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ABSTRACT 
Information foraging models have predicted the navigation 
paths of people browsing the web and (more recently) of 
programmers while debugging, but these models do not 
explicitly model users’ goals evolving over time. We pre-
sent a new information foraging model called PFIS2 that 
does model information seeking with potentially evolving 
goals. We then evaluated variants of this model in a field 
study that analyzed programmers’ daily navigations over a 
seven-month period. Our results were that PFIS2 predicted 
users’ navigation remarkably well, even though the goals of 
navigation, and even the information landscape itself, were 
changing markedly during the pursuit of information. 
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INTRODUCTION 
When seeking information, how do people decide where to 
look? In the 90’s, Pirolli and several colleagues first inves-
tigated this question by developing a new cognitive theory 
called information foraging [26]. Since then, studies of in-
formation foraging have focused on structured information-
seeking tasks with well-defined goals on static, unchanging 
collections of documents. Yet, exploratory information-
seeking tasks often have no clear goal defined in advance, 
although information encountered along the way often in-
forms the goal. Furthermore, information seeking often 
involves context switches in a dynamic, changing informa-
tion world. Can information foraging theory explain and 
model human behavior even given these kinds of challenges 
in day-to-day information-seeking tasks?  

 

Information foraging theory is based on optimal foraging 
theory, a theory of how predators and prey behave in the 
wild. In the wild, predators sniff for prey, and follow scent 
to the place (patch) where the prey is likely to be. Applying 
these notions to the domain of information technology, the 
people in need of information (predators) sniff for informa-
tion (prey), and follow information scent through cues in 
the environment to the places (patches) where the prey 
seems likely to be. Models of information foraging have 
successfully predicted which web pages human information 
foragers select on the web [9], and as a result, information 
foraging principles have become useful in designing web 
sites [22, 29]. Systems based on information foraging mod-
els have also streamlined information seeking time [8, 23], 
and helped evaluate web site design [10]. 

In this paper, we consider the fact that information foraging 
often occurs when the forager does not have a fully-formed 
goal, or when new information in the environment changes 
the forager’s understanding of the goal. Although previous 
models could in principle change the goal (for example by 
explicitly adding keywords to a search query as with 
ScentTrails [23]), in those works the goal is an externally 
specified independent variable—a parameter to the model 
that does not change as the model runs. In contrast, in this 
paper we present a model in which the goal is an evolving 
dependent variable that changes depending on what the 
model observes over the course of a single model run.  

Programming is an ideal domain for studying these issues 
in information foraging theory for several reasons. First, 
previous work has suggested that debugging involves in-
formation foraging, from Brooks’ early work on beacons 
[6] to prior debugging research that presented the PFIS 
(Programmer Flow by Information Scent) model of infor-
mation foraging in debugging [18, 20]. Second, it chal-
lenges information foraging theory: debugging is rich in 
information seeking choices, where each screen offers many 
more navigation choices in a typical class than the reported 
average of 20 to 30 hyperlinks on a typical web page [4, 
12]. For example, in Eclipse, every identifier links to an-
other region of code (Figure 1). Third, programming exem-
plifies the situation in which the world changes due to fre-
quent edits and updates as a team revises source code. This 
situation is increasingly important in the web as well, in 
web applications such as wikis and blogs. Fourth, since a 
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bug can masquerade as something very different from its 
real cause, debugging epitomizes prey that may evolve. 

This paper presents a new model of information foraging 
named PFIS2 (Programmer Flow by Information Scent 2). 
We investigate its ability to predict programmers’ naviga-
tion during their day-to-day activities. This paper therefore 
makes the following contributions. First, the algorithm we 
developed is relatively simple to implement and affords 
flexibility in modeling human behavior, allowing experi-
mentation with variations of the model. Second, our model 
of information foraging reacted to information edits during 
foraging activity. Third, the model reacted to incremental 
changes in programmers’ conceptions of navigation goals 
and understanding of code during navigation. Finally, this 
paper presents a field study of professional programmers 
during seven months of their everyday work, which neces-
sarily includes noise from phenomena such as interruptions, 
wild goose chases, and context switching.  

BACKGROUND AND RELATED WORK 
Information foraging theory was developed in the context 
of understanding web browsing [24, 25, 27]. Information 
foraging theory derives from rational analysis [1] the as-
sumption that humans have adapted strategies that allow 
them to find information efficiently in the world around 
them, minimizing the cost to achieve their goals. The theory 
applies to information navigation in general, although ap-
plication to any new domain requires defining the concepts 
relative to that domain.  

The first model of information foraging theory was Pirolli 
and Card’s ACT-IF [26], which models a user foraging for 
information using the Scatter Gather browser. It is a cogni-
tive model, implemented in the ACT-R cognitive architec-
ture [2]. This evolved into SNIF-ACT which models a user 
foraging on the web [7]. SNIF-ACT models scent as the 
relationships between linguistic concepts in a web user’s 
mind. It represents these relationships via a spreading acti-
vation network initialized from on-line text corpora. The 
strength of a relationship between two concepts is assumed 
to be proportional to the frequency with which they are 
found near each other in the corpora. This kind of analysis 
has been shown to provide a good approximation to the way 
humans’ mental associations work [17]. Given a goal 
(prey), the words in the prey activate nodes in the network. 
If nodes activated by the goal and words labeling a link 

have strong associations, they will become more active than 
words with weak associations. In this way, activation 
spreads through the network such that activation increases 
in nodes highly related to the original goal and decays if 
nodes are weakly or unrelated to the goal.  

