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Mental Models of Mere Mortals with Explanations
of Reinforcement Learning
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How should reinforcement learning (RL) agents explain themselves to humans not trained in AI? To gain
insights into this question, we conducted a 124-participant, four-treatment experiment to compare partic-
ipants’ mental models of an RL agent in the context of a simple Real-Time Strategy (RTS) game. The four
treatments isolated two types of explanations vs. neither vs. both together. The two types of explanations
were as follows: (1) saliency maps (an “Input Intelligibility Type” that explains the AI’s focus of attention)
and (2) reward-decomposition bars (an “Output Intelligibility Type” that explains the AI’s predictions of fu-
ture types of rewards). Our results show that a combined explanation that included saliency and reward
bars was needed to achieve a statistically significant difference in participants’ mental model scores over
the no-explanation treatment. However, this combined explanation was far from a panacea: It exacted dis-
proportionately high cognitive loads from the participants who received the combined explanation. Further,
in some situations, participants who saw both explanations predicted the agent’s next action worse than all
other treatments’ participants.
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1 INTRODUCTION

Although eXplainable Artificial Intelligence (XAI) has seen increasing interest as AI becomes
more pervasive in society, the challenges of understanding AI systems grow in both scope and
import [57]. In this article, we focus on the human aspects of these challenges—how people form
mental models, given different types of XAI explanations, and the cognitive loads they incur in
forming these mental models.

People’s mental models, in the context of XAI, are basically their understanding of the way the
AI (the “agent” performing the action) works. More formally, mental models are “internal represen-
tations that people build based on their experiences in the real world” [38]. People’s mental models
vary in complexity and accuracy, but a good mental model will enable a person to understand
system behavior, and a very good one will enable them to predict future behaviors.

Not all explanation types will lead people’s mental model formation in the right directions.
Further, consuming an explanation is not without cost. Measuring those costs can inform designers
of the benefits of different explanation types versus the costs.

Recent work by Kulesza et al. introduced four principles for explaining AI systems to people who
are not AI experts [25]. These principles were as follows: Be iterative, be sound, be complete, and do
not overwhelm the user, where here the notions of soundness and completeness are analogous to
“the whole truth (completeness) and nothing but the truth (soundness).” Kulesza et al.’s empirical
results showed that explanations adhering to these principles enabled non-AI experts to build
higher-fidelity mental models of the agent than non-AI experts who received less sound/complete
explanations [25].

Using Kulesza et al.’s principles, we created two types of explanation, and in this article we
investigate how people’s mental models of a reinforcement-learning agent vary in response to
these explanations. The explanation styles we investigated were saliency maps showing where
the agent is “looking” and decomposed reward bars showing the agent’s current prediction of its
future score. In Lim and Dey’s categorization of explanation types, saliency maps would fit into
the “Input” category (information that goes “into” the AI’s reasoning), and decomposed reward
bars would fit into the “Output” category (the result of the AI’s reasoning process that lead to its
choice) [27, 28].

To do so, we conducted a controlled lab study with 124 participants across four treatments
(saliency, rewards, both, neither) and measured their understanding of the agent and their ability
to predict its decisions. We also gathered information using the NASA Task-Load indeX (TLX) [12],
a validated survey that measures six dimensions of cognitive load, which allowed us the ability to
measure the participants’ cost for consuming the explanations.

Our investigation was in the context of Real-Time Strategy (RTS) games. However, publicly
available RTS games have stringent time constraints, complex concepts, and myriad decisions,
which would have introduced too many confounding variables for a controlled study. For example,
we needed each participant to consider the same set of decisions. Thus, we built our own game,
inspired by RTS, which we describe later.

In this context, we structured our investigation around the following research questions:

• RQ-Describe - Which treatment is better (and how) at enabling people to describe how the
system works?
• What cognitive loads do these explanations place on people?
• RQ-Predict - Which treatment is better (and how) at enabling people to predict what the

system will do?
• RQ-Predict-How - What information about the agent do people draw upon to make the

predictions they make?
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2 BACKGROUND AND RELATED WORK

Since our investigation evaluates XAI approaches’ effects on humans’ mental models of an RL
agent, three bodies of work are particularly relevant: work on humans’ mental models of AI, work
on RL interacting with humans, and work on XAI in domains like ours.

2.1 Mental Models and XAI

One criticism of XAI research has been that “...most work... uses only the researchers’ intuition of
what constitutes a ‘good’ explanation” [33]. Miller argues that XAI researchers need to build on
the expansive knowledge in philosophy, psychology, and cognitive science, which has long stud-
ied human explanation evaluation, selection, presentation, and so on. Hoffman et al. operational-
izes these goals by proposing a number of metrics of explanation quality, describing “goodness”
(a priori expert judgment of the explanation’s quality) and “satisfaction” (a posteriori judgment
whether the explanation consumer finds it adequate in context) [14]. Unfortunately, “satisfaction”
is a complex multifaceted construct, including, but not limited to “understandability, feeling of sat-
isfaction, sufficiency of detail, completeness, usefulness, accuracy, and trustworthiness” [14]. Our
study draws upon some of Hoffman et al.’s metrics, specifically understandability (i.e., how well
can they describe it) and usefulness (i.e., how well can they predict an action).

Hoffman et al. use these definitions to propose that “by hypothesis, explanations that are good and
are satisfying to users enable users to develop a good mental model” [14]. Hoffman et al. also points
out that “there is a consensus that mental models can be inferred from empirical evidence.” One
implication of the combination of these two remarks is that if participants find more misbehaviors
of an AI agent with an explanation than without an explanation, then the researcher can conclude
that the explanation helped their mental models. Our investigation subscribes to this premise and
further investigates what was actually in the mental models our explanations facilitated and what
aspects of the explanations participants drew upon to form them.

2.1.1 Measuring Mental Models in XAI. Hoffman et al. enumerate many elicitation methods
for mental models (see Reference [14], Tables 4 and 5) and recommend using more than one
method [14]. In this article, we focus on the “Prediction Task” [34] and “Task Reflection” [30]
mental model elicitation methods. In accordance with their recommendations, we included free
response questions with each prediction task (without a confidence score, due to time constraints)
and analyzed responses qualitatively, as we describe in later sections.1

Previous work has found that providing explanations of AI generally improves mental models of
the AI. For example, Tullio et al. examined participants’ mental models for a system that predicted
how “interruptible” their managers were over a six-week period, finding that explanation allowed
participants to dispense with some misconceptions, but the overall structure of their mental model
remained stable [51]. Bostandjiev et al. found that explanations led to an increase in satisfaction in
a music recommendation system [4]. In the robotics domain, Wortham et al. found that a graph-
based visualization of the agent’s drives improved participants’ mental models of the robot [60].
Lim et al.’s work focused on “intelligibility types” of information, showing that their participants
demanded “why” information when the system behaved unexpectedly [28]. Kulesza et al. looked
at the impact of two explanation properties, completeness and soundness, on their participants’
mental models in a music recommendation system powered by a hybrid AI agent [26]. From their
work, soundness is “the extent to which each component of an explanation’s content is truthful

1Methods like these allow collecting very rich data, but the associated cost of the qualitative analysis needed to process

such data are substantial. For those seeking a more lightweight design aid, see the conceptual framework provided by

Wang et al. [56].
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in describing the underlying system.” Similarly, completeness is “the extent to which all of the
underlying system is described by the explanation” [26]. They found that participants tended to
do better at understanding the explanations of the AIs’ features rather than of the AI’s process
and further that the participants’ understanding of features increased as completeness increased.
Their results helped inform the four principles behind their “explanatory debugging” approach,
which they empirically investigated with a Multinomial Naive Bayes classifier [25]. Using two of
Lim et al.’s intelligibility types (“inputs” and “outputs”), we build from Kulesza’s four principles
and apply them to explaining Reinforcement Learning (RL) agents.

2.2 Cognitive Load and Problem-Solving

When trying to solve problems (in this case, figure out an AI with the help of explanations), people
can experience at least three types of cognitive load: intrinsic, germane, and extraneous [20, 24,
49, 53]. Intrinsic cognitive load is the inherent effort of figuring out the problem itself. Germane
cognitive load is the effort of learning the explanation’s content and applying it. We view these
two types of cognitive load as valuable, or at least necessary.

The third type, extraneous cognitive load, is the effort unrelated to the problem at hand, such as
hunting for missing information, figuring out which part of the explanation is the most relevant,
or trying to figure out what the explanation is trying to communicate. To try to maximize people’s
learning or problem-solving success, researchers aim to minimize the extraneous load [20, 24, 49,
53], because if someone’s finite energy is being expended on extraneous cognitive load, then they
have less to apply to the problem at hand (i.e., their intrinsic/germane cognitive load).

There are many ways, both used and proposed, to measure participants’ cognitive load, such as
Zagermann’s proposal to use eye-tracking data to measure cognitive load in visual computing [61].
However, gathering eye-tracking data for 124 participants would have been a costly undertaking,
greatly slowing down how many participants we could run. There are other measures for perceived
cognitive load, such as the Rating Scale of Mental Effort (RSME) by Zijlstra and Van Doorn [64],
which is a single numeric dimension for participants to rate how much effort they felt that they
spent [58]. However, a single scale does not allow us to separate the different mental tradeoffs that
participants might make.

To gain insights into these tradeoffs, validated surveys like the NASA Task-Load indeX (TLX)
are useful. The TLX was designed to measure the cognitive load that users experienced when in-
teracting with human-machine interfaces [35]. It measures cognitive load across six dimensions:
mental demand, physical demand, temporal demand, effort, success, and frustration, which allows
researchers to understand the tradeoffs that participants experience The TLX has been used by a
variety of researchers around the world, even 20 years after its creation, speaking to its effective-
ness as a tool [11].

