To appear in ACM Proceedings of AVI'96: International Workshop on Advanced Visual Interfaces,
Gubbio, Italy, May 27-29, 1996.

A SEAMLESS INTEGRATION OF
ALGORITHM ANIMATION
INTO A VISUAL PROGRAMMING LANGUAGE

Paul Carlson, Margaret Burnettf, and Jonathan Cadiz

Department of Computer Science, Oregon State University
Corvallis, Oregon 97331-3202 USA
E-mail: burnett@cs.orst.edu

ABSTRACT

Until now, only users of textual programming languages have
enjoyed the fruits of algorithm animation. Users of visual
programming languages (VPLs) have been deprived of the
unique semantic insights algorithm animation offers, insights
that would foster the understanding and debugging of visual
programs. To begin solving this shortcoming, we have
seamlessly integrated algorithm animation capabilities into
Forms/3, a declarative VPL in which evaluation is the
continuous maintenance of a network of one-way constraints.
Our results show that a VPL that uses this constraint-based
evaluation model can provide features not found in other
algorithm animation systems.

1: INTRODUCTION

Algorithm animation is a type of software visualization of
growing importance. It is a dynamic visualization of the main
abstractions of a program's underlying algorithm. The value
of algorithm animation lies in its ability to portray the
essence of the program's logic, avoiding the obscuring of this
essence that comes from detailed visualization of a program's
data structures and variables. With this in mind, it is clear that
a visual programming language (VPL), although it may
already contain numerous visualization details, may have as
much to gain as do textual programming languages from
algorithm animation. Surprisingly however, our literature
search revealed no prior attempts to bring algorithm
animation capabilities to VPLs.

This paper describes how we integrated a visual and declarative
extension of an algorithm animation model called the
path/transition paradigm [Stasko 1990b] into the VPL
Forms/3 [Burnett and Ambler 1994], a declarative VPL in
which evaluation is done by maintaining a network of one-
way constraints. Our goal was not a special-purpose visual

algorithm animation system for animating algorithms
implemented in other languages. Rather, our goal was to use
this type of declarative VPL to animate the algorithms that are
themselves programmed in that declarative VPL.

At first, we simply wanted to see if a declarative VPL
following a constraint-based evaluation model could support
such an integration with algorithm animation without
compromising fundamental characteristics of a constraint-
oriented VPL. What we discovered was that not only are those
characteristics not compromised, but that combining a visual
system with a constraint-oriented evaluation model can
produce an approach to algorithm animation with unusual
features.

1.1: Organization of this Paper

After a discussion of related work in Section 2, we introduce
our constraint-based approach through two examples in
Section 3. The first example shows how an animation is
programmed using one-way constraints in our VPL, and the
second shows how this approach to animation is used to
animate algorithms. Section 4 discusses the issues and
implications of the approach. We conclude after a discussion
of the current status and future work.

2: RELATED WORK

Balsa (Brown ALgorithm Simulator and Animator) [Brown and
Sedgewick 1984] was a pioneering textual algorithm
animation system which influenced many later approaches.
Other early algorithm animation systems included Animus
[Duisberg 1987/88], which is a textual system that
incorporates temporal constraints to simplify the
programmer's task of constructing animations of algorithms
programmed in a textual language; another system by
Duisberg that incorporates a gestural interface in a system for
animating textual programs [Duisberg 1987]; and ALADDIN
[Helttula et al. 1989], in which all inputs to the animation of
textual programs are specified visually.

TThis work has been supported in part by the National
Science Foundation under grant CCR-9308649 and an NSF
Young Investigator Award.

Stasko contributed an animation model with precise semantics
called the path/transition paradigm [Stasko 1990b]. The focus
of the path/transition paradigm is creating smooth,
continuous image movement. This is accomplished by
conceptually viewing all types of animation as an image
moving along a path of incremental changes. Since the
path/transition paradigm is the basis of animation in
Forms/3, it is discussed further throughout this paper and in
particular detail in Section 4.1.

To implement the path/transition paradigm, Stasko developed
a textual algorithm animation system called Tango [Stasko
1990a]. Algorithm animation construction using Tango is
based upon Balsa's concept of identifying interesting events
in an algorithm. The programmer inserts animation
operations into the algorithm being animated either through
manual editing or by using a graphical editing tool. Figure 1
provides an example of this textual imperative approach to
algorithm animation. The top half of the figure shows a
portion of an algorithm with a Tango animation function call,
and the bottom shows the associated animation function,
which the programmer also codes.