In SNIF-ACT, production rules encode users’ possible ac-
tions such as Attend-to-Link, Click-Link, Backup-a-page, 
and Leave-Site. The model uses these rules to simulate a 
user’s decisions about selecting a link versus leaving the 
site. For example, the model will normally select the link 
with the greatest scent; but if it determines that the scent of 
all the unvisited links is low enough, it will instead leave 
the current web site. In other words, if the scent is per-
ceived to be stronger elsewhere, it is time to leave. SNIF-
ACT 2 [13] adds Bayesian reasoning to decide incremen-
tally when to leave a page from its experiences with the 
links and web pages visited from that page so far. The 
model will choose Backup-a-page when the perceived scent 
emanating from this page (calculated as a function of cues 
on the page looked at so far) is less than scent emanating 
from previously explored pages (calculated as a function of 
link scent on previously visited pages). In this way, it takes 
into account the impression of a page’s overall remaining 
worth even if the user has not scanned the entire page. Our 
models are also incremental, but in a different sense: our 
models incrementally infer the information need over time. 

The WUFIS (Web User Flow by Information Scent) algo-
rithm [9, 10] also models scent and foraging, but does not 
require an underlying cognitive model. Instead it models 
many users navigating through a web site seeking informa-
tion, predicting the probable number of users that would 
reach each page by following cues most related to a particu-
lar query. It does so by estimating the scent of a link on a 
web page as a function of the cosine similarity between 
words in the query and words in or near the link, repre-
sented as document vectors weighted by their term fre-
quency inverse document frequency or TF-IDF [3]. Given 
the scent calculation of each link on each page, WUFIS 
creates a network representing the web site and weights 
each edge according to its proximal cue’s scent.  Then it 
uses spreading activation to predict where in the site most 
users, pursuing this query, would eventually end up. 
Whereas SNIF-ACT is a fully functioning cognitive model, 
and must be customized for each information foraging con-
text being studied, WUFIS can be applied readily in new 
contexts. WUFIS can also work backward: its sibling algo-
rithm, IUNIS (Inferring User Need by Information Scent) 
[9], takes the path a user traversed through a web site and 
infers what their original information need was.  

Prior models of information foraging when debugging built 
on the WUFIS/IUNIS work. An executable model called 
PFIS (Programmer Flow by Information Scent) [18, 20] 
analyzed the topology of the source code, then calculated 
the scent of the cues that lead to each method, and finally 
propagated the scent along links with proximal cues con-
taining scent relative to the prey, using spreading activation. 

 
Figure 1. A few lines of source code. The underlines denote the 
navigational choices (links). This snippet alone consists of over 

10 links, and represents a tiny portion of the class file.  



    

PFIS predicted navigation as effectively as the aggregate 
judgments of 12 human programmers, but to make these 
predictions, the model required descriptions of prey up 
front that defined the participants’ tasks, and furthermore, 
PFIS did not account for changes to the source code. There-
fore, PFIS was inadequate for modeling information forag-
ing in which the prey and the source code evolved during 
information foraging. 

Understanding the principles of information foraging has 
improved the design of web sites, and has resulted in sys-
tems that streamline information seeking [8, 23]; thus, we 
believe that debugging tools would also benefit from under-
standing information foraging in this domain. For example, 
despite efforts to develop source code search tools to help 
programmers navigate, Ko et al.’s empirical investigation 
of programmers’ frequent information seeking during 
debugging showed that only half of the searches returned 
task-relevant code [16]. Tools that account for information 
scent in some way have produced impressive empirical 
results that suggest information foraging theory is useful in 
this domain (e.g., [11, 14, 28]). We aim to demonstrate 
quantitatively that information foraging models can predict 
people’s real-world behavior in this domain, to support the 
theory as a foundation for tool development.  

PFIS2: A NEW MODEL OF INFORMATION FORAGING 

Constructs 
Prior work adapted the theoretical constructs of information 
foraging theory to debugging [20]. We summarize those 
theoretical constructs, and also present PFIS2’s operational 
approximations of those constructs. 

• Prey: The knowledge the programmer seeks to under-
stand how to fix the bug. In PFIS2: A bug description, 
e.g., a bug report.  

• Proximal cue: A word, object, or behavior in the envi-
ronment that suggests prey. Cues are signposts. Cues ex-
ist only in the environment. In PFIS2: Words in the 
source code, including comments. 

• Information scent: Perceived “relatedness” of a cue to the 
prey (perceived likelihood of it leading toward prey). 
Scent exists only in the user’s mind. In PFIS2: Inferred 
relatedness of a cue to the prey, as measured by amount 
of activation from a spreading activation algorithm.  