2.3 RL and Humans

One trend in RL research investigates humans’ capability to speed up RL agent training. Thomaz
et al.’s work focused on how humans teach an RL agent in a virtual domain, finding that users’
agent-training strategies adjusted as their mental models adjusted, too [50]. Peng et al. and Rosen-
feld et al. studied humans-in-the-loop with RL agents, from non-experts to RL experts, finding that
humans can help speed up the learning process for RL agents by shaping the training signal [40,
43]. In contrast with these works, our work does not look at how humans can help machines but
rather how machines can give humans what they need through evaluating explanations.

Other work focuses on human interpretability of RL agents. An example of the interpretability
category is Huang et al.’s work on showing possible trajectories that their agent could take in the
self-driving car domain, with the problem that with a lot of states, decision are non-critical (e.g.,
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highway with no vehicles nearby), but there are also states that decisions are far more important
(e.g., that same highway, heavy traffic [17]). Their “explanation” was a visualization of four possible
actions (such as “Merge Behind,” “Slow Down,” etc.) that their agent would possibly take. They
asked participants to select the action that matched their mental model of how the agent behaved,
a form of prediction task. Their results compared the amount of trust granted by participants to
two agents with varying amounts of training. They derived a function to identify “critical” states
in the self-driving car domain and found that presenting the critical states to participants allowed
them to allocate more trust to the agent with more training. Our work allowed us to show the
participants every state (only 14) and assess the capability of either explanation on their ability to
predict actions. Greydanus et al. used a perturbation-based saliency method to evaluate how well
AI non-experts were able to detect overfit RL policies, and their results pointed at the usefulness
of saliency maps when the agent was looking at the “wrong thing,” such as the hint pixels they
added to the frames of the game (see their Figure 5(f)) [10]. Their results indicated that saliency
maps at each individual decision could assist with identifying overfit policies in RL agents at the
end of a game, manifest by only focusing on hint pixels and ignoring the rest of the domain. Our
contributions differ from theirs, because their work focused on selecting an agent, whereas our
work focuses on predicting actions and describing the agent’s algorithm.

One of the challenges of explaining RL systems is whether to explain an individual decision
or the whole policy. Some recent work focuses on global explanations of the agent’s policy [2,
52]. For example, van der Waa et al.’s policy explanation states what the agent will do for the
next n actions and what situations it expects it will encounter, rather than a local, more focused
explanation pertaining to the current state [52].

However, Hohman et al. subscribe to a different approach: “...multiple explanations are often
used to gain an ultimate interpretation of a model” [15]; i.e., that the sum of local explanations
should lead to an understanding of the global policy. This is the approach used in our investiga-
tion, in which we explain each decision locally, and then elicit a global “policy explanation” from
participants at the end (i.e., RQ-Describe). Similarly, another body of work focuses on explain-
ing individual decisions [10, 31, 60] or fragments of the policy (e.g., “What will you do when a
human is near you”) [13]. Wortham et al. explained the current instantaneous time-slice, whereas
Hayes’ explained the agent’s policy in a more global sense via responding to queries (e.g., “Why
didn’t you inspect the part?”). To answer these queries, they applied a Boolean algebra to a set of
predicates that adequately described the states where the desired action would be taken. Wortham
et al. focused on improving agent transparency through passive engagement with a explanation,
where their measurements focus on the participants’ perceptual response to the passive display of
the agent’s current action (e.g., Is the robot thinking? Describe robot task?) [60]. Our work differs,
because we actively measure the participants’ understanding of the agent’s decision process by
their ability to predict its next action, as opposed to whether the participant perceives that they
understand it (e.g., “Understand objective? (Y/N)” [60]). Further, Hayes et al.’s explanations are
natural-language based, whereas our own explanations allow participants to interpret data and
interactively develop their own interpretation (i.e., “self-explanation” [5]).

One of the most similar works to our own used local explanations and measured their efficacy
via a prediction task, satisfaction, and trust [32] using StarCraft 2 (a popular Real-Time Strategy
game) as a domain. They found that their explanation approach performed significantly better than
baselines. Our work differs by evaluating the impact of combinations of multiple explanations on
participants’ mental models, and we gather two mental model metrics. Though their work has a
similar number of participants (120), they deployed their study as an online survey, whereas our
work was performed in the lab, allowing for greater control over variation between participants.
Our prediction task differs from theirs in a couple of ways: (1) In our domain, the participants
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could predict anything that was in the potential action space, whereas they provided a multiple
choice question over a subset of potential actions that their agent could have taken at a decision
point. (2) Their work did not report on any qualitative data. Our work aims to fill these gaps (e.g.,
participants justifying why they made their predictions).

2.4 XAI and Real-Time Strategy Domains

AI researchers have been using Real-Time Strategy (RTS) games such as StarCraft for some
time [39], with some recent results showing that RL agents can beat human experts [55]. Kim
et al. showed in StarCraft that different people across a range of skill levels in the domain pre-
ferred different aspects of an AI, such as micro-management and decision making [22, 23]. Dodge
et al. investigated what explanations might look like for RTS by investigating how expert explain-
ers provided commentary on games of StarCraft 2, capturing explanation supply [7]. Penney et al.
then looked at how RTS domain experts tried to make sense of a StarCraft 2 game played by what
they perceived to be an AI [41], which captured explanation demand.

2.5 Background on RL and Our Explanation Types

We focus on model-free RL agents that learn a Q-function Q (s,a) to estimate the expected future
cumulative reward of taking action a in state s . After learning, the agent greedily selects actions
according to Q , i.e., selecting action arg maxa Q (s,a) in s . RL agents are typically trained with
scalar rewards, leading to scalar Q-values. Thus, comparing the Q-values of two actions only pro-
vides information about which action is believed, by the agent, to achieve a larger overall future
reward and how much larger. Although a human can compare the scalars to see how much the
agent prefers one action over another, the scalars give no insight into the cost/benefit factors con-
tributing to action preferences. These coarse comparisons might deny humans insight to the AI’s
cost/benefit tradeoffs.

2.5.1 Reward Decomposition. To help address this problem, we draw on work by Erwig et al.
that exploited the fact that rewards can typically be grouped into semantically meaningful
types [8]. For example, in RTS games, reward types might be “enemy damage” (positive reward)
or “ally damage” (negative reward). Reward decomposition exposes reward types to an RL agent
by specifying a set of types C and letting the agent observe, at each step, a |C |-dimensional de-

composed reward vector �R (s,a), which gives the reward for each type. The total scalar reward is

the sum across types, i.e., R (s,a) =
∑

c ∈C �Rc (s,a). The learning objective is still to maximize the
long-term scalar reward.

By leveraging the extra type information in �R (s,a), the RL agent can learn a decomposed Q-

function �Q (s,a), where each component �Qc (s,a) is a Q-value that only accounts for rewards of
type c . Using the definition of R (s,a), the overall scalar Q-function can be shown to be the sum of

the component Q-functions, i.e., Q (s,a) =
∑

c
�Qc (s,a). Prior work has shown how to learn �Q (s,a)

via a decomposed SARSA algorithm [8, 44].

As described in Section 3.4.1, we use neural networks to represent the components of �Q (s,a),
which allows for scaling to the large state-space of our learning problem.

With SARSA, during learning, the RL executes a series of actions using an ϵ-exploration strategy
and incrementally updates the Q-function components after each action. In particular, at each time
step, the agent is in a particular game state s and with some small probability ϵ selects a random
exploratory action and otherwise selects the greedy action. The greedy action is simply the action
arg maxa Q (s,a) that maximizes the current Q-function. After taking the selected action a in state

s the agent observes the next state s ′ and the immediate decomposed reward vector �R (s,a). This

experience is used to update the decomposed Q-values �Q (s,a).
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The update for each component Qc (s,a) takes the form:

Qc (s,a) ← (1 − α )Qc (s,a) + α (Rc (s,a) + γQc (s ′,a′)) ,

where a′ is the action that the RL agent will select in s ′. In this update expression, α ∈ (0, 1] is
the learning rate, which controls how fast the Q-function adapts based on each experience, and
γ ∈ [0, 1) is the discount factor, which specifies how much the agent should value future reward
compared to immediate reward. Intuitively, the right-hand side of the update shows that Qc (s,a)
is a weighted average of the current value and a target value Rc (s,a) + γQc (s ′,a′). This has the
effect of moving the current estimate in the direction of the target. The target is interpreted as an
improved, but noisy, estimate of Qc (s,a) based on the most recent experience. In particular, the
target is an estimates the total future discounted reward that will be achieved after executing a in
s and then following the currently learned policy. This is simply the sum of the immediate reward
Rc (s,a) and a discounted estimate of the future total rewardQc (s ′,a′). These SARSA-style updates
are based on the classic SARSA algorithm [48] and are known to converge to the true Q-values
under certain technical conditions.

Before Reference [8], others considered using reward decomposition [44, 54]—but for speeding
up learning. Our focus here is on their visual explanation value. For a state s of interest, the de-

composed Q-function �Q (s,a) can be visualized for each action as a set of “reward bars,” one bar
for each component. By comparing the bars of two actions, a human can gain insight into the
tradeoffs responsible for the agent’s preference.

2.5.2 Saliency Visualization. Instead of the rewards, a human may want to know which parts
of the agent’s input were most important to the value computed for a reward (i.e., a particular
�Qc (s,a)). Such information is often visualized via saliency maps over the input. Our agent uses
neural networks to represent the component Q-functions, letting us draw on the many neural
network saliency techniques (e.g., References [46, 47, 62, 63]). While there have been a number of
comparison and utility studies on such saliency maps (e.g., References [1, 3, 10, 21, 42]), there is
no consensus on a best way.

Drawing from these works, we selected a saliency approach from Fong et al.’s work on image
classification [9] and modified it to make it more suitable for an RTS environment. Specifically, in
image applications, perturbations are applied per pixel, whereas our system applies perturbations
per game object—an entire group of pixels (detailed in Section 3.4.2). Since the network may “focus”
on different objects in the game for different types of reward, we compute saliency maps for each
of the six decomposed reward bars, as well as the sum-total bar. These computations are made
available to the UI for visualization, as we illustrate in Section 3.4.1.