Stasko developed a direct-manipulation, by-demonstration
interface to the Tango system called Dance (Demonstration
ANimation CrEation) [Stasko 1991]. After the user
demonstrates an animation scenario, the system generates
textual animation design code which is then used as input to
Tango. The only similarity between Dance and our approach

for (j=n-2; j>=0; --j)
for (i=0; i<=j; ++1)
if (a[i] > a[i+1]) {
temp = ali];
afi] = a[i+1];
a[i+1] = temp;
TANGOalgoOp(fnc, "Exchange", a, i, a, i+1);
¥

void ANIMExchange(pl,p2,p3,p4)
int pl, p2, p3, p4;

TANGO_LOC locl, loc2;
TANGO_IMAGE rectl, rect2;
TANGO_PATH onepath, pathl, path2;
TANGO_TRANS movel, move2, flip;

rectl = (TANGO_IMAGE) ASSOCretrieve("ID", pl, p2);

rect2 = (TANGO_IMAGE) ASSOCretrieve("ID", p3, p4);

locl = TANGOimage_loc(rect]l, TANGO_PART_TYPE_C);

loc2 = TANGOimage_loc(rect2, TANGO_PART_TYPE_C);

onepath = TANGOpath_null(1);

pathl = TANGOpath_example(loc1, loc2, onepath);

path2 = TANGOpath_example(loc2, locl, onepath);

movel = TANGOtrans_create(TANGO_TRANS_TYPE_MOVE, rectl, pathl);
move2 = TANGOtrans_create(TANGO_TRANS_TYPE_MOVE, rect2, path2);
flip = TANGOtrans_compose(2, movel, move2);

TANGOtrans_perform(flip);

ASSOCstore("ID", p3, p4, rectl);

ASSOCstore("ID", pl, p2, rect2);

TANGOpath_free(3, onepath, pathl, path2);

TANGOtrans_free(3, movel, move2, flip);

b

Figure 1: Animation code is unshaded. (Top): A portion of
an animation-annotated algorithm to swap two array elements.
(Bottom): The associated Tango animation function.

to animation is using the trace of the mouse to specify a path.

A more recent research project from Stasko's research group is
a visual debugging tool called Lens [Mukherjea and Stasko
1993]. Lens' focus is allowing the programmer to rapidly
develop animations of textual programs for debugging
purposes. Use of Lens doesn't require any textual
programming of animation code; all specification and design
of the animation is done in a visual environment. Other
research projects that use visualization techniques to debug
textual languages include Provide [Moher 1988] and ZStep 94
[Lieberman and Fry 1995].

The Garnet system [Myers et al. 1990] was the among the first
to use one-way constraints to declaratively control behavior.
However, Garnet's support is for user interface construction,
and does not extend to algorithm animation. (Indeed, the user
interface for our system is implemented in Garnet, although
the algorithm animation aspect of our system was hand-
implemented in Lisp.) More recently, a few researchers have
extended declarative visualization models, which map
program state to geometric objects, to include an animation
component [Roman et al. 1992; Takahashi et al. 1994]. The
programmer specifies animation through textual, rule-based
notations; it is only the declarative characteristics that
provide some similarity to animation in Forms/3.

3: ANIMATION PROGRAMMING IN A VPL
VIA ONE WAY CONSTRAINTS

In order to support algorithm animation, a language must first
support animation programming. We introduce our approach
to algorithm animation through two examples. The first
example in this section describes animation programming
using one-way constraints in Forms/3. The second example
shows how this approach to animation programming is used
to animate an algorithm.

3.1: One-Way Constraints in Forms/3

Programming in Forms/3 follows the spreadsheet paradigm:
the programmer uses direct manipulation to place cells on
forms and then defines a formula for each cell. Such a formula
may include constants, references to other cells, or references
to the cell's own value at a previous moment in time. Cells are
referenced by clicking on them. (In our current prototype,
these references are reflected textually in the formulas.) A
program's calculations are entirely determined by these
formulas. The formulas combine into a network of one-way
constraints, and the system continuously ensures that all
values displayed on the screen satisfy these constraints.

As this brief description shows, Forms/3 is declarative and
responsive. By declarative, we mean that programming is a
matter of defining the relationships between the inputs and
the desired outputs. By responsive, we mean that whenever
any new piece of information enters the system—such as
when the system computes new data or the programmer
changes a constraining formula—the effects are immediately
and automatically reflected in the displayed portion of the
program's results. These two properties, declarativeness and
responsiveness, are important to the way animations are
programmed under our approach, because the programmer
needs to worry only about specifying the animation, and may

ignore details such as how to update changing parts of the
animation on the screen and how to synchronize with the
algorithm being animated.