• Topology: The collection of paths through relevant 
documents and on-screen displays through which the pro-
grammer can navigate. In PFIS2: An undirected graph 
through the source code, in which nodes/vertices are 
elements of the source code, and its edges are environ-
ment-supported links (defined below). Topology is envi-
ronment-dependent.  

• Link: A connection between two nodes in the topology 
that allows the programmer to traverse the connection ef-
ficiently. In PFIS2: “Efficiently” means at most one click 
or keystroke. The PFIS2 implementation works in 
Eclipse, which supports the links in Table 1. Because at 
most one click or keystroke is necessary to scroll be-

tween contiguous methods in the editor, PFIS2 recog-
nizes links between contiguous methods. 

• Information patch: A locality in source code, related 
documents or displays in which the prey might hide. In 
PFIS2: source code methods. 

Element Link type Element 
Workspace Has Projects 
Project Defines Packages  
Package Defines Class or Interface 
Class or Interface Imports Class or Interface 
Class or Interface Extends Class or Interface 
Class Implements Interfaces 
Class or Interface Defines Variables 
Class or Interface Defines Methods 
Variable Has Class or Interface 
Method Returns Class or Interface 
Method Invokes Methods 
Method Contiguous to Methods 
Method Defines Variables 
Method Uses Variables 

Table 1. PFIS2 recognizes these Eclipse-provided one-click (or 
less) links. “Contiguous to” represents the low cost of navigat-

ing to methods right next to each other in the text.  

The PFIS2 algorithm 
Because PFIS [18], an existing information foraging model 
of debugging, requires the description of prey up front to 
make predictions, and assumes that source code never 
changes, we realized that it was ill-suited to modeling the 
behavior of users during a field study where programmers’ 
goals evolved and source-code changed. So we developed a 
new model called PFIS2. 

The PFIS2 algorithm takes as input: the description of prey 
(if available), the patches the user has encountered in previ-
ous navigations, and the topological links available for 
navigation. (We gathered these inputs by instrumenting 
Eclipse using a plug-in we built for our field study.) In our 
field study, the PFIS2 algorithm updated whenever the user 
navigated or modified source code, but it can be run only 
whenever predictions are needed. Figure 2 summarizes the 
PFIS2 algorithm.   

Step 1. A map of the world according to PFIS2 
PFIS2 views the information world as the union of two 
graphs: the source code topology and the cues seen so far. 
PFIS2 scans for cues by looking at every word, separating 
by camel case, performing word stemming, and eliminating 
English stop words (relatively uninteresting words such as 
“the” and “and”) and Java’s reserved words. Each cue be-
comes a vertex. The source code topology provides addi-
tional vertices: one for each package, class, interface, 
method, and variable. The edges are the topological links 
(Table 1) plus the edges that connect cues to the location(s) 
in which the cue occurred. 



 

  

 

Initialize:  
construct empty Graph G, Activation vector A, path 
read description of prey (e.g., bug report) 
insert each word in description into G and A, with A[word]=1 

 
Update predictions whenever the user opens source code 
files not seen before, changes source code, or navigates:  

read changes to source code seen/changed 
read user’s newest navigations, currentMethod 
 
Step 1 Update G’s source code seen by the user so far: its 
cues, locations, and edges between them. 
Step 2 Activate each method in navigations by recency:  

append navigations to end of path 
x := 1.0 
for i=length of path down to 1: 
A[path[i]] := x 
x := x * 0.9 

Step 3 Spread activation through A for k iterations, decay-
ing at the rate of α=0.85: 

toSpread := [currentMethod] 
for k iterations: 

for each node in toSpread: 
w := 1 / (number of neighbors of node in G) 
for each neighbor of node in G: 

A[neighbor] := A[neighbor] + (A[node]*w*α)  
toSpread = all neighbors processed in this iteration 

Return updated vector A of activation scores. 

Figure 2. The PFIS2 algorithm. (Variants in Table 2) 

More formally, PFIS2’s graph G = (V1∪V2, E1∪E2). G is an 
undirected graph. V1 is the set of all source code locations, 
and E1 is the set of links among them (by the operational 
definition of links from the previous section). V2 is C ∪ V1, 
where C is the set of all cues (words) in source code ele-
ments, and each edge in E2 connects an element c∈C to an 
element v1∈V1 if c occurs in v1. 

Step 1 maintains this graph. For example, suppose the user 
has opened the RSSOwl package in Eclipse, and in that 
package the user opened the RSS class shown in Figure 3. 
The prey is the following bug report, in its entirety:  

“Archive feed items by age.”  

Step 1 creates nodes and edges reflecting the code in Figure 
3: an edge from package RSSOwl to class RSS, from class 
RSS to each of its methods and variables, and from RSS’s 
methods to each of the classes, methods, and variables that 
they use. For each edge, it creates appropriate vertices if 
they are not already in G. A portion of the graph produced 
so far is shown in Figure 4’s left. 