3 METHODOLOGY

To investigate our research questions, we built a game and designed a between-subject four-
treatment in-lab study to measure differences in how people responded to different combinations
of explanations. Our 124 participants took a hands-on tutorial and then worked their way through
14 decisions the agent made, answering questions along the way. We detail each of these in the
following subsections.

3.1 Game Overview

We devised our own game, where the agent controlled a kite-shaped tank, placed in the middle of
four quadrants (Figure 1). We built our own game to control the action space, so people did not
miss important events, which has shown up in prior research [41]. In our game, the agent had to
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15:8 A. Anderson et al.

Fig. 1. A sequence of the first three DPs of the game. For each Decision Point (DP, circled in red) participants
saw the game map and the score (boxed in red). Next, they made a prediction of which object the AI would
choose to attack. Last, they would receive an explanation and have the ability to “play” the Decision Point.
At DP1, the agent chose to attack Q2, causing a score change of 121 (+21 pts for damaging and +100 from
destroying it).

Fig. 2. The objects appearing in our game states. Enemy objects were black, and allied objects were white.

decide which of the four quadrants it would attack, and its goal was to maximize its score over
each task (top-left). The game followed several rules:

• Attacking: At each DP, the agent’s tank has to attack one of the objects. Only Forts and
Tanks can attack objects (Figure 2).

• Large/small: Large forts have a higher health maximum than small forts, and large forts do
more damage than small forts.

• Losing Points: If agent/friendlies (white objects) are damaged/destroyed (i.e., they lose
health), then the agent loses points.

• Gaining Points: If enemies (black objects) are damaged/destroyed (i.e., enemies lose health),
then the agent gains points.

• Killing: Once the agent kills something, it “respawns” on a new map, carrying over its health.
• Dying: When the agent dies, that task ends and its current score became final

By way of example, consider the transition between (Figure 1, left)→ (Figure 1, middle). The agent
started with−20 points, and it had to choose to attack any of the objects (either two enemies or two
friends). If it wanted to attack an enemy, then it had to choose between a big fort (the big square)
or a small fort (the small square). Since the agent might earn more points from the large fort, it
might choose to attack it. However, if it wants to live longer to earn more points, then it might
choose the small fort instead. Thus, there are tradeoffs that the agent made to try and maximize
its score.

Building our own game provided the following advantages. It allowed maximum control over
the entire software stack (user interface, agent API, etc.). More important, it allowed us to control
the size of the action space. Popularly available RTS games have an enormous action space —
Vinyals et al. estimates ≈1026 for StarCraft II [55]. With so many possible actions, one potential
problem in investigating humans’ responses to certain events or decisions in RTS games is that
people observing an RTS game can become so engrossed in the game, they can miss the events
or decisions of interest to the researchers (e.g., Reference [41]). By reducing the complexity of the
game to a series of sequential Decision Points (DPs), we minimized the risk of people missing key
events.

ACM Transactions on Interactive Intelligent Systems, Vol. 10, No. 2, Article 15. Publication date: May 2020.
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Fig. 3. A screenshot of the interface that the “Everything” participants saw. Region 1: game map, which was
expanded in Figure 1. Region 2: saliency maps. Region 3: reward decomposition bars for each action. Region
4: participant question/response area.

3.2 Study Design

We performed an in-lab study using a between-subjects design with explanation style (Control,
Saliency, Rewards, Everything) as the independent variable. Explanations in each explanation style
(except Control, which had no explanations) were designed around Kulesza et al.’s notions of com-
pleteness and soundness in explanations [25]. Note that these notions are relative, not binary, con-
cepts; i.e., one explanation can be more sound than another. Thus, we worked to design soundness
into our explanations by avoiding approximations/simplifications of them. Similarly, we could only
ensure that our explanations were more “complete” than others by making sure that every one of
the agent’s inputs and outputs were represented in the UI.

Our dependent variable was the quality of participants’ mental models—measured by analysis
of two main data sources: (1) participants’ predictions of the agent’s upcoming action at each
Decision Point (DP), and their free-form explanations of how they made that prediction, and (2)
participants’ free-form answers to a post-task question about how the agent works.

We ran an ablation study, where we measured the impact of each explanation by adding or
removing them, as shown in Figure 3. Thus, Everything - Rewards - Saliency = Control, as follows:
(1) Control participants saw only the agent’s actions, its consequences on the game state, the
score, and question area (Regions 1 and 4). (2) Saliency participants saw Regions 1 and 4 plus the
saliency maps (Region 2), allowing them to infer intention from the agent’s “gaze” [37]. (3) Rewards
participants saw Region 1 and 4 plus decomposed reward bars (Region 3), allowing them to see
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Table 1. Participant Demographics per Academic Discipline

Academic Discipline Participants Gamers
Agricultural Sciences: 4 unique majors 8 2
Business: 3 unique majors 5 4
Engineering: 11 unique majors 63 56
Forestry: 3 unique majors 4 4
Science: 10 unique majors 25 20
Liberal Arts: 8 unique majors 9 6
Public Health and Human Sciences: 2 majors 5 1
Undisclosed 5 4
Totals 124 97

Fig. 4. Distribution of RTS “gamers” in our study. “Gamers” are shown in grey and others in white.

the agent’s cost/benefit analysis for actions that it considered. (4) Everything participants saw all
regions. All study materials, including the game itself, are freely available.2

3.3 Participants

We selected 124 participants from 208 survey respondents at Oregon State University. Since we
were interested in AI non-experts, our selection criteria excluded Computer Science majors and
anyone who had taken an AI course. We assigned the participants to a 2-hour in-lab session based
on their availability and randomly assigned a treatment to each session.

We collected the following demographics: major and experience with RTS games (Table 1).
Gamers were spread evenly across treatments such that it was unnecessary to control for this
factor statistically (Figure 4).

3.3.1 Procedures. We piloted to fine-tune the experiment. Once piloting was complete, we
scheduled around participant availability, using an online survey, as well as allowing for walk-
in participants. Each session lasted approximately 2 hours, and each one contained between one
and six participants. The treatments were randomly assigned to each session, and the participants
were spread out through the lab to minimize the risk of them looking at another participants’
screen. We ran a total of 55 sessions between September and October, 2018.

We began each session with a 20-minute, hands-on tutorial on the system/game, with three
practice decision points. Since participants were AI non-experts, we described saliency maps as
“...like where the eyeballs of the AI fall” and decomposed reward bars as “...the AI’s prediction for
the score it will receive in the future.” At each DP of the main tasks, participants (1) saw the game
state with nothing else visible yet; (2) clicked on the object they thought the agent would attack
& tell us why (Table 2); (3) upon submitting their answer, they saw what the agent did and the

2https://ir.library.oregonstate.edu/concern/datasets/tt44ps61c.
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Table 2. The Questions We Asked Participants in All Treatments

Questions participants answered at each Decision Point (DP)

On the game map (above), which object do you think the AI will send the tank to attack?
Please click on that object.
Why do you think the AI would attack this object? (A few sentences, as detailed as possible).
Asked two questions about any agent misbehaviors they saw and how they notice them.
Saliency: Asked participants which saliency map was most important and why.
Rewards: Asked participants which reward bar was most important and why.
Everything: Both of the above.
Questions participants answered after analyzing ALL 14DPs

Please describe the steps in the agent’s approach or method. (A few sentences, as detailed as
possible)
What information did you find helpful about the explanations you saw?
What information did you find problematic about the explanations you saw?
Under what circumstances is the agent likely to make a bad choice?
NASA-TLX

Questions shown in gray are not included in this analysis.

explanation for their treatment (decomposed reward bars, saliency maps, both, or neither). We
recorded every object the participants clicked on and every response they gave on the screen, and
the system logged these events for later analysis. Participants had 12 minutes to complete DP1 and
8 minutes per DP for the remaining 13.

After participants completed all 14 decision points, we asked them to describe the algorithm
the agent used for decisions (Table 2). Collecting two metrics for mental models is consistent
with Hoffman et al.’s recommendations for evaluating XAI systems [14]. After the participants
completed the on-screen questions, they filled out the NASA Task-Load indeX (TLX), a validated
survey to measure cognitive loads. The NASA TLX survey provided information for not only how
stressful the task was but also the cognitive loads of each explanation type. Finally, participants
filled out a questionnaire, which included the NASA TLX survey (described below) and the bottom
question in Table 2.

3.4 Explanation Implementation

3.4.1 The Reward Decomposition Implementation. We instantiated the decomposed SARSA al-
gorithm (Section 2.5.1) to arrive at an RL agent for our experimental domain, shown in Figure 5.

The agent used six reward types to learn its decomposed Q-function �Q (s,a): {Enemy Fort Dam-
aged, Enemy Fort Destroyed, Friendly Fort Damaged, Friendly Fort Destroyed, Town/City Dam-

aged, Town/City Destroyed}. The RL agent used a neural network representation of �Q (s,a). Each
component Qc (s,a) was associated with its own network, which took the game state as input and
produced an estimate of Qc (s,a) as output. The input to each network represented the game state
as a set of seven 40 × 40 greyscale images, each encoding one type of information about the game
state at each of the 40 × 40 map locations. Specifically, five images encode the presence/absence of
each of the five unit types (tanks, small forts, big forts, towns, cities), one image encodes the Health
Points (HP) of the unit at each location, and one image encodes whether a unit at a location is an
enemy or friendly unit. Each Qc (s,a) used the same network architecture, consisting of a single
fully connected layer containing 64 hidden units with RELU activation functions.