3.2: An Animation Example From the User's

Point of View

Algorithm animation uses a variety of effects to communicate
the essence of an algorithm such as smoothly moving
bitmaps, gradual color changes, and fading images. The first
example, a rolling wheel bitmap, will provide a fine-grained
look at how Forms/3 can be used to produce such animated
effects.

Writing a program to display a simulation of a spoked wagon
wheel rolling down a ramp whose slope can be varied by the
user was one of the problems from the Visual Languages
Comparison at the 1994 IEEE Symposium on Visual
Languages [Hansen 1994]. Figure 2 shows the user's view of
the Forms/3 program that produces that animation.

The user changes the slope by clicking on the Slope cell's
formula tab and then entering a new slope as the cell's
formula. (In general, the user inputs to a Forms/3 program are
(1) cells whose formula tabs are visible and (2) interactive
devices such as buttons.) The wheelOutput form shows the
wagon wheel rolling down the ramp. The user clicks on the
Start and Stop buttons to control the animation. Forms/3
supports generalized events, as described in detail in [Burnett
and Ambler 1994], which enables the programming of such
buttons.

3.3: Fundamentals of Animation Programming

in Forms/3

Our approach to animation programming follows the
path/transition paradigm's concept of animating an object
along a path. In our adaptation of this paradigm, a path
defines a finite sequence of x-y coordinate pairs; the pairs are
interpreted as an offset from a previous value. The object's
traversal from the start of the path to the end of the path is
called a 'transition'. An object and a path are two of the five
specification parameters for a transition.

The third parameter to a transition is the transition type, such
as movement, intensity, visibility, or color. Although it is

= wheellnput |-]g

]
i2alo: et - Gy Enter the slope of the ramp,
[in radians,
RADIO| OFTION where 0 = horizontal
Show and 1.57 = vertical:

I Copy Cell I

@ Slope| E,

Show

cut Cell

Stop

=)
=)
)

Copy Cell

Figure 2: Rolling wagon wheel program.

most natural to think of the animation path as a sequence of
graphical x-y coordinate pairs for the object to physically
move along, all transition types use a path to animate an
object. For example, an intensity transition animates an
object along a path of intensity changes.

The last two parameters to a transition are the reset event and
the continue event. The reset event specification gives the
constraints that must be satisfied for the object to (re-)start at
the beginning of the path; the continue event specification
gives the constraints that must be satisfied for the object to
traverse the next step along the path.

3.4: The Wheel Example
Programmer's Point of View

From the

In Forms/3, animation is visually programmed following the
above principles by specifying the animation parameters on a
form called the Animation form. Figure 3 shows the
Animation form for the rolling wagon wheel program. The
Object matrix and the Path, Type, resetEvent, and
continueEvent cells specify the constraints on the animation;
the Animation cell at the bottom of the form is the resulting
rendering of the transition of the object along the path. We
will discuss each of these cells as it pertains to the rolling
wheel.

The Object matrix defines the object(s) to be animated. An
object can be any type: primitive objects such as boxes,
glyphs, and text strings; user-defined graphical objects such
as people or stacks; or arbitrarily complex objects resulting
from other calculations. When the Object matrix includes
more than one object (as in Figure 3) the animation repeatedly
cycles through the matrix, displaying one object per
animation frame. This allows animation types that are not
built in, such as rotation. For example, the differences
between the five glyphs of the Object matrix cause the wagon
wheel to rotate as it moves down the ramp. The programmer
can set up the Object matrix to be any size desired, and if the
matrix is too large to fit nicely, the remaining elements are
truncated and replaced with an ellipsis.

The programmer has selected a Computed path that is Straight
via radio buttons with these names. The starting and ending
points of the wheel's path need to match the start and end of
the ramp. Thus, like the ramp (not shown in the figure), the
path is defined to start at (0 0). The formula for the path's
ending point constrains the ending point of the path to the
ramp's ending point. (Although the formula has a textual
appearance, this is only an artifact of the present
implementation. The formula was visually entered through
direct manipulation by pointing and clicking on the
referenced cells.) The formula for the number of steps in the
path is also shown in Figure 3. The formula effects an inverse
relationship between the number of steps and the slope, to
make the wheel move faster down a more steeply sloped ramp.
Alternatively, instead of a computed path, the programmer
could have drawn the path with the mouse inside the drawPath
cell, as in Figure 4. When the mouse button is released, the
list of offsets constituting the path is placed in the fineTuning
cell, where the programmer can make precise adjustments.