Step 1 also connects cue vertices for each word in the bug 
report and each word near links to the locations in which 
they occur. For example, the cue “create” connects to 
methods createArchiveDir, createWorkingDir, and 
startupProcess, as shown in Figure 4’s right, because 
that word appears in each of those methods, as shown in 
Figure 3. (In PFIS2, “near” means “in the method”.) 

Spreading activation will eventually push those cues’ ef-
fects into other methods, as we explain shortly. 

Note that PFIS2 knows more about code the user has seen 
than it does about code not yet seen. In the example, PFIS2 
knows which methods in the RSS class are contiguous to 
which other methods, all the methods they call, and all the 
words shared among the methods it has seen so far. In con-
trast, the user has never looked at the File class, so PFIS2 
knows only the name (and words in the name) of the File 
class and exists method, which it knows because a new 
File instance was declared and the exists method was 
called by methods in the RSS class. There are many other 
methods in the RSSOwl package about which PFIS2 knows 
nothing at all at this point. 

Step 2: Setting up the activations 
Activation values are how PFIS2 tracks which nodes in G 
are most active. Thus, having updated graph G in Step 1, in 
Step 2, PFIS2 updates the activation vector A for the loca-

... 
public static void main(String[] args) { 
 startupProcess(); 
 new RSS(); 
} 
private static void createWorkingDir() { 
 String homePath = ‘/.rssowl’; 
 File homeDir = new File(homePath); 
 if (!homeDir.exists()) {homeDir.mkdir();} 
 GlobalSettings.WORK_DIR = homePath; 
} 
private static void createArchiveDir() { 
 File archive = ‘/archive’; 
 if (!archive.exists()){archive.mkdir();} 
} 
private static void startupProcess() { 
 createWorkingDir(); 
 createArchiveDir(); 
} 

Figure 3. Example RSSOwl source code.  

 
Figure 4. (Left) The topology of example RSSOwl source code 

(G1=(V1, E1)). 

(Right) The union of the source code topology with encoun-
tered cues G = (V1∪V2, E1∪E2). Nodes in strongly connected 

subgraphs of cues and methods reinforce each other when they 
become highly active. For example, createWorkingDir() and 
createArchiveDir() share 6 adjacent nodes and an edge, so 

activation of either node also activates the other node.  



    

tion nodes that have become “active” recently. Suppose the 
user navigated from main to startupProcess to cre-
ateArchiveDir to createWorkingDir. Step 2 would 
result in the following nodes having these activation values, 
due to the exponential decay in path distance from the cur-
rent position: createWorkingDir 1, createArchiveDir 
0.9, startupProcess 0.81, main 0.729. If createWork-
ingDir occurs twice in path, only the most recent activa-
tion is considered. 

In the initialization step, PFIS2 already activated words that 
were in the bug report: archive 1, feed 1, item 1, age 1. 
Based on which words the user follows up persistently in 
navigations, the activation level of these cues and methods 
in which they appear will increase or decrease in Step 3. 

Step 3: Spreading activation 
In Step 3, PFIS2 spreads activation along edges to model 
the user’s evolving interests. In its first iteration, it spreads 
activations from the current method by increasing the acti-
vation of the cues and locations linked to the current 
method in the topology. For example, since the current 
method is createArchiveDir, activation will spread di-
rectly to class RSS, to any classes used in cre-
ateArchiveDir (in this case File), to the methods it calls 
(exists, mkdir), to the methods contiguous to it (cre-
ateWorkingDir, startupProcess), and to cues in it 
(create, archive, dir, file, exist, …). At this point, it has rein-
forced one cue from the bug report, namely archive, be-
cause the user has navigated to methods related to that cue. 

At this point, all direct neighbors (location nodes and word 
nodes depicted in Figure 4’s right side) of the current 
method in G have been activated. Thus, PFIS2 thinks each 
has scent relative to the user’s current interests. In the next 
iteration, all of those vertices spread further decayed scent 
to their neighboring locations and cues (one of which is the 
current method), and in the third iteration, every vertex that 
just received activation spreads a further decayed scent to 
their neighbors. (It has been our experience that the activa-
tion ranks become stable after three iterations.) PFIS2 then 
returns a ranked list of activation scores for methods, which 
is PFIS2’s estimation of each method’s scent. The highest 
ranked method is PFIS2’s prediction of the next method to 
which the user will navigate. 

Note that the edges constrain where activation can flow: 
methods near to or called by active methods become more 
active, and cues in active methods become stronger. Thus, 
whenever the user navigates, even if it is to a method PFIS2 
did not expect, that method becomes highly activated, alert-
ing the model to the user’s evolving interests.  Activation 
then spreads to cues in that method, incrementally modeling 
the evolution as to which cues will next be of highest inter-
est next.. The more active cues, in turn, strengthen method 
nodes containing those words, especially those with direct 
links to the active methods. This combination of cues and 
history in spreading activation allows PFIS2 to quickly 
evolve its notion of the prey.  

