

Reactive Information Foraging for Evolving Goals
Joseph Lawrance1,2, Margaret Burnett2, Rachel Bellamy3, Christopher Bogart2, Calvin Swart3

1MIT CSAIL
77 Massachusetts Avenue

Cambridge, MA 02139
lawrance@csail.mit.edu

2Oregon State University
School of EECS

Corvallis, Oregon 97331
{burnett,bogart}@eecs.oregonstate.edu

3IBM T.J. Watson Research
19 Skyline Drive

Hawthorne, New York 10532
{rachel,cals}@us.ibm.com

ABSTRACT
Information foraging models have predicted the navigation
paths of people browsing the web and (more recently) of
programmers while debugging, but these models do not
explicitly model users’ goals evolving over time. We pre-
sent a new information foraging model called PFIS2 that
does model information seeking with potentially evolving
goals. We then evaluated variants of this model in a field
study that analyzed programmers’ daily navigations over a
seven-month period. Our results were that PFIS2 predicted
users’ navigation remarkably well, even though the goals of
navigation, and even the information landscape itself, were
changing markedly during the pursuit of information.

Author Keywords
Information foraging theory, programming, field study

ACM Classification Keywords
D.2.5 [Software Engineering]: Testing and Debugging;
H.1.2 [Information Systems]: User/Machine Systems—
Human factors

General Terms
Experimentation, Human Factors, Theory

INTRODUCTION
When seeking information, how do people decide where to
look? In the 90’s, Pirolli and several colleagues first inves-
tigated this question by developing a new cognitive theory
called information foraging [26]. Since then, studies of in-
formation foraging have focused on structured information-
seeking tasks with well-defined goals on static, unchanging
collections of documents. Yet, exploratory information-
seeking tasks often have no clear goal defined in advance,
although information encountered along the way often in-
forms the goal. Furthermore, information seeking often
involves context switches in a dynamic, changing informa-
tion world. Can information foraging theory explain and
model human behavior even given these kinds of challenges
in day-to-day information-seeking tasks?

Information foraging theory is based on optimal foraging
theory, a theory of how predators and prey behave in the
wild. In the wild, predators sniff for prey, and follow scent
to the place (patch) where the prey is likely to be. Applying
these notions to the domain of information technology, the
people in need of information (predators) sniff for informa-
tion (prey), and follow information scent through cues in
the environment to the places (patches) where the prey
seems likely to be. Models of information foraging have
successfully predicted which web pages human information
foragers select on the web [9], and as a result, information
foraging principles have become useful in designing web
sites [22, 29]. Systems based on information foraging mod-
els have also streamlined information seeking time [8, 23],
and helped evaluate web site design [10].

In this paper, we consider the fact that information foraging
often occurs when the forager does not have a fully-formed
goal, or when new information in the environment changes
the forager’s understanding of the goal. Although previous
models could in principle change the goal (for example by
explicitly adding keywords to a search query as with
ScentTrails [23]), in those works the goal is an externally
specified independent variable—a parameter to the model
that does not change as the model runs. In contrast, in this
paper we present a model in which the goal is an evolving
dependent variable that changes depending on what the
model observes over the course of a single model run.

Programming is an ideal domain for studying these issues
in information foraging theory for several reasons. First,
previous work has suggested that debugging involves in-
formation foraging, from Brooks’ early work on beacons
[6] to prior debugging research that presented the PFIS
(Programmer Flow by Information Scent) model of infor-
mation foraging in debugging [18, 20]. Second, it chal-
lenges information foraging theory: debugging is rich in
information seeking choices, where each screen offers many
more navigation choices in a typical class than the reported
average of 20 to 30 hyperlinks on a typical web page [4,
12]. For example, in Eclipse, every identifier links to an-
other region of code (Figure 1). Third, programming exem-
plifies the situation in which the world changes due to fre-
quent edits and updates as a team revises source code. This
situation is increasingly important in the web as well, in
web applications such as wikis and blogs. Fourth, since a

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
CHI 2010, April 10–15, 2010, Atlanta, Georgia, USA.
Copyright 2010 ACM 978-1-60558-246-7/09/04...$5.00.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
CHI 2010, April 10–15, 2010, Atlanta, Georgia, USA.
Copyright 2010 ACM 978-1-60558-929-9/10/04....$10.00.

bug can masquerade as something very different from its
real cause, debugging epitomizes prey that may evolve.

This paper presents a new model of information foraging
named PFIS2 (Programmer Flow by Information Scent 2).
We investigate its ability to predict programmers’ naviga-
tion during their day-to-day activities. This paper therefore
makes the following contributions. First, the algorithm we
developed is relatively simple to implement and affords
flexibility in modeling human behavior, allowing experi-
mentation with variations of the model. Second, our model
of information foraging reacted to information edits during
foraging activity. Third, the model reacted to incremental
changes in programmers’ conceptions of navigation goals
and understanding of code during navigation. Finally, this
paper presents a field study of professional programmers
during seven months of their everyday work, which neces-
sarily includes noise from phenomena such as interruptions,
wild goose chases, and context switching.

BACKGROUND AND RELATED WORK
Information foraging theory was developed in the context
of understanding web browsing [24, 25, 27]. Information
foraging theory derives from rational analysis [1] the as-
sumption that humans have adapted strategies that allow
them to find information efficiently in the world around
them, minimizing the cost to achieve their goals. The theory
applies to information navigation in general, although ap-
plication to any new domain requires defining the concepts
relative to that domain.

The first model of information foraging theory was Pirolli
and Card’s ACT-IF [26], which models a user foraging for
information using the Scatter Gather browser. It is a cogni-
tive model, implemented in the ACT-R cognitive architec-
ture [2]. This evolved into SNIF-ACT which models a user
foraging on the web [7]. SNIF-ACT models scent as the
relationships between linguistic concepts in a web user’s
mind. It represents these relationships via a spreading acti-
vation network initialized from on-line text corpora. The
strength of a relationship between two concepts is assumed
to be proportional to the frequency with which they are
found near each other in the corpora. This kind of analysis
has been shown to provide a good approximation to the way
humans’ mental associations work [17]. Given a goal
(prey), the words in the prey activate nodes in the network.
If nodes activated by the goal and words labeling a link

have strong associations, they will become more active than
words with weak associations. In this way, activation
spreads through the network such that activation increases
in nodes highly related to the original goal and decays if
nodes are weakly or unrelated to the goal.

In SNIF-ACT, production rules encode users’ possible ac-
tions such as Attend-to-Link, Click-Link, Backup-a-page,
and Leave-Site. The model uses these rules to simulate a
user’s decisions