= primitiveAnimation | -]D
MATRIX : ;
. S =2 -2 N Intensltyo CesstEvent =i
= e
RADIO| DPTION Y color Q | [T
. prers Type ContinusEvent (o
Computed@
Dratmo
pathKind
Computed Path
; oo] N |
St ht -
raight @ stact izt 00 |3tep5 fround (40 - {wheelInput:Slope * 10))]
GlnckwmeQ |
Dounter—BluckwiseQ (318 242)
3 list wheelInput:rampBottom-x wheelInput: rampBottom-y|
pathType e T
[Drawm Path | Drawn Path
L]
.
.
.
L]
.
L]
L]
ravPath drawPath
_ (00612 14 915 3 12 12 5 17 10 14 15 9 14 10
fineTuning 8 fineTuning
Path Figure 4
g
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
Anintdon
Figure 3

Figure 3 shows the Animation form for the rolling wagon wheel program. If the programmer had chosen to draw the path instead,
the middle portion of the form might have looked as shown in Figure 4.

The remaining constraints on the animation are the Type cell,
which is specified by selecting a radio button at the top of the
form, and the resetEvent and continueEvent cells, whose
formulas constrain the animation's initiation and
advancement to the proper combination of time passing and
button presses; this concept will be discussed in Section 4.
The Animation cell in Figure 3 shows the wagon wheel after it
has rolled a few steps along the path. In the figure,
resetEvent's displayed value is currently false because it is
past the time to start the animation at the beginning;
continueEvent's displayed value is currently true because the
animation is in progress.

3.5: Combining Animations

Different types of animations can operate on the same object
at once. This is done by constraining the input of one
animation (in the formula for a cell in the Object matrix) to be
the output of another animation, by referring to another

Animation form's Animation output cell. Using this
technique, for example, a circle might change intensity while
it is moving.

Because the result of an animation is a sequence of ordinary

values, these sequences can be combined through formula
references with other value sequences into a single scene using

N

flccaopose primitivebnimaticn:Bnimation at {0, S)
with wheelInput:ramp at {10, 45)

Figure 5: This portion of the wheel form shows the formula
used to specify Figure 2's combined display of the animated
wheel with the ramp.

the normal operators of the language. For example, Forms/3's
'compose' operator can be used to define combinations of
animated (and non-animated) value sequences, as in the
formula in Figure 5. The specifications in such a network of
constraining formulas provide the constraint satisfaction
mechanism with enough information to automatically
synchronize multiple animations in a single scene.

3.6: Algorithm Animation
Animating a Sort

Example:

The same technique for creating animations is used to create
algorithm animations. For example, Figure 6 shows an
animation of a selection sort, and Figure 7 shows a user's view
of the sort itself. Each bar in Figure 6 corresponds to an
element from the input matrix from Figure 7. The programmer
has constrained the height of a bar to be directly proportional
to its corresponding element's value.

The programmer animated this algorithm by programming a
copy of the Animation form for one element in the matrix in a
manner similar to that seen in the wagon wheel example. The
programmer's only other tasks were to add the line (to serve as
a visual orientation cue), and to define the formula for the
output matrix's cells shown in Figure 6 by simply clicking on
the animated object in the Animation form copy. From these
actions, the system knows the relationship between the first
animated object and the sort's first input element, and
automatically generalizes so that the other elements of the

=] sortQutput |-
T 1z T3 14

CELL | AR

T

RADIO | OPTION

N

=

sortOutput

forimitiveAninationl : Animatior]

Figure 6: Animation of a selection sort. The arrow is
superimposed on the screen shot to show the direction of
motion. The formula shown is automatically generalized so
that it can be used by every entry in the matrix.

Figure 7:
execution. The sort constrains each new element of the sorted
group to be the smallest of the unsorted group.

output matrix in Figure 6 display animated objects for the
remaining sort input elements. (This generalization is done
using an extended version of the generalization method
described in [Yang and Burnett 1994].) The automatic
generalization combined with the fact that matrices in
Forms/3 are flexible—they grow and shrink like lists—allow
the sort program and its animation to work for any arbitrary
number of elements.