The agent was trained for 30,000 games using decomposed SARSA (Section 2.5.1), at which point
it demonstrated high-quality action choices in most situations. Training was done using a discount
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Fig. 5. RL Agent Architecture. Given a game state s, the system first transforms that state into seven layers
of 40 × 40 images each capturing one type of game state information. The image layers are then given as
input to five neural networks, one network for each reward type. Each network produces a Q-value for each
action (2 actions shown for simplicity). The Q-values indicate the expected future reward of the appropriate
type for taking the corresponding action. The overall Q-values for each action are the sum of the individual
reward type Q-values. The RL agent selects the action with the largest overall Q-value. During training, the
RL agent adjusts the parameters of the neural networks in a way that encourages the Q-values for each
reward type to converge to the true values.

factor of γ = 0.9, a learning rate of α = 0.1, and a decaying ϵ-greedy exploration strategy, where
epsilon was decayed from 0.9 to 0.1.

3.4.2 The Saliency Map Implementation. Given a trained RL agent and a game state s , for each
action a and each reward type c (e.g., Enemy Fort Damaged, Friendly Fort Damage, etc.), we com-
pute a saliency map for each rewardQc (s,a). The saliency map forQc (s,a) consists of five 40 × 40
images, each of which corresponds to a type of information about units in the game state: {health
points, tank location, friendly/enemy, city/fort, size}. (Recall the examples in Figure 3.) Together
these images indicate the spatially localized information that the agent focused on most when
it computed reward Qc (s,a). As described in Section 2.5.2, we use a perturbation-based saliency
approach. We implemented it as follows.

Our perturbation approach produces the saliency image for each of the five information types
independently. For information type t corresponding saliency image for reward Qc (s,a) is com-
puted as follows:

(1) LetUt be the set of game units corresponding to information type t (e.g., for health points
all game units are relevant). Starting with the current game state s produce a set of per-
turbed states {s ′u | u ∈ Ut }, where s ′u results from a type t perturbation of unit u ∈ Ut . For
example, changing the health points of a unit. (See below for perturbation details.)

(2) For each perturbed state s ′u produce the corresponding input for the RL agent (i.e., 7
greyscale images) and pass that input to the agent to get the new value of reward
q′u = Qc (su ,a). Note that the new RL input will only differ from the corresponding
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Fig. 6. Participant E23’s response to the mental model question. (This was the top scoring response to this
question.) The highlighted portions illustrate both “basic” and “extra credit” concepts, described in Table 4
and Tables 9 and 10.

input for state s with respect to information type t . The saliency corresponding to unit u
in s is then defined as Δu = |q′u −Qc (s,a) |.

(3) Produce the saliency map for information type t by creating a map with values equal to
Δu at locations occupied by game elementu ∈ Ut . Note that, in our game, the units occupy
mutually exclusive locations so that overlap does not need to be considered when produc-
ing saliency images. The saliency image for information type t has zeros at locations not
occupied by units in Ut .

Thus, the intensity of a value at a saliency map location for information type t corresponds to
how much the absolute value of Qc (s,a) changes when a relevant game unit is perturbed. Large
output difference mean the trained RL agent was more sensitive to the perturbed part of the state—
indicating importance, which we showed with a brighter color.

We chose to use a heated object scale, since Newn et al. found it to be the most understandable
for their participants [36]. To make the saliency images comparable across information types, we
found the maximum saliency value for each combination of reward component c and information
type t in game states across 16,855 games. Normalizing each of the five images by this value ensured
that each saliency image pixel’s value is ∈ [0, 1]. There are many ways to map pixels to colors,
but we chose to use the heated object scale (from low to high: black, red, orange, yellow, white).
We chose a heat scale, because Newn et al. found it to be the most understandable way for their
participants to understand gaze intensity, compared to nine other visualizations [36].

Finally, it remains to specify the perturbations used in the above procedure for each of our five
information types. Each of the perturbations represented a semantically meaningful operation
applied to a game unit in the game state as follows: (1) Tank Perturbation. If a tank was present,
then we removed it from the game state. (2) Friend/Enemy Perturbation. Flip the friend/enemy
attribute of a unit to the opposite faction. (3) Size Perturbation. Transform a unit from big to small
(or vice versa). (4) City/Fort perturbations. Transform a city to be a fort (or vice versa). (5) HP
Perturbation. Since HP is real valued it is treated differently. We perturbed the object HP values by
a small value (30%) above and below the current HP. To produce two perturbed states. The saliency
value for HP is taken to be the maximum change observed for these two states.

4 RESULTS - PEOPLE DESCRIBING THE AI

4.1 RQ-Describe Analysis Procedure

To elicit participants’ understanding of the agent’s decision making (RQ-Describe), we analyzed
participants’ answers to the end-of-session question: “Please describe the steps in the agent’s
approach or method...” [30]. (Figure 6 shows an example of one participant’s response to this
question.)
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Fig. 7. The participants’ final mental model scores. Box colors from top to bottom: Everything , Rewards ,

Saliency , and Control .

Our analysis of their responses centered on the four basic concepts the designers of the system
wanted the agent to abide by the following:

(1) The agent should act consistently.
(2) The agent should act to maximize its score.
(3) The agent should attack foes, rather than friends.
(4) The agent should prefer to attack large, healthy objects to fulfill concept (2).

To devise a code set, six of the researchers (two of whom were the agent’s designers) indepen-
dently marked responses that they deemed potentially illustrative of participants’ mental model
and then discussed the results as a group. This generated an initial codeset and scoring rubric,
which included the four basic concepts, for analyzing these data. Two researchers revised this ini-
tial codeset to arrive at the 18 codes shown in Tables 9 and 10. Two researchers, including one of
the agent’s designers), independently coded 20% of the data using these codes. That coding was,
in essence, application of “ground truth”—if a participant’s description was a good match to one
of basic concepts the agent uses, then the matching code was assigned; otherwise, it was not. The
two researchers reached 90.2% agreement [18] on the 20% they coded. Given this strong level of
reliability, one researcher coded the rest.

The scoring rubric (detailed in Appendix A, Tables 9 and 10), used this code set as its basis. In the
rubric each of the four main concepts listed above was assigned worth 25% of the weight—allowing
responses showing understanding of only these basic concepts to reach 100% (“full credit”). Be-
cause concept (4) has two components (i.e., large and healthy), each of its components contributed
half of concept (4)’s weight, i.e., 12.5% each. Subtle nuances that participants noted beyond the
four main concepts earned small amounts of “extra credit” (e.g., saying the agent maximized its
future score), whereas misconceptions not tied to the four concepts resulted in small deductions
(e.g., saying it tried to preserve its HP). Weights for extra credit and deductions were categorized
based on importance in 5% increments. (Codes that were merely flags had no weight; e.g., if the
participant mentioned that they were uncertain.) We experimented with several different extra
credit/deduction weights, and none had much effect on the resulting comparative score distribu-
tions among treatments.

Figure 7 shows the score distribution. After checking with Levene’s test that the variances were
not significantly3 different (F (3, 120) = 0.4252, p > 0.05), we analyzed the data using Analysis of
Variance (ANOVA).

4.2 The More, the Better?

As Figure 7 suggests, Everything participants had significantly better mental model scores than
Control participants (ANOVA, F= 8.369, df= (1,59), p= 0.005) (Table 3). One possible interpretation

3We consider p < .05 as significant, and .05 ≤ p < .1 as marginally significant by convention [6].
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Table 3. ANOVA Table for Comparing the Everything Participants with the Control

Df Sum of Sq. Mean Square F-Value Pr(>F)
Treatment 1 7847 7847.1 8.3695 0.0053
Residuals 59 55318 937.6

This indicated that the Everything participants had a statistically significantly higher mental model

score.

Fig. 8. Same data as Figure 7. Left: Mental model scores for those who saw rewards (top) and those who did
not. Right: Same data, but those who saw saliency (top) and those who did not.

Table 4. The Four Mental Model Codes Revealing Particularly Interesting Differences
in Nuances of Participants’ Mental Models

Code Count Definition

Maximize Score 46 The agent’s overall objective is to maximize its long term score.
Forward Looking 13 The AI looks towards future instances when accounting for the

action that it takes now.
Paranoia 8 The AI is paranoid about extending its life too much, expecting

penalties when it should not.
Episode Over 15 When the AI is nearing death, it behaves differently than it has in

previous decision points.

Counts indicate the number of participants whose responses had at least one instance of a statement with that code.

is that the Everything participants’ performance was due to receiving the most sound and complete
explanation, consistent with Kulesza et al’s results [25].

However, another possibility is that the participants in the Everything treatment were benefiting
from only one of the explanation types, and that the other type was making little difference. To
investigate this possibility, we isolated each explanation type as follows.

To isolate the effect of the decomposed reward bars, we compared all participants who saw
them (the Rewards and Everything treatments) with those who did not. As the left side of Figure 8
illustrates, participants who saw decomposed reward bars had significantly better mental model
scores than those who did not (ANOVA, F = 6.454, df = (1,122), p = 0.0123).

Interestingly, isolating the effect of saliency produced a similar impact. As the right side of
Figure 8 illustrates, those who saw saliency maps (the Everything + Saliency treatments) had some-
what better mental model scores (ANOVA, F = 3.001, df = (1,122), p = 0.0858). This suggests that
each component brought its own strengths.

4.3 Different Explanations, Different Strengths

Four of the 18 codes in our mental model codeset revealed nuanced differences among treatments
in the participants’ understanding of the agent. Table 4 lists these four codes.

Participants who saw rewards (Rewards and Everything) often mentioned that the agent was
driven by its objective to maximize its score (Table 4’s Maximize Score). Over 3/4 (36 of 46) of the
people who mentioned this were in treatments that saw rewards. To consider two examples:
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(R814): The agent always tried to get as high a possible total sum of all rewards as
possible. It valued allies getting damaged in the future as a rather large negative
value, and dealing damage and killing enemy forts as rather high positive values.

and

(E14): These costs and rewards are then summed up into an overall cost/reward value,
and this value is then used to dictate the agent’s action; whichever overall value is
greater will be the action that the agent takes.