Representation of cues as nodes with undirected links to 
their origins is a practical alternative to other information 
foraging approaches that estimate locations’ relevance to 
cues. This approach is akin to TF-IDF (used in PFIS and 
WUFIS); both track degree of word sharing among docu-
ments. Other approaches have used latent semantic analysis 
[17] or point-wise mutual information [21], which require 
corpora, leading to the need to find a suitable corpus. The 
cues-as-vertices approach of PFIS2 does not need a corpus. 
Instead, PFIS2 conceptually uses the past code it has seen 
as its “corpus” for the purpose of informing semantic rele-
vance. For example, if the programmer pursues a cue not 
literally found in the bug report but discovered in the code 
as they navigate, activation of that cue will spread to all 
locations containing that cue. Thus, by continually inform-
ing relevance estimations with new navigations, we sacri-
fice some predictive power at the start of a navigation path 
in exchange for greater flexibility in modeling evolving 
discoveries affecting the user’s definition of the prey. 

FIELD STUDY METHODOLOGY 
To evaluate PFIS2 and our research contributions, we con-
ducted a field study. We collected logs of participants’ day-
to-day work in Eclipse over seven months, using a plug-in 
that we built. We first tested the plug-in on a few pilot par-
ticipants. After we addressed performance issues identified 
by the pilots, we invited a group of professional program-
mers at IBM to install the plug-in and participate by engag-
ing in their normal, day-to-day activities. 

Two professional programmers used our plug-in for the full 
seven months of the field study. Those two participants 
(one male, one female) worked at IBM and used Eclipse in 
their day-to-day work. Both were team leaders for compo-
nents of Rational products, including a visualization toolkit, 
a server product, and Jazz (built on Eclipse). Beginning in 
the summer of 2008 and ending in the winter of 2009, we 
captured participants’ every action within Eclipse, a total of 
2.3 million actions, generating 4,795 predictions of be-
tween-method navigations. Note, it is these 4,795 predic-
tions that are the experimental units used in our analysis, 
not the outcomes of participants’ actions themselves.  

Experimental variants of PFIS2 
We experimented with different versions of PFIS2 to com-
pare their predictions by manipulating the initial activation 
vector (step 2 of the algorithm) as shown in Table 2. 

PFIS′ (“PFIS-prime”) is our baseline system for compari-
son. PFIS′ is conceptually the same as the original PFIS 
[18]. Whereas PFIS computed information scent as cosine 
similarity weighted by TF-IDF, PFIS′ computed informa-
tion scent as the activation of cues in the spreading activa-
tion graph. We implemented PFIS′ using PFIS2 because 
PFIS did not handle enough details of navigation to allow a 
fair comparison of the “explicit prey only” base situation. 
Like PFIS, PFIS′ does not inform prey with cues observed 
along the way.  



 

  

 

In all versions, the model predicted the next navigation step  
given where the programmer had just been. 

Variant Step 2 activation strategy 
PFIS′ (baseline) None. (path=empty list.) 
PFIS2-
ImmedScent- 
Explicit 

Activate current method only. 
(path=[currentMethod].) 

PFIS2- 
AllScent- 
Explicit 

Activate all methods encountered so far 
with most recent weighted most heavily. 
(the path variable is as given in Figure 2.) 

Table 2. These variants of PFIS2 were constructed by chang-
ing the activation in step 2 of the algorithm.  

Quality measure 
To assess and compare the above model variants, for each 
navigation step, we ranked current predictions according to 
strength (activation value), removing the prediction of the 
user’s current method. Then we checked to see what rank 
was held by the prediction that matched the participant’s 
actual navigation. For example, if a participant navigated to 
method Y, we looked up Y in the model’s list of predic-
tions. Suppose the predictions were: X first, Y second, and 
Z third. Since the participant navigated to the second ranked 
method, the model’s prediction rank would be 2. For each 
model variant, we statistically evaluated these prediction 
ranks at each of the users’ navigations. Note that this meas-
ures a very strict criterion, requiring that PFIS2 predict 
where participants went in their very next click. 

RESULTS 
Our plug-in recorded Eclipse sessions, defined as the time 
between when a participant started Eclipse until he or she 
terminated Eclipse. We analyzed the 76 sessions that in-
volved active navigation and edits, reinitializing after each 
session. The median session lasted 94 minutes, but many 
sessions lasted several hours and even days (the mean was 
about 28 hours). The data represented over 2000 hours of 
observation of 4,795 between-method navigations. We used 
the data to evaluate our information foraging models. 

Incrementally redefining the prey in a changing world  
Past work on information foraging has viewed prey as well 
defined up front. We hypothesized that PFIS2 would pro-
vide a more accurate model of users’ prey when debugging 
than an unchanging representation of the prey.  