Figure 8 shows the Animation form for the first position—
which holds the 8 element—that is the last to be moved into
the sorted group. The bar is a box whose height depends on
the value of the element being moved, and whose width is 35.
(If the programmer had wished to limit the screen real estate of
the entire animation to be, say, 600 pixels wide, the box's
width could have been defined to be the maximum of 35 or the
result of dividing 600 by the total number of input elements.)
The path's endpoint determines whether the bar moves to the
left or the right relative to where it started. It will move left if
its destination, the current size of the sorted group (available
by referencing sorted[numcols]), is less than the position at
which it started (whichPosition); otherwise it will move right.
continueEvent is true when this element is being moved, and
resetEvent is true only at the beginning of the program's
execution history (reported by cell Initial? on Forms/3's built-
in System form). When the move into the new group is
completed, the continueEvent will become false.

=| Sort ==
CEL LN MATRIX
g 3 6 5
RADIO| OPTION
input
g
unsorted
g
smallest
3 5 6
sorted

A user's view of the selection sort during

=| primitiveAnimation [-]a

1
whichposition_a_trixSearchGolWhere Sort:input value|

Movement@ FALSE 8 —
MATRIX T ... X TesetEvent [oystem:Initial?
IntensltyQ
E
visibility Q ([T I
RADIO | OPTION L continueEvent E:t:smallest[l@l] = value|
[Fox 35 (10 * value)] color
|
conputed value Sort : input (187
Dra!mQ
pathKind
Computed Path
i (0 0) 10
Stralght@ TIst 00
. start kg steps kgl
GlockmseQ
Gounter—GlockwiseQ (150 250_) i —
ond list ((Sort:sorted[NUMCOLS] - whichPosition) * 50) 250]
pathType hnl T
Drawm Path

fineTuning IEI

drawPath

Path

. Animation

Figure 8: A representative Animation form from the selection sort animation. Formulas impose the constraints so that this form
can correctly animate any element in the unsorted group, no matter what its value, starting and ending positions, or direction of

movement.

4: ISSUES RAISED BY DECLARATIVENESS AND
RESPONSIVENESS

As the preceding examples show, Forms/3's declarativeness
and responsiveness, which follow from its constraint-oriented
evaluation model in a visual setting, are important from the
standpoint of the small amount of actual programming needed
to produce animations. In this section, we will explore other
unusual features and issues that declarativeness and
responsiveness bring to algorithm animation.

4.1: The Path/Transition

Declarative, Visual

Paradigm in a
Setting

As mentioned earlier, the path/transition paradigm appealed
to us as a starting point for devising and implementing
animation in Forms/3 because it is a sound conceptual model
with precise semantics. However, although the
path/transition paradigm is a model and not an

implementation, it is a model intended for implementation in
a programming language that is imperative and textual. Thus,
our task was to modify the model to make it suitable for
implementation in a language that is both declarative and
visual.

In Stasko's imperative textual implementation of the
path/transition paradigm, a transition takes three parameters:
a transition type, an image, and a path. The transition is then
explicitly executed with a 'perform' command. In our
approach, a transition also depends on a transition type, an
image, and a path, but further depends on a resetEvent and a
continueEvent. In effect, we replace Stasko's perform
command with resetEvent and continueEvent. This is because
in the responsive visual domain of Forms/3, the transition
(represented by the Animation cell on the Animation form) is
in principle continuously evaluated, meaning it does not need
to be explicitly commanded to execute. Rather, it is told the
constraints under which it may begin (because resetEvent's

constraint formula must evaluate to true) and told the
constraints under which it may advance (because
continueEvent's constraint formula must evaluate to true). For
example, Figure 9 shows the resetEvent cell from the wagon
wheel program. Its formula of 'true followed by false' allows
the transition to begin at the beginning of time (i.e., the first
point in the time dimension), but not to be reset at any other
time.

Stasko's path/transition paradigm includes a location abstract
data type which, to maintain referential transparency, is not
used in our paradigm. A language is referentially transparent if
the value of a function depends only on the values of its
parameters and not on any other factors, such as the order of
evaluation of the parameters or when the function is called. If
a Forms/3 object could report its absolute location, moving
the cell that contains that object would produce different
answers. This would violate referential transparency since in
Forms/3, a cell's location on a form has no semantic meaning;
moving the cell to a different location on a form may affect
the program's appearance, but it does not change the
program's semantics. To omit the use of absolute locations,
in our paradigm the location of the path as well as the steps
within the path are relative to the object's position in the
program. In other words, each cell defines a local coordinate
system for the objects within it, which are rendered on the
screen in the context of the cell's position on the window.