Some participants who saw rewards also mentioned the nuance that the agent’s interest was in
its future score (Table 4’s Forward Looking), not the present one:

(E83): The AI simply takes in mind the unknown of the future rounds and keeps itself
in range to be destroyed ‘quickly’ if a future city is under attack...

About two-thirds of the participants (9 of 13) who pointed out this nuance saw decomposed reward
bars.

The agent was not perfect. One of its subtleties was its paranoia (Table 4’s Paranoia). It had
learned Q-value components that reflected a paranoia about receiving negative rewards for at-
tacking its own friendly units. Specifically, even though the learned greedy policy appeared to
never attack a friendly unit, unless there was no other option, the Q-components for friendly
damage were highly negative even for actions that attacked enemies in many cases. Investigating
this behavior revealed that it was a result of learning via the on-policy SARSA algorithm,5 which
learns while it explores.

This paranoia can be considered a type of “bug” in the agent’s value estimates, so it provides
an important situation for research into how to explain AI: Ideally, participants would understand
the agent’s behavior even (or especially!) when that behavior is flawed.

However, only eight participants showed evidence of understanding this behavior—and all 8 of
them were participants who saw rewards. For example:

(E73): The AI appears to be afraid of what might happen if a map is generated con-
taining four [friendly] forts or something, in which it can do a lot of damage to itself.

However, participants who saw saliency maps (Saliency + Everything) had a different advantage
over the others—noticing how the agent changed behavior when it thought it was going to die
(Episode Over). For example, it tended to embark on “suicide” missions at the end of a task when
its health was low. About two-thirds (10 of 15) of the participants who talked about such behaviors
were those who saw saliency maps. As one participant put it:

(S74): If it cannot take down any structures, it will throw itself to wherever it thinks
it will deal the most damage.

4.3.1 But What Do These Nuances Cost? These results suggest that participants who saw de-
composed reward bars may have had a more nuanced understanding of the agent, but their gain in
understanding came with an increased cognitive load. We measured participants’ perceived cog-
nitive loads using the NASA-Task Load indeX (TLX) [12], a validated survey designed to gather

4First letter of participant ID is treatment (Control, Saliency, Rewards, Everything).
5SARSA learns the value of the ϵ -greedy exploration policy, which can randomly attack friendly units. Thus, the learned

Q-values reflect those random future negative rewards. However, after learning, exploration stops and friendlies are not

randomly attacked.

ACM Transactions on Interactive Intelligent Systems, Vol. 10, No. 2, Article 15. Publication date: May 2020.



Mental Models of Mere Mortals 15:17

Fig. 9. Box plots of the mental demand scores. Left: The mental demand rating for Control , Saliency ,

Rewards , and Everything . Right: The mental demand rating for those that saw at least one explanation, i.e.,

those who did not see reward bars (Saliency) and those that saw the reward bars (Rewards + Everything).

(Note that Control participants did not see any explanation, and thus do not appear.) The mental demand
“optimal score” is zero.

participants’ perceptions across six dimensions: mental demand, physical demand, temporal de-
mand, effort, frustration, and success, using a 21-point Likert scale.

Figure 9 (left) suggested that for those participants who saw explanations, the decomposed re-
ward bars was costly, so we visualized the comparison for those that saw decomposed reward bars
in a single group against the Saliency participants (Figure 9, right). We investigated this possibility
using a contrast.6 Since we were measuring the mental demand of the explanation, rather than the
domain, we excluded the Control participants, who did not see any explanations.

The results, shown in Figure 9 (right), showed that participants who saw decomposed reward
bars (the Everything and Rewards treatments) reported a significantly higher mental demand than
those who did not (the Saliency treatment) (Welch’s t-test, t (90) = 2.733, p = 0.007). Further, a
Hedges’ effect size7 estimate (д = 0.54) suggested a moderate to high practical significance. Thus,
participants who saw decomposed reward bars benefited by forming a more nuanced understand-
ing of the agent, but its cost was a significantly heavier mental demand on those participants.

4.4 Implications

On the surface, Section 4.2 suggests that, in explainable systems, the more explanation we give
people, the better. However, Section 4.3 suggests that the question of which explanation or com-
bination of explanations is better is more complex—each type has different strengths and comes
at different costs, even for those with different backgrounds (Section 4.3.1 and Section C). These
results suggest that there may not be a “best” explanation type across all the situations.

5 RESULTS: PEOPLE PREDICTING THE AI

To investigate how situational an explanation type’s strength is, we turn next to how participants
fared in individual situations, which we captured with their predictions at each DP.

Thus, following a similar methodology to Muramatsu et al. [34], we collected in situ data. Specif-
ically, participants predicted the agent’s action by clicking on the object they thought the agent
would attack at every DP and then told us why they thought it would attack the object they
chose (support for action predictions is discussed in Section 6) [14, 34]. Each DP’s starting state is
shown in Table 5, showing the quadrant the agent attacked in green. If the participants correctly

6A linear combination that tests: H0 : k1μ1 + k2μ2 + · · · + kn μn = 0, where Σn

i=1ki = 0. Here, we used it to test the null

hypothesis H0 : 1
2 (X̄R + X̄E ) − X̄S = 0 (same labeling convention as participant ID, R = Rewards, E = Everything, etc.).

7Used because of the unequal variances.
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Table 5. The Tasks and Their Decision Points (DPs)

We have highlighted the action the AI chose in green.

predicted the action, then they received one point, receiving zero points for incorrect answers.
Figure 10 shows the participants’ average accuracy for each of the agent’s decisions. It shows that
the participants’ ability to predict the agent’s behavior varied widely. In this section, we present
the results of a qualitative analysis that revealed several phenomena to explain why.

5.1 This Is Overwhelming

Despite having some situational advantages (Section 5.4), there were other situations where the
Everything participants had the lowest accuracy, namely DPs 6, 9, and 11. Interestingly, the Con-
trol participants had the highest accuracy at these same points. This phenomenon seemed tied to
Everything participants coping with two much information; not only did they have to process the
reward bars (the same as the Rewards participants), they also had four rows of saliency maps they
could consider (4 times as many as the Saliency participants). This highlights the importance of
balancing completeness with not overwhelming users [25].

For example, some Everything participants tried to account for all the information they had
seen. For example, at DP6:
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Fig. 10. Percentage of participants who successfully predicted the AI’s next move at each decision point
(DP), prior to receiving any explanation. Bar colors denote treatment (from left to right): Control , Saliency ,

Rewards , and Everything . Participants’ results varied markedly for the different situations these DPs cap-
tured, and there is no evidence that any of the treatments’ participants got better over time. All error bars
(SE = σ/

√
n are under 10%.

Fig. 11. Average task time vs. Decision Point (DP), per treatment. Participants had 12 minutes for the first
DP and 8 minutes for all subsequent DPs. The “×”s shows the for theoretical amounts of time that the Ev-
erything participants “theoretically should have taken,” depending on if they processed 1 row (the lowest ×)
or 4 rows (the highest ×) of saliency maps. Notably, the lowest × is lower than the actual time they took
(dark circle with highest value). Colors: same as Figure 10.

(E38): I think it considers own HP first then Friend/Enemy status, so going by that it
will attack Q4. Also, . . . it attacks enemies with more HP.

In contrast, Control participants—who saw no explanations—were able to apply simpler reasoning
to form a correct prediction at DP6 (the agent attacks Q2, see Table 5):

(C69): because it is the lowest health of all of the enemy objects.

Participants’ timing data also attest to Everything participants’ burden of processing informa-
tion (Figure 11). As mentioned above, the Everything participants had to consume at most three
more rows of saliency maps. Thus, to accommodate for the possibility that participants could
consume as many saliency maps as they found helpful, the figure shows four “×s” for each decision
point. The lowest “×” depicts how much time an Everything participant would spend if they
spent as long as Control, plus the average time Saliency participants incurred above Control, plus
the average time Rewards participants incurred, assuming that the Everything participants
consumed as many saliency maps as the Saliency participants (i.e., at most one row). The
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Fig. 12. Left: The participants’ perceived temporal demand, where the “optimal score” is zero. The large gap
between the Saliency/Rewards treatments’ means and the Everything treatment’s suggested that not only
were Everything participants pressed for time (Figure 11), they felt it too. Right: An identical process for
computing theoretical means shows the costs of considering different numbers of saliency maps.

lowest × provides a lower bound on the amount of time the Everything participants should have
theoretically taken, given that they were already time constrained, if they processed the same
number of saliency rows as the Saliency participants.

The actual time costs (Figure 11) that participants experienced were consistent with partici-
pants’ perceived the temporal demand, which we measured using the NASA TLX (Figure 12). To
compare these two measures, we performed a similar exercise as in Figure 11 to create a “theoret-
ical” temporal perception average that the Everything participants should have felt, μ̂E , by taking
the temporal demand for Control (i.e., the temporal demand for the game) and adding on the de-
mands of the decomposed reward bars and the saliency maps. Thus, the average temporal demand
for the decomposed reward bars would be μR − μC , and the average temporal demand for saliency
maps would be μS − μC . This means: μ̂E = μC + (μR − μC ) + (μS − μC ) = μS + μR − μC . A paired
t-test comparing μ̂E − μE = 0 showed a significant difference between the Everything treatment’s
theoretical mean and the Everything participants’ actual responses (Paired t-test, t(29) = 2.2937,
p = 0.015, d = 0.59), with Cohen’s d suggesting between a moderate and large effect size.

At the end of the session, some of the participants in the Everything treatment explicitly be-
moaned the complexity of processing the information, such as:

(E39): It was confusing all around to figure out the main factor for movement using
the maps and bars . . .

5.2 No Help Needed... Yet

For some DPs (2, 3, 5, 13), explanations seemed unnecessary, as the Control proved “good enough,”
with at least 75% of participants predicted correctly. For “Easy” situations like these, explanations
may simply interfere with users’ understanding; however, not everyone is likely to find the same
siutations to be “easy.” This suggests that explanations should be on-demand, which can provide
more information to those who need it, without overwhelming those that do not.