For the original description of the prey, we expected to use 
bug reports, but although our participants had told us they 
do use issue tracking, they did not do so during the seven 
months of our study. However, they retrospectively pro-
vided us design documents and time-stamped revision logs 
describing the bug fixes, such as in Figure 5. The revision 
logs, like bug report titles, could uniquely identify source 
code artifacts and changes that closed bugs [15, 19]. (Bug 
reports have widely differing quality [5], which has impli-
cations for their use in models, a point we return to later.) 
Our evaluation was done by replaying logs against the 
model variants; thus we used the descriptions like bug re-

ports, namely as explicit prey at the beginning of each rele-
vant session, as determined by manually tying them by par-
ticipant and timestamp to the relevant sessions. These ses-
sions covered 1,209 of our participants’ between-method 
navigations.  

Comparing these models revealed that informing prey with 
scent encountered during foraging more accurately modeled 
user behavior than an unchanging representation of the 
prey. PFIS′, which used an unchanging notion of prey, was 
the worst model of the variants in Table 2; its median pre-
diction rank was 99 (out of a median of over 700 possible 
navigation choices). On the other hand, PFIS2-
ImmedScent-Explicit, which incrementally updates its no-
tion of the prey using only the most recent navigation, had a 
median rank of 31 (out of 700+ choices). PFIS2-AllScent-
Explicit was much more effective than either PFIS2-
ImmedScent-Explicit or PFIS′. PFIS2-AllScent-Explicit, 
which starts with a bug report and updates the prey in light 
of cues encountered at each step along the way, predicted 
participants’ navigations with a median rank of 8 (out of 
700+ choices). This means that about 604 of the partici-
pants’ 1,209 navigations were in PFIS2-AllScent-Explicit’s 
top 8 choices. In fact, 10% of the places participants navi-
gated were this model’s first choice. Figure 6 shows the 
distributions of prediction ranks for these three models. 

The differences among these three models were statistically 
significant1: PFIS2-AllScent-Explicit was a significantly 
better model than PFIS2-ImmediateScent-Explict (paired 
Wilcoxon signed rank test, N=1209, Z=-24.131, p<.001), 
which in turn was better than PFIS′ (paired Wilcoxon 
signed rank test, N=1209, Z=-20.377, p<.001). These dif-
ferences clearly show the importance of the acquisition of 
incremental scent throughout the user’s journey.  

In Figure 6, note the long tails. The end of the long tail of 
the best model, PFIS2-AllScent-Explicit, was rank 658 as 
its worst prediction. In total, it had 88 predictions at rank 
100 or worse (cropped off in the figure), but this long tail 
covered only about 7% of all the navigations.  

A session in detail 
A look at individual sessions helps to clarify the strengths 
and weaknesses of the best model: PFIS2-AllScent-
Explicit. Figure 7 shows one session in which the partici-
pant navigated between methods 22 times before ending the 

                                                             
1 Figure 6 shows that the distribution of prediction ranks for 
each model was not normal, hence the nonparametric tests. 

Cleaner version of the output format. 
ROLLBACK & other optimization. 
Classpath, PPTx with names merged, name changes in 
formatter. 
Figure 5. Three of the revision logs used as explicit descrip-
tions of the prey.  



    

session. Patterns like this occurred frequently in almost all 
of the sessions. In the example shown, its first prediction 
was rank 9. The quality of the first prediction should be 
strongly affected by the quality of the bug report itself.  

The predictions tended to improve over time, but at some 
point, the user would do something wildly unexpected: 
navigate between seemingly unrelated methods, a “sur-
prise” from PFIS2’s perspective. The second navigation in 
Figure 7 was a surprise (prediction rank 109). Recall that 
about 7% of the navigations were surprises to PFIS2-
AllScent-Explicit. We believe such surprises are inevitable 
in real-world situations such as refactoring or switching 
contexts.  

Notice in Figure 7 how quickly PFIS2 corrected its course 
when such unexpected navigations arose. It almost always 
recovered within one or two navigations, getting back to the 
single-digit rankings very soon (median recovery time: 1 
navigation). Out of 1209 predictions, the worst it did was a 
run of three in a row in 3-digit territory. (Compare this to its 
best run: 24 in a row in single-digit territory.) In Figure 7, it 
took two navigations for it to recover, at which point its 
rank improved to 2 (fourth navigation).   

 

In contrast, PFIS′ had more surprises; in fact, 50% of the 
navigations produced three-digit rankings (median 99). For 
PFIS′, the only “expected” methods were those with scent 
related to the explicit prey or close to methods with scent 
related to the explicit prey. Figure 8, which shows PFIS′ 
performance for the same session as Figure 7, demonstrates 
where course correction could have helped PFIS′. For ex-
ample, the user went back to the same method as in the 
original surprise two more times, and also visited two 
methods with closely related functionally to that one, all of 
which were high-rank surprises to PFIS′.  

What about the influence of time? For PFIS2-AllScent-
Explicit, predictions after surprises usually got continually 
better until the next big surprise, as in the running average 
graph in Figure 7 right. However, as Figure 9 demonstrates, 
length of the session did not help; perhaps because the 
user’s prey changed substantially enough that early knowl-
edge may not have been useful many navigations later. Nor 
did sheer number of sessions help, because we did not use a 
machine learning approach to try to learn about a partici-
pant or project; rather, each session was predicted inde-
pendently of any previous session’s data. 