4.2: Generalizing the Approach to Initiating

and Advancing Animation

Non-declarative algorithm animation systems base the
initiation of an animation sequence on 'interesting events.'
These events are places in the algorithm program at which
significant algorithm operations occur, and are identified by a
call to initiate the desired animation sequence. Once an
animation operation has been initiated, most of these systems
advance them from frame to frame solely through the passage
of time. Our declarative approach generalizes upon the
traditional method in two ways: it expands the notion of what
an interesting event is, and it allows this expanded notion of
events to control not only the initiation of an animation
sequence, but also its frame-by-frame advancement.

We have shown that in Forms/3, the equivalent of an
'interesting event' to activate an animation sequence is
expressed as a constraining formula for the resetEvent cell on
the Animation form. Since the detection of this event is
expressed as a constraint, it is continuously evaluated. This
provides more expressive power than imperative approaches
because it allows events to be defined not only as the
algorithm having arrived at a particular operation, but as any
possible condition in the program. For example, in Forms/3,
resetting the animation can depend on a cell having a
particular value no matter when or how it occurred. This
approach allows completion of an operation (signaled by
some change in values) to be an interesting event as in

TRUE

true fhy false

resetEvent

Figure 9: resetEvent cell from the wagon wheel program.

FALSE
continueEvent fal?'? fhy
(if (eventReceptord:whatEvent? = "BUTTON-PRESS")
then true
else (if (eventReceptor5:whatEvent? = "BUTTON-PRESS")
then false))

Figure 10: continueEvent cell from the wagon wheel
program. The formula specifies when the constraints change;
lack of a final 'else' simply means that for any case not listed,
there is no change in the constraints.

imperative systems, but it also allows interesting events to be
defined as the satisfaction of other kinds of constraints, such
as the presence of a certain combination of values whenever
such a circumstance arises. Under this declarative approach,
the programmer needs only to specify the condition, and does
not need to worry about placing the constraint multiple places
in the program to 'trap' all the possible places in the program
that might cause the event.

In Forms/3, this generalized approach is also used in
advancing an animation frame-by-frame. After all, the
traditional time delay between animation frames is really just
the satisfaction of a particular constraint—the passage of a
time interval—which can be replaced by some other
constraint in our system. The Forms/3 programmer defines
this constraint, which can be time-based if desired, in the
formula of the continueEvent cell on the Animation form.

As an example, Figure 10 shows the continueEvent cell from
the wagon wheel program. The cell's formula constrains
continuation to depend upon a mouse button press on the Start
button and not the Stop button. (Another way to think about
this is to say that 'continuing' the animation is a high-level
event generated from a combination of low-level mouse
events.) When the Start button is pressed, continueEvent's
'eventReceptor4:whichEvent?=BUTTON-PRESS' constraint is
satisfied, allowing the animation to continue rendering with
the next animation frame generated by the path. The
constraint remains satisfied as the animation progresses
through the frames until the Stop button is pressed, at which
time continueEvent's (negative) constraint
'eventReceptorS:whichEvent?=BUTTON-PRESS' causes the
continuation constraint to no longer be satisfied and the
animation to halt.

4.3: On-The-Fly Exploratory Programming

Since Forms/3 is responsive (the programmer is given visual
feedback immediately about the effects of a program change),
algorithm animation programming in Forms/3 does not have
the edit-compile-restart loop of traditional algorithm
animation programming. Instead, a programmer can modify
the constraints that govern an algorithm animation during its
execution (a refinement characteristic of growing importance
in scientific computations known as 'steering'), and will
receive immediate feedback showing the effects of those
modifications. For example, suppose that something
affecting the animation such as an input to the animation, a
component of a combination animation, or even the animated
algorithm itself, is modified at some point of the animation's
execution. The declarativeness and responsiveness of Forms/3

Time Step

Figure 11: The time-related buttons in the Forms/3
environment allow the programmer to control the direction
of execution. The programmer may also manipulate the slider
bar or arrows to travel flexibly forward or backward through
time.

means that the complete history of the new animation
resulting from this change will be inherently redefined, and
the screen display can be automatically updated to reflect the
same point in time that the animation was at before the
modification was made.

4.4: Traveling through Time

Not only can the programmer modify the animation (or
algorithm) during runtime for exploratory or debugging
purposes, but the new program—in fact any Forms/3
program—can be executed in either a forward or backward
direction. The direction can be easily toggled at any time by
simply clicking a button in the programming environment. In
fact, the programmer can travel to any moment in time desired
using the time slider bar and, when ready, resume execution in
a forward or backward direction—one step at a time or at
normal speed—as many times as desired. See Figure 11.