5.3 Two Counter-intuitive Situations

In at least two kinds of situations, the agent’s actions seemed counterintuitive to most participants.
These situations all had very low accuracy, with all treatments below random guessing (≤25%).

The first situation was when the agent chose neither the strongest nor weakest of similar en-
emies (DPs 10,12). Some of the Everything participants got the prediction right at DP10 by com-
bining both the saliency and the rewards explanations into their reasoning, e.g.:

(E71): As it will look at the HP of the tank moreit will not attack Q4 instead it
will go for Q1, which will give it enough benefit but also maintain its HP.
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Fig. 13. A graph of all treatments’ accuracy for maps that had enemy tanks. Those who did not see rewards
(Control + Saliency) had lower predictive accuracy at all of these points than those who did see rewards

(Rewards + Everything).

But although they were the most accurate at both of these decisions, even the Everything partici-
pants did not predict correctly better than random guessing (25%).

Worse, all of the participants in the Rewards treatment got DP10 wrong, suggesting that they
needed the saliency maps to factor in how much the AI focuses on its own HP, which might have
been key in this situation. For example, this Rewards participant focused on the other objects’ HPs,
not the agent’s:

(R94): Lowest HP out of the 3 big fort.

Another kind of situation that seemed counterintuitive to participants was the agent choosing to
attack an enemy over saving a friend from an enemy tank (Figure 13). DP3 was the only exception
to the ≤25% accuracy criteria, but the enemy tank was the only enemy on the map, which a majority
of participants stated as the reason why the agent would attack it, such as:

(S104): I think it will attack this object, because it is the only enemy on the map.

However, DP4 was the worst of such situations, with 77% of participants predicting incorrectly.
Many participants incorrectly predicted it would attack the enemy tank, citing its health:

(S18): This is the enemy object with the lowest value for HP.

or how threatening the enemy tank was to its friend:

(S25): The enemy tank poses the greatest threat [to] allies...

Of the few participants (19 total) who predicted DP4 correctly, most (68%) were in treatments that
saw decomposed reward bars, e.g.:

(R93): Given that the enemy tank will destroy an allied city, thus lowering points
gained, the only logical decision is to remove the threat.

5.4 A Counterintuitive Strategy Revealed: The Tanks

Despite generally low accuracy at DP4 and DP7, participants who saw decomposed reward bars
seemed to have an advantageous insight into one of the agent’s counterintuitive strategy choices—
the agent did not care at all about enemy tanks unless the tank was the only enemy.
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DP3, DP4, and DP7 show the three situations with enemy tanks, which the agent ignored
(Figure 13: the enemy tanks are the black diamonds). The participants in the two treatments that
saw decomposed rewards tended to refer to the tradeoffs that would account for these choices,
using the decomposed reward bars:

(R94): Because destroying enemy base will give you more point than destroying a
tank.

In contrast, participants in the Control and Saliency treatments often did not realize this:

(C69): Because it is an enemy tank attacking a friendly city and it has low health

and

(S42): before attacking you need to save your territory first.

These three DPs were also the only three situations (except DP5, with 100% correctness for nearly
everyone, because it was the only enemy) in which the pair of treatments with rewards explana-
tions both produced the highest prediction scores.

This may suggest that, in an RL agent, some strategy choices the agent makes involving weighing
potential positive/negative outcomes, may be particularly well represented by decomposed reward
bar explanations.

5.5 Implications

An implication for design is that the variability in Figure 10 suggests that participants’ explana-
tion needs depended on the situation. As such, explanation systems need to cater to the user’s
desire for certain explanations on a case-by-case basis, allowing them not only the opportunity to
gather as much (or as little) explanation as they require to update their mental model and prevent
overwhelming, but also to selectively draw from the explanation they need at that moment.

An implication for research is that, from a statistical perspective, putting these different situ-
ations together would have simply “canceled each other out.” (In retrospect, we view such wide
variation as to be expected, given the variability in state/action pairs and the variability of human
data.) However, a look at the data qualitatively produced insights that the quantitative analyses
did not. This suggests the need for a mixed-methods empirical strategy to investigate XAI results
that are situational. The upcoming section provides an example, in which we use a mixed-methods
approach to analyze how participants formed and/or supported the predictions they made in dif-
ferent situations.

6 RESULTS: HOW PARTICIPANTS MADE THEIR PREDICTIONS

To investigate how participants chose the action they predicted, we used Hsieh and Shannon
([16])’s Directed Content Analysis on participants’ responses to the following question: “Why do
you think that the agent will attack this object? (A few sentences, as detailed as possible).” The in-
terface asked this question right after each prediction participants made of what the agent would
attack next, as previously shown in Table 2. Recall that the participants could not see the explana-
tion for that agent action until after they answered this question. Two researchers independently
coded 20% of the participants’ responses using the code set in Table 6, which resulted in >80%
Jaccard agreement [18]. Given this reliability, one researcher coded the rest of the corpus.
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Fig. 14. Top: The prediction accuracy by treatment (Figure 10). Bottom: Heatmap of number of participants
who predicted the agent’s action by predicting the system’s explanation of that action at each Decision
Point. (Vertical lines mark task boundaries.) At every decision point, more of the Rewards and/or Everything
participants did this than the Saliency participants did.

Fig. 15. Number of times participants predicted the explanations to predict the agent’s actions, in the
Saliency , Rewards , and Everything treatments. The variance for the Saliency participants’ use of predicted
explanation is tiny compared to the others.

6.1 Predicting the AI’s Action by Predicting the Explanations

Interestingly, many of the participants predicted the agent’s action by predicting how it might ex-
plain that action. The participants who did this were almost all participants who saw decomposed
reward bars (Figure 14 and Figure 15). For example:

(R93): This object will provide the most damage rewards <Figure 3, Region 3, dark
colored bars> and most destruction rewards <Same figure, light colored bars>

The differences among treatments were significant: Results of Welch’s ANOVA (to handle un-
equal variances in these data) showed a significant difference between how often the Saliency par-
ticipants predicted explanations vs. those in the Rewards and Everything treatments (F(2, 57.118) =
11.187, p = 0.00005). Hedges’ д test of effect sizes produced a value of 0.95, suggesting a large to
very large effect size [45] of Saliency participants’ versus Everything participants’ rates.8

The Everything participants were particularly interesting, because they could see both saliency
maps and decomposed reward bars. These participants predicted future explanations nearly as

8Effect size can be measured on only two populations’ means. Hedges’ д = 0.99 for Saliency participants’ versus Rewards

participants’ rates.
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Table 7. Number of Participants Who Cited Current Game State at Each DP per Treatment

Decision Point 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Control 30 26 25 24 24 28 22 25 28 27 23 26 24 27

Saliency 29 26 25 24 24 28 22 25 28 27 23 28 25 23

Rewards 25 23 20 20 23 19 18 22 19 25 18 22 18 19

Everything 27 23 27 16 21 23 21 21 21 27 20 21 21 23

Difference (%) 11.9 4.8 27.5 9.2 1.0 17.3 8.3 1.3 10.6 10.0 8.3 1.3 13.8 14.8

The highlighted number are the lowest rate of citing current game state. Notice how frequently the Rewards participants

had the lowest. The “Difference” row shows the percentage difference between the lowest and second-lowest values.

often as Rewards participants did (Figure 14)—and 91% of their predicted explanations were about
only the decomposed reward bars. Only two Everything participants predicted both saliency and
rewards explanations. One predicted the agent’s reasoning in terms of its sequence of explanations
(i.e., from the “Input explanation” to the “Output explanation”):

(E71): It will look at if it is friend or enemy <envisioning the next saliency map>
then destroy the one with the highest value <envisioning the tallest next grey reward
bars> ...

The other way was to predict the saliency explanation in combination with the rewards expla-
nation, but without any particular order:

(E39): The AI will prioritize the larger target for higher bonuses <envisioning the
“bonuses” small bars of the reward explanation>, focusing on size more than Hp
<envisioning the size and HP portions of the saliency explanation>.

6.2 What About Using the Game?

When participants were looking in one direction, they often were not looking in another (Table 7).
The highlighted portions show the treatment that had the lowest rate of using the current game
state information. Whenever the Everything participants were the lowest, there was only an aver-
age difference of 3.2% between them and the second-lowest treatment’s participants (which were
the Rewards at all 4 instances). However, the other 10 decisions, the rate that the Rewards partici-
pants mentioned current game state was the lowest, and the average difference between their rate
and the second-lowest jumped to 10.6%.

In fact, the average rates of using current game state for the four treatments were very different
(Figure 16). Levene’s test revealed that the variances were not significantly different (F(3,120) =
2.295, p > 0.05). ANOVA showed that there was at least one mean significantly different than the
others (F(3,120) = 6.0481, p = 0.0007) (Table 8). Removing the Rewards treatment got rid of the sig-
nificance (ANOVA, F(2,89) = 2.1987, p = 0.117), which meant that it was the Rewards treatment’s
participants that had a statistically significantly lower reliance on current game state than all of
the other treatments.9

6.3 Predict-How: Discussion

These results showed that participants had two main differences in how they supported their
predictions: Their use of the current game state without mentioning saliency maps and forming

9The averages for all six codes by treatment are in Table 11.
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Fig. 16. Box plots for the number of times participants used the current game state in the Control , Saliency ,

Rewards , and Everything treatments. Note that participants who saw rewards had a lower frequency of
citing current game state information in their justification.

