements, the if construct instantiates an expression instead of a
statement, which allows “conditional subexpressions,” i.e., if expressions
included as subexpressions in other expressions. For example, a cell C ’s
formula can consist of the expression x 1 (if y 50 then 1 else 2) . But
what is the proper formula graph for such an expression? The approach of
Aho et al. [1986] parses this expression into a pair of intermediate code
statements (instead of expressions): (i) if y 50 then tmp 51 else tmp 52
and (ii) C 5 x 1 tmp . A formula graph for this pair of statements consists
of the nodes required to represent (i), followed by the node required to
represent (ii), and these nodes include constructs not legal in formulas to
represent assignment, variables, and statements. A disadvantage of this
approach, especially to an audience of end-users, is that if reasoning about
the testedness of a cell or relationship is based in part upon constructs not
allowed in spreadsheet formulas, feedback about the testedness of a partic-
ular cell or relationship might not be understandable to the user.

A second approach to modeling this expression is to use a “virtual cell”
tmp to represent the computation of if y 50 then 1 else 2 and treat C ’s
formula as consisting only of x 1 tmp . However, since this approach
introduces a cell not actually present in the spreadsheet, feedback based on
reasoning about tmp may still not be understandable to the user.
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A third approach is to distribute operand x over the if expression,
obtaining if y 50 then x 11 else x 12 (in the formula graph, not in the
user view), and model this like any other if expression. We have selected
the third approach, because we believe it to be the most likely to be
understandable by end-users. Although we do not expect conditional subex-
pressions to be used widely by spreadsheet users, we also note that they
are supported by popular spreadsheet languages, and hence need to be
supported by our spreadsheet testing methodology.
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