While some algorithm animation systems allow the
animation to run in both directions, it is usually impossible
for the algorithm to execute in reverse. A few visual
debugging environments do feature 'video recordings' of
execution that can be traversed in either direction, but these
recordings do not adapt to changes in the program. In
Forms/3, the animation and algorithm can actually execute
synchronously in either direction, even when programming
changes are entered, because the cell's changed formula is a
complete specification of its history of values.l

4.5: Independence of the Algorithm From Its

Animation

In Forms/3, as in many declarative systems, programming can
be thought of as defining a mapping from computational
states to a desired outcome. The advantage of this declarative
mapping approach is that the algorithm being animated is
neither altered nor augmented with animation code. Instead,
the interesting events of the algorithm are defined in the
animation code. This allows the same algorithm program to
be used both with and without its animation.

Any declarative approach to algorithm animation—whether
visual or textual —can offer this feature, and our system is not

IThe system tracks the placement of values in time using an
implementation technique we term "lazy marking", which is
described in detail in [Burnett and Atwood 1994].

the first. We mention it because this feature is considered
important in algorithm animation research, and the fact that it
is inherently available in declarative approaches has not been
brought out before. The best-known algorithm animation
systems are imperative, and require the programmer to
construct an animation-annotated algorithm by inserting
animation function calls at key points in the original
algorithm. Under this approach, if the algorithm is not always
to be animated, two versions of the compiled2 program must
be kept up-to-date—one with the unaltered algorithm and one
with the animation-annotated algorithm. In contrast to this, a
declarative mapping approach allows the same algorithm
program to be used both with and without its animation
without the need for separate compiled (or source) versions of
the program.

5: CURRENT STATUS AND FUTURE WORK

The algorithm animation features described in this paper have
been implemented in our research prototype, which is
implemented for Unix workstations in Lisp and Garnet, a one-
way constraint system that handles the user interface [Myers
et al. 1990]. A more detailed description of the approach and
of an earlier implementation can be found in [Carlson and
Burnett 1995]. However, this work continues to evolve, and
we have several improvements planned.

One improvement we are considering is a more flexible way to
specify paths so that the path of one object may depend on the
paths of others. Such a change would be a fairly minor matter
of changing the user interface regarding how the path
specifications are entered. We are also currently working on
several algorithm animation examples, especially tree-based
algorithms, to experiment more with the power of the
approach. Although the approach is not computationally
limited by the use of one-way constraints (our approach is
computationally as powerful as standard imperative
languages), it is limited in terms of expressive power by the
need for further development of Forms/3's explicit time
dimension. Ideally, an entire animation transition should
occur within one logical time unit from the algorithm's
perspective. In the current version, it is necessary to simulate
this when an animation is nested inside an algorithm step by
inserting 'slow down' constraints into the algorithm. In the
future, we plan to expand the automatic synchronization to
handle these cases by adding new temporal constraints that
instead speed up the animations by breaking the atomic time
units into smaller nested units.

6: CONCLUSION

By seamlessly integrating algorithm animation into Forms/3,
we have shown that algorithm animation need not
compromise the characteristics of a declarative VPL with a
constraint-based evaluation model, nor need it add complexity
to the language. Rather, we have exploited such a language's

2In fact, two versions of the source code are also needed if
compile-time directives and all the animation annotations
detract too much from the readability of the 'production'
version of the source code.

declarative and responsive characteristics to produce the
following unusual features of algorithm animation:
* a more general way to initiate and advance
animations;
e on-the-fly exploratory
programming (steering);
e the ability to change the direction of execution and
flexibly travel through time, in both the animation
and the algorithm synchronously;
e removal of the animation calls from the algorithm
code; and
* a unified, visual setting for programming and
experimenting with both the algorithm and its
animation.

algorithm animation

These features show ways in which algorithm animation,
when integrated with a constraint-based visual setting, can
surpass the capabilities of algorithm animation for
imperative, textual languages. Key to these results is
integration with the same constraint-based VPL used for the
algorithm programming. These advances form a natural and
powerful mechanism by which certain VPLs—those that are
responsive and that follow a constraint-based evaluation
model—can provide highly interactive support for combined
visual programming of algorithms and visual programming of
their animations.

ACKNOWLEDGMENTS

Sherry Yang's work on generalization greatly simplified the
way programmers specify algorithm animations. We would
also like to thank John Atwood, Herkimer Gottfried, Rebecca
Walpole, and the rest of the Oregon State University Visual
Programming Language Research Group for their
contributions to this research.

REFERENCES

[Brown and Sedgewick 1984] M. H. Brown and R. Sedgewick,
"A System for Algorithm Animation," ACM Computer
Graphics (SIGGRAPH'84, Minneapolis, MN), Volume
18, Number 3, 177-186, July 1984.

[Burnett and Ambler 1994] M. Burnett and A. Ambler,
"Interactive Visual Data Abstraction in a Declarative
Visual Programming Language", Journal of Visual
Languages and Computing, 29-60, Mar. 1994.

[Burnett and Atwood 1994] M. Burnett and J. Atwood, "Lazy
Marking: A Lazier Implementation of Functional 1/O for
Graphical User Interfaces", TR 94-60-9, Oregon State
University, Computer Science Department, Dec. 1994.

[Carlson and Burnett 1995] P. Carlson and M. Burnett,
"Algorithm Animation in a Declarative Visual
Programming Language," TR 95-60-2, Oregon State
University, Computer Science Department, Apr. 1995.

[Duisberg 1987] R. A. Duisberg, "Visual Programming of
Program Visualizations: A Gestural Interface for
Animating Algorithms," 1987 Workshop on Visual
Languages, Linkoping, Sweden, 55-66, Aug. 1987.

[Duisberg 1987/88] R. A. Duisberg, "Animation Using
Temporal Constraints: An Overview of the ANIMUS
System," Human-Computer Interaction, Volume 3,
Number 3, 275-307, 1987/1988.

[Hansen 1994] W. J. Hansen, "The 1994 Visual Languages
Comparison," 1994 IEEE Symposium on Visual
Languages, St. Louis, MO, 90-97, Oct. 4-7, 1994.

[Helttula et al. 1989] E. Helttula, A.Hyrskykari, and K. Raiha,
"Graphical Specifications of Algorithm Animations with
ALADDIN," 22nd Hawaii International Conference on
System Sciences, Kailua-Kona, HI, 892-901, Jan. 1989.

[Lieberman and Fry 1995] H. Lieberman and C. Fry, "Bridging
the Gap Between Code and Behavior in Programming,"
ACM Conference on Computers and Human Interface
(CHI'95), Denver, Colorado, Apr. 1995.

[Moher 1988] T. G. Moher, "PROVIDE: A Process
Visualization and Debugging Environment", /EEE
Transactions on Software Engineering, Volume 14,
Number 6, 849-857, June 1988.

[Mukherjea and Stasko 1993] S. Mukherjea and J. T. Stasko,
"Applying Algorithm Animation Techniques for Program
Tracing, Debugging, and Understanding," [5th
International Conference on Software Engineering,
Baltimore, MD, 456-465, May 17-21, 1993.

[Myers et al. 1990] B. Myers et al., "Garnet: Comprehensive
Support for Graphical, Highly Interactive User
Interfaces," Computer, 71-85, Nov. 1990.

[Roman et al. 1992] G.-C. Roman, K. C. Cox, C. D. Wilcox
and J. Y. Plun, "Pavane: A System for Declarative
Visualization of Concurrent Computations," Journal of
Visual Languages and Computing, Volume 3, Number 2,
161-193, June 1992.

[Stasko 1990a] J. T. Stasko, "Simplifying Algorithm
Animation with TANGO," 1990 IEEE Workshop on
Visual Languages, Skokie, IL, 1-6, Oct. 4-6, 1990.

[Stasko 1990b] J. T. Stasko, "The Path-Transition Paradigm:
A Practical Methodology for Adding Animation to
Program Interfaces," Journal of Visual Languages and
Computing, Volume 1, Number 3, 213-236, Sept. 1990.

[Stasko 1991] J. T. Stasko, "Using Direct Manipulation to
Build Algorithm Animations By Demonstration," CHI'91
Conf. Proceedings, New Orleans, LA, 307-314, April 27-
May 2, 1991.

[Takahashi et al. 1994] S. Takahashi, K. Miyashita, S.
Matsuoka, and A. Yonezawa, "A Framework for
Constructing Animations via Declarative Mapping
Rules," 1994 IEEE Symposium on Visual Languages, St.
Louis, MO, 314-322, Oct. 4-7, 1994.

[Yang and Burnett 1994] S. Yang and M. Burnett, "From
Concrete Forms to Generalized Abstractions through
Perspective-Oriented Analysis of Logical
Relationships," 1994 IEEE Symposium on Visual
Languages, St. Louis, MO, 6-14, Oct. 4-7, 1994.