Table 8. ANOVA Table for Current Game State across All Treatments

Df Sum of Sq. Mean Square F-Value Pr(>F)

Treatment 3 113.05 37.683 6.0481 0.0007
Residuals 120 747.66 6.231

This indicated that at least one of the means was different for the four treatments.

predicted explanations. Reward participants demonstrated a tradeoff between using predicted ex-
planations (which they did significantly more than the Saliency participants) and using current
game state (which they did significantly less than all the others). Figure 15 also suggested that
the Everything participants were engaging in this exercise, but we discovered that 91% of their
responses pertained to only decomposed reward bars. However, there are a couple of caveats to
this.

Even though the Rewards and Everything participants predicted explanations at a higher rate
than the Saliency participants, it did not necessarily help them to predict the agent’s action. This
is why these two treatments had the highest accuracy at only five total DPs—three of which had
a common theme (Section 5.4). However, the Saliency participants were also the most accurate at
five of the DPs, but they had an entirely different approach, using current game state information
almost as frequently as the Control participants (Table 7). Thus, even though the decomposed re-
ward bars allowed participants a more nuanced understanding of the agent’s reasoning (Section 4),
and the participants gained strategic insights from them (Section 5.4), it remains unclear whether
they definitively helped participants predict the agent’s actions.

Well-known HCI textbooks, like Reference [19], recommend placing information in the UI close
together to make sure people notice them. However, Figure 3’s Regions 1 and 3, which show game
state information and the decomposed reward bars per action, respectively, are difficult to position
such that they are both proximate and understandable. Although we did not gather gaze-tracking
data, it could have been the case that the Rewards participants spent “too much time” looking in
Region 3, since they only had a limited amount of time per DP. This attention expenditure was
probably worse for the Everything participants, since they had to choose whether to consume
the decomposed reward bars and/or the saliency. However, their habit of hypothesizing just the
decomposed reward bars implies that they might have spent most of their time in Region 3, too. In
designing this system, we had to trade off between being complete [25] and placing information
proximate [19]. Note that our domain’s action space was only 4, as opposed to Vinyals et al.’s
approximation for StarCraft II’s action space of 1026 [55]. A challenge for explainable systems,
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especially as the action space grows larger (and not just in the RTS domain), will become how to
effectively manage information in such a way to adhere to good design principles.

7 THREATS TO VALIDITY

Every study has threats to validity [59]. For our study and analysis, we addressed the impact of
participants’ experience with RTS games and engineering background on their mental models, but
we did not collect additional demographics that would have allowed considering other factors that
may impact people’s mental models of games, such as age. Our study design also emphasized isola-
tion of variables over external validity. For example, we simplified the game to avoid confounding
factors, such as participants missing events or using different points of view [41], but this means
that our results on how effective the explanations are for this small action space might not hold
for complex RTS games; thus, we do not know how effectively these explanations will scale when
the action space is much larger. We also controlled participants’ time per DP, but this may have
impacted their mental models with insufficient time per DP (8 minutes) or too few DPs (14).

The Everything treatment saw more granular saliency explanations than the Saliency treatment
did. Specifically, Everything participants could see a saliency map row for each reward type in the
reward bars via the 2D grid of saliency (Figure 3, Region 2), whereas participants in the Saliency
treatment saw only one row of saliency, which mapped to their one-item view of rewards (the
winning action). That is, Saliency participants could observe one “output”—the action—so they saw
a row of “inputs” for that output, whereas Everything participants saw four potential “outputs,” so
they saw 4 rows of “inputs.” This design decision helped us to ensure that the mappings from inputs
to outputs made sense, but introduced an uncontrolled difference in the saliency map presentation
the Saliency treatment saw from the saliency map presentation the Everything treatment saw. We
attempted to address this in Section 5.1, Figures 11 and 12 by introducing a constant scaling factor
for the number of saliency rows processed, but this only provides a lower-bounded estimate that
could only be measured by gathering gaze-tracking data of every participant, which we did not
do.

In this game, with only four possible actions, there were 24 decomposed reward bars on the
screen, and each one had five saliency maps. Thus, it is not clear whether our results would scale
up to more complex games like StarCraft II, since it involves hundreds of potential decisions to
make at any given moment.

Some participants used phrasing that rendered their reasoning unclear to us. For example, when
participants referred to an object as “biggest threat,” we could not determine whether they were re-
ferring to something that they observed on the game map (e.g., the unit with the largest HP/attack
damage as the “biggest threat”) or just intuition (e.g., a gut feeling that the “biggest threat” should
have a scary appearance). Another example of unclear reasoning was when they based their de-
cisions on the distance between DPs on the timeline (e.g., if a DP was short, choosing the object
with the smallest health and giving the timing as evidence for their choice).

The Control participants—who could rely only on previous state or past actions—demonstrated
a remarkable similarity to the Saliency participants in the information they cite to support their
choices (a 3% difference). However, this might have been due to the fact that the Saliency partic-
ipants might have been using saliency map information in such a way that we could not detect.
For example,

(S61): It’s a small enemy fort with relatively lower HP

was coded with Current Game State information, but by using size and HP to support their choice
(both represented by saliency maps), this Saliency participant might have been using predicted
saliency map information to identify where the agent might focus on parts of the game state when
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forming their answer—without us being able to detect it. A way to mitigate this in future work
would be to provide ways for participants to select the information they want to use and then
describe how that information looks.

Threats like these can only be addressed with more studies using diverse empirical methods to
generalize the findings.

8 CONCLUDING REMARKS

In this article, we report on a mixed methods study with 124 participants with no AI background.
We investigated which of four visual explanation possibilities—saliency maps, decomposed reward
bars, both, or neither—enabled participants to build the most accurate mental models, and in what
circumstances.

Our results do not point to any one best explanation for helping people form mental models, but
rather that:

• Everything participants provided significantly better mental model description than the
Control participants (Section 4).

• Rewards participants offered the most insight into nuanced concepts, such as agent paranoia
(Section 4).

• Each of the Saliency, Rewards, Everything, and even the Control treatments outperformed
the others multiple times (Section 5).

• Although counterintuitive behaviors by the agent were difficult for everyone to understand,
participants who saw rewards (i.e., Rewards and Everything participants) showed some
advantages in understanding these counterintuitive behaviors (Section 5).

• Some participants, especially those in the Rewards treatment, predicted the agent’s next
action by predicting its next explanation (Section 6).

• Participants in the Rewards and Everything treatments sometimes experienced high cog-
nitive loads and reported feeling overwhelmed. This was especially common in the Every-
thing treatment (Section 5).

Abstracting above these results may add to the design takeaways we can derive from them.
Toward this end, we turn again to Lim and Dey’s work on intelligibility types [27] as interpreted
and extended by Dodge et al. [7]. These works provide a way of semantically categorizing different
types of explanations in terms of the type of content provided.

We have already pointed out that the decomposed reward explanations are a form of the “Out-
puts” intelligibility type (which explain how outputs are being selected) [27], and the saliency map
explanations are a form of the“Inputs” intelligibility type (which explain which inputs are being
considered) [27]. Our results also help to point out what the perspective a third type can bring:
the “What” intelligibility type (for RTS games, anything about game state [7]).

What the “What” explanation results suggest is that anything in the environment that helps to
explain how the AI is reasoning is itself an explanation. The results in Section 6 help to demonstrate
this point. In that section, in which participants described how they were figuring out the AI by
answering “Why do you think that the agent will attack this object,” at least half the participants
in every treatment integrated state information into their responses. This suggests more generally
that people may mentally integrate “What” information with other types of explanations that are
provided by the system—i.e., that text, graphics, and animations in the state and environment
are functioning as part of the explanation. This in turn suggests that XAI researchers may be
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well served by treating all information in the environment as part of the explanation, in both the
explanation design and explanation evaluation components of their research.

Our results also corroborate Lim et al.’s position that each intelligibility type has different
strengths, based on the explanation goal of the user [29]. The user’s goals for an explanation also
depend on the situation, and Section 5’s result that every explanation outperformed the others in
some situations helps to demonstrate this. Likewise, each intelligibility type has different weak-
nesses, and Section 5’s result that every explanation sometimes underperformed compared to the
others helps to demonstrate this point.

Indeed, our analyses suggest several one-size-does-not-fit-all takeaway messages. First, one type
of explanation does not fit all situations, as Section 5 shows. Second, one type of explanation does
not fit all people, as the distribution ranges in Figure 7 show. And perhaps most critical, one type of
empirical analysis (strictly quantitative or strictly qualitative) was not enough; only by combining
these techniques were we able to make sense of the wide differences among individual partici-
pants at individual DPs. We believe that, only by our community applying an arsenal of empirical
techniques, can we gain the rich insights needed to learn how to explain AI effectively to mere
mortals.

APPENDIXES

A MORE ON MENTAL MODEL QUALITATIVE CODE SET

As described in Section 4, we generated a codeset for participant responses to the summary ques-
tion, “Please describe the steps in the agent’s approach or method...” [30]. To do so, we created an ini-
tial codeset at a large group meeting with most of the stakeholders. Two researchers then worked
toward agreement, revising the codeset along the way. Upon reaching agreement—but before cod-
ing the full data corpus, the same large group meeting established rubric point values for the
presence or absence of each code. The final codeset is shown in Tables 9 (all positive valued codes)
and 10 (all negative valued codes. Along with the codes and the definitions, we provide the rubric
value for each code (in parentheses with the code name).

B MORE ON PREDICTION WHY QUALITATIVE CODE SET

In Section 6, we described the differences in the means for two of the codes. Table 11 shows the
averages for all of the codes. In our data, those two codes were the only interesting differences
that we noted.

C PARTICIPANT BACKGROUND: DID IT MATTER?

Of the participants, 51% were in an engineering major, and 77% of them had more 10+ hours of RTS
game experience, so we investigated whether these backgrounds helped them even if they had no
AI/ML background, such as contributing to their abilities to reverse-engineer complex systems or
their knowledge of “good” strategy.