In general, then, our characterization of PFIS2-AllScent-
Explicit, which took into account cues encountered all 
along the user’s journey, is as follows: 
• The model often started out reasonably well (depending 

on the bug report), and got better with the consideration 
of cues observed along the way. 

 
 

 
Figure 6. Histograms of the prediction rank distributions by 
model. The x-axis represents the rank of the prediction (only 

predictions ranked 1-100), the y-axis represents the frequency 
of those ranks. Callouts denote the percentage of data (e.g., 
50% of PFIS′ prediction ranks were greater than 100). Top 
left: PFIS′. Top right: PFIS2-ImmedScent-Explicit. Bottom: 

PFIS2-AllScent-Explicit.  

  
Figure 7. Left: One session predicted by PFIS2-AllScent-
Explicit. X-axis: time as navigation actions. Y-axis: the rank 
of the prediction.  Patterns like to this were common among 
sessions. Right: Running average rank for the same session. 

 
Figure 8. PFIS′ predictions for the same session as Figure 7.  

 
Figure 9. A session of more than 500 navigations. PFIS2-

AllScent-Explicit’s accuracy was not tied to session length.  



 

  

 

• The user changed direction, surprising the model. 
• The model rapidly recovered (within one click at least 

half the time), and usually had a continual improvement 
trend (as in Figure 7 right) until the next substantial 
change in direction. 

What if there are no bug reports? 
Sometimes, no explicit descriptions of prey are available, 
such as when an information seeking task is described only 
verbally. Lack of an explicit prey description is common in 
web foraging, and also occurs in debugging. For example, 
the participants worked for seven months on tasks that 
never found their way into actual bug reports.  

Is it reasonable to suggest that information foraging models 
can predict people's behavior when the model has no ex-
plicit description of the prey? The precedent of IUNIS [9] 
having some success at predicting people’s initial goals 
from their navigations supports this possibility, as does our 
PFIS2-AllScent-Explicit model’s gainful incorporation of 
the cues the user observed along the way. To investigate 
this question, we used the PFIS2 algorithm as in the previ-
ous section but without providing any explicit prey at all. In 
terms of Figure 2, there was no description; the algorithm 
omits the following step: insert each word in description into G 
and A, with A[word]=1  

Surprisingly, the results were better than with explicit prey 
descriptions. PFIS2-AllScent turned in a remarkable me-
dian rank of 3 (out of 700+ choices): almost 2,400 of the 
participants’ 4,795 total navigations were in PFIS2’s top 3 
choices. In fact, in this model, 27% of the methods partici-
pants navigated to were the model’s number 1 choice. Fig-
ure 10 shows the results of running these models on our full 
set of 4,795 between-method navigations. 

Table 3 shows that the improvement over the best model of 
the previous section was highly significant. The less ambi-
tious version, PFIS2-ImmedScent, also performed signifi-
cantly better than its counterpart from the previous section, 
PFIS2-ImmedScent-Explicit, but not as well as the previous 
section’s best, PFIS2-AllScent-Explicit, as shown in Table 

3. Comparing all models using solely the 1,209 navigations 
for which all could be evaluated, the differences between 
the models were all statistically significant (see Table 3). 

Interestingly, PFIS2-AllScent did not have unique strengths 
and weaknesses. Instead, it had mostly the same patterns as 
PFIS2-AllScent-Explicit, but tended to do just a little better 
on everything.  Both had similar patterns of surprises, often  
in the same places.  PFIS2-AllScent’s advantage was perva-
sive: 89% of its individual predictions were at least as good 
as PFIS2-AllScent-Explicit’s.  Its within-session medians 
and means were as good or better on 100% of the sessions, 
as were the ranks of its first-prediction-of-sessions 88% of 
the time and of its session-end predictions 75% of the time. 

PFIS2-AllScent’s superiority over PFIS2-AllScent-Explicit 
might seem to suggest that a less-than-ideal bug report, 
such as the ones we used, is worse than having none at all. 
This is indeed one explanation. Recall that our participants 
wrote many of the descriptions as post-navigation revision 
logs. Thus, our results could mean that those descriptions 
did not capture the participants’ initial verbal prey descrip-
tions well; perhaps the log descriptions were indeed worse 
than bug reports. This interpretation is a testament to the 
power of cues-observed-along-the-way, providing very 
good performance in PFIS2-AllScent-Explicit despite poor 
initial descriptions. 

An alternative explanation is also a testament to the impor-
tance of cues observed along the way. When bug reports 
provide incomplete information, people must rely more on 
cues along the way than on the report, simply because they 
have little alternative. We posit that PFIS2-AllScent’s re-
markable performance is precisely because it captures the 
importance of cues observed along the journey. 

Under either explanation, the success brought about by in-
cremental scent in both the explicit-prey and non-explicit-
prey models is consistent with the fact that people start 
navigating and, along the way, they learn information that 
influences where they will go next. People rarely assemble 
a complete goals list up front and then pursue it to the bitter 

  
Figure 10. (Left) PFIS2-ImmedScent (Median rank: 8). (Right): PFIS2-AllScent (Median rank: 3). Callouts denote the percentage of data. 