Table 12 suggests that for Description scores, the participants in the Control and Saliency treat-
ments benefited demonstrably from their backgrounds in gaming and engineering. However, for
the other two treatments (Rewards and Everything) the correlation ranged from small to no neg-
ative effect. For their Prediction scores (Table 13), the correlations for predicting the agent ranged
from no effects to small positive and negative effects in the four treatments.
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Table 9. Positive Codeset Used for Evaluating Mental Model Quality

Code Definition

Example from participant

responses

Consistency (25) AI is an algorithm, and enacts
some consistent policy. May
include attempts to generalize
rules from their observations OR
explicitly mentions that the policy
may be too complex to generalize

The AI always picked an Enemy
object when given the choice between
Friend and Enemy.

Score Max.
Objective (25)

AI maximizes score or is greedy.
Assigning a score and basing a
decision upon it is considered an
implicit maximization

I believe that the AI looks at scenarios
that would make it get the highest
amount of points.

Foe > Friend (25) AI prefers to attack enemies and
not friends or that identifying
friends and foes. Kind of treat this
as a keyword search for [friend,
enem(ies,y)]. However, this MUST
be posed as a general rule. There
may be some implicit ways they
make it clear they do understand
friendly fire

The AI basically attacked any enemy
that has the highest total score in all
the three steps as shown above.

Large > Small
(12.5)

The AI generally prefers large forts
to small ones. They need to either
use size words, or map whatever
else they use (threat, DPS) onto
size concepts

otherwise it attacks big forts then
little forts giving preference to the
lower health of each species.

High HP > Low
HP (12.5)

The AI generally prefers attacking
enemies with higher HP. For all
these, we need to see it posed as a
general rule NOT that a single
decision was made this way

Therefore, the agent decided to
always attack the largest base with
the most health so that it would take
the most damage that would benefit
its allies in the long run.

Distance Concept
Used (0)

There are circumstances where
distance matters, but not usually. If
they mention it as being highly,
rarely, or never relevant, code it.

When it comes to the agent’s
approach, a general rule that it likes to
follow is to attack the closest enemy.

Episode Over (5) AI detected when it cannot survive
and is reckless at last step

If it cannot take down any structures,
then it will throw itself to wherever it
thinks it will deal the most damage

Specific decision
citation (0)

Reference to specific decision point
to develop mental model. Could be
by task/decision index, or by some
description of the game board

In Task 1 D3, the only enemy is a
tank, so the tank is attacked by the AI

(Continued)
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Table 9. Continued

Code Definition

Example from participant

responses

Fort > Tank (10) AI does not preserve allies very
much OR declines to attack the
enemy tank

it doesnt attack enemy tank
sometimes when its clearly
preoccupied and at lowest
health(maybe enemy tank is an
exception or this is an incorrect
prediction)?

Forward Looking
(5)

Participant makes it explicit that
the agent is taking actions to make
future actions easier (or available)

Specifically, it seems that the agents is
simulating not just the immediate
outcome of an action, but also the
outcomes down the road, given all the
possible other choices it may have
next

Damage Racing
(5)

AI does not preserve allies, because
it may not have to pay the penalty
if it can end the simulation before
it dies

The AI simply takes in mind the
unknown of the future rounds and
keeps itself in range to be destroyed
”quickly” if a future city is under
attack even at the expense of having
more HP (and opportunity for damage
and thus points) in future rounds.

Specific game
actions have the
following specific
point values

the attack damage for the smaller
objects with a ”low” damage do
half the damage as the tank (which
also is labeled as a ”low” damage
object) and the objects with a
”high” damage output

Paranoia (10) Identified that the agent is
paranoid about extending its life
too long, since it thinks it will
encounter maps with all friendlies
OR a map where an enemy tank
will kill something.

Since Q4 has more health than Q1 or
Q3, it is worth more total points, and
the resulting low health of the AI tank
translates into fewer potential
scenarios where the tank damages or
destroys friendly targets. The AI does
not know what the next map will look
like, it only knows what health the
tank will have carrying forward, and I
think it only calculates out point
potentials for this particular tank.

The rubric used the parenthesized weights (first column) to add to participants’ mental model scores.
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Table 10. Negative Codeset Used for Evaluating Mental Model Quality

Code Definition

Example from participant

responses

Answered only
specifically (−2)

Participant did not attempt to
generalize a rule, only mentions
some specific decisions

The AI decided to choose between Q4
and Q3 although it should have been
Q2 and Q4. From Q4 and Q3, it picked
Q3, which make me wonder why,
since it gives way less points.

Uncertainty (0) articipant is unsure about
something with respect to how the
agent works OR poses a question
about the agent (possibly
speculatively)

As to how the value of the rewards is
determined by the AI I don’t know
and I think may be vulnerable to
flaws.

Score “feature”
(−5)

Putting “score” in a priority list
with things like Type, which are
not commensurate (it is not an
input to the system, but the
quantity we are maximizing over)

It generally seemed to think that
scoring points was more important
than preserving the life of its allies, or
even the life of itself. ... It made
decisions based on score, and it
oftentimes felt like it made decisions
based on score alone.

Passive fort
threat (−5)

Participant perceives forts that will
do literally nothing as threatening
to the agent or its allies. To clarify,
when the agent attacks Q2, enemy
forts in other quadrants won’t do
anything.

It had to attack, so it based its risk
assessment on the fact that sometimes
there was a big threat it had to
overcome to preserve its allies, or
sometimes it saw that those allies
could survive and so went for
something else that it could attack.

Rules
Misconception
(−5)

Misunderstood something about
what is possible within the rules of
the game. Might be one of the
above “named” misconception, or
somethig miscellaneous

Goal #2 is checking to see if it can
defeat multiple objects by focusing
certain objects

Incorrect
Objective (−15)

As opposed to maximizing score,
the participant expresses belief
that it is doing something else.
Examples include minimizing
threat, behaving arbitrarily, or
attacking the nearest object.

The AI, for the most part, seemed to
prioritize destruction of the closest
enemy object rather than strategic
destruction of enemies or
preservation of ally objects.

Cherry Picking
(−5)

AI focuses on things with low hp
(or small type), which can be easily
defeated

The decision to attack Q4 first comes
from the current HP of the small fort.
It is low enough that it results in a
quick elimination.

(Continued)
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Table 10. Continued

Code Definition

Example from participant

responses

self Preservation
(−15)

AI preserves the tank as much as
possible (it does not)

if no allies are present, it will attack
the enemy that will preserve the AI’s
tank the most, while also trying to
destroy enemies

Ally Preservation
(−5)

AI preserves its allies It also worked sometimes for
self-preservation, but as it went on, it
seemed more concerned with
protection versus self-preservation.

Assigning value
based on social
biases (0)

Thinking that the AI should defend
its friends or do things a human
would, often leading to a negative
value judgment about the agent

This is the sort of thinking I have seen
in players who only take risks when
the deck is stacked in their favor.

Agent Behavior
Misconception
(−5)

Something not quite right about
their understanding of what the
agent is doing or why it is doing it.
Similar to rules misconception,
could be “named” or miscellaneous

The AI wants to do damage control
and will almost always pick the attack
where this penalty score is the
lowest.... In this case, it would pick
the largest positive score.

Explanation
Misconception
(−5)

Misunderstood something
SPECIFIC about the explanation
contents

So the AI tries to construct reward
bars by predicting attributes of the
objects in each quarter.

Agent Behavior
Misconception
(−5)

Something not quite right about
their understanding of what the
agent is doing or why it is doing it.
Similar to rules misconception,
could be “named” or miscellaneous

The AI wants to do damage control
and will almost always pick the attack
where this penalty score is the
lowest.... In this case, it would pick
the largest positive score.

Explanation
Misconception
(−5)

Misunderstood something
SPECIFIC about the explanation
contents

So the AI tries to construct reward
bars by predicting attributes of the
objects in each quarter.

Weights for each code are given in parentheses in the first column. The rubric used the parenthesized weights (first column)

to subtract from participants’ mental model scores. Note that some of these codes have 0 rubric value, as we were just using

them as flags.

Table 11. Average Number of Times That Participants Used Each Code

Treatment
Name

Cited
Current

Game State
Used Prior
Action(s)

Used Prior
Explana-

tion(s)

Formed
Predicted

Explanation

Cited
Random
Choice

Stated
What

They’d Do

Control 11.6 1.7 — — 0.03 0.1

Saliency 11.2 1.8 1.4 1.0 0.06 0.3

Rewards 9.1 1.6 1.1 3.5 0.0 0.4

Everything 10.4 1.2 1.0 3.3 0.0 0.0

Notice the differences for Cited Current Game State and Formed Predicted Explanation.
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Table 12. Pearson’s Correlation, r , between the Mental Model Description Scores and Having 10+
Hours of Gaming Experience (Column 1) and Being in the School of Engineering (Column 3)

Correlation: Correlation:

% Participants % Participants Gamer & Engineering &

Treatment Gamers Engineering Description Score Description Score

Control 84% 39% 0.44 0.25
Saliency 68% 39% 0.31 0.10
Rewards 75% 59% −0.02 −0.14

Everything 87% 66% −0.19 −0.10
Overall 78% 51% 0.15 0.08

Across all participants, there was a small effect from being a gamer, but for those that did not see decomposed reward

bars (Control + Saliency), their gaming background helped them more. Similarly, for the school of engineering, there

was overall no effect on their ability to describe the algorithm.

Table 13. Pearson’s Correlation, r , between the Participants’ Scores and Having 10+ Hours of
Gaming Experience (Column 1) and Being in the School of Engineering (Column 2)

Correlation: Correlation:

% Participants % Participants Gamer & Engineering &

Treatment Gamers Engineering Prediction Score Prediction Score

Control 84% 39% 0.09 −0.18
Saliency 68% 39% 0.11 0.01
Rewards 75% 59% 0.14 −0.14

Everything 87% 66% −0.06 −0.24
Overall 78% 51% 0.05 −0.17

Overall, there was no correlation for gaming experience and a small negative correlation for being in the school of

engineering.
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