    

end. Rather, cues encountered along the way build a better 
picture of what a sensible goal may be. PFIS2’s ability to 
model incremental redefinition of prey captures this aspect 
of human behavior. 

DISCUSSION 
The scale of our data set contributes to the validity of the 
results, which were based on 4,795 navigation actions from 
over 2000 hours of observation of participants' day-to-day 
work over seven months. Even so, the observations came 
from just two participants who may have peculiar naviga-
tion habits that influenced PFIS2’s predictions. Also, al-
though we expect the approach to generalize to other forag-
ing activities that have incrementally evolving goals, this 
premise must be evaluated empirically.  

From a theory perspective, PFIS2 differs from previous 
models in that it adjusts its notion of the prey itself after 
each navigation step. In essence, PFIS2 explicitly models a 
forager’s evolving goals in response to new information 
encountered during navigation. Detailed analysis of the 
timeline of our model’s predictions showed how the model 
corrected its notion of the prey based on cues users encoun-
tered along the way.   

From an algorithm perspective, PFIS2 has the advantage of 
its inherent simplicity. Unlike information foraging models 
such as SNIF-ACT, PFIS2 does not require a cognitive 
modeling engine. It also does not require a corpus in order 
to estimate semantic relatedness. Rather, it operationalizes 
the theory using only the users’ overt actions and the infor-
mation environment, without trying to model fine-grained 
details of what goes on in the user’s mind. In short, it is a 
rational analysis of navigation. Its simplicity may increase 
the viability of incorporating information foraging models 
directly into tools.   

As for PFIS2’s contributions to the programming domain, 
PFIS2’s modeling results demonstrate the strong foraging 
orientation of our participants’ seven months of program-
ming. This suggests that PFIS2, while not a programming 
tool, can inform the design of programming tools and 
source-code libraries. The theoretical constructs suggest 
questions designers of code should ask themselves such as: 
Does this code have sufficient information scent with re-
spect to its functionality? By showing where programmers 
are likely to navigate, model-informed tools could evaluate 

the design of code with respect to how well it facilitates 
programmer navigation. Incorporating the model into issue 
trackers and IDEs may also help ease program navigation.  

Our research raises many open questions regarding the ap-
proach per se, the best ways to operationalize it, and its 
application in the programming domain. For example, how 
much would a high-quality initial description of the prey 
(e.g., a high-quality bug report) influence the predictions of 
each model? What types of cues most influence program-
mers’ navigation? Would better accounting for enrichment 
activities, such as the arrangement of windows and tabs, 
and note-taking, improve the model? Finally, would upfront 
provision of synonyms and linguistic relationships improve 
on PFIS2’s graph-based treatment of cues, in which words’ 
relatedness must be “discovered” over time? 

CONCLUSION 
In this paper we presented PFIS2, an information foraging 
model of navigation during everyday software development 
tasks. PFIS2 tackles three real-world situations. First, its 
perspective of prey changes incrementally, modeling users’ 
changing notions of the prey. Second, PFIS2 operates under 
a very high number of navigation choices. Third, the infor-
mation world can change significantly while foraging.  

We evaluated PFIS2’s suitability for modeling real-world 
foraging by logging 4795 navigations by two professional 
programmers over seven months and comparing how well 
PFIS2 could predict where these programmers really navi-
gated.  Our empirical results revealed that: 

• PFIS2 accurately predicted our participants’ navigation. 
The most successful PFIS2 variant (PFIS2-AllScent) 
achieved a median prediction rank of 3, and even pre-
dicted our participants’ navigations as its first choice 
27% of the time.  

• PFIS2 predicted our participants’ navigations success-
fully even in the absence of explicit descriptions of the 
prey such as bug reports. 

• PFIS2’s success was tied to course correction. Its incre-
mental notions of prey allowed it to recover from big 
surprises very quickly (median: only one navigation for 
the two best variants). 

Incremental prey is a novel contribution to information for-
aging theory. Its inclusion in the model demonstrates how 
foragers respond to changes in the world as they occur. It 
also demonstrates how opinions of the “right” scents to 
pursue changes incrementally in response to cues encoun-
tered along the way. 

Most important, the study’s results demonstrate the external 
validity of an information foraging model of human naviga-
tion behavior, even in the face of changing information and 
goals that evolve over time.  
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Predictions Model variant Wilcoxon Z, p<.001 
Worst PFIS′ 
Poor PFIS2-ImmedScent-Explicit 
Good PFIS2-ImmedScent 
Better PFIS2-AllScent-Explicit 
Best PFIS2-AllScent 

 

} Z= -24.131 
} Z= -19.221 
 

} Z= -20.377 
} Z= -21.501 

Table 3. The paired Wilcoxon signed rank test (N=1209) 
compared each model with the model in the row above it. 

Each model was significantly better than the model above it 
(p<.001). Because explicit prey were available for only 1209 of 

the predictions, N=1209 for all comparisons.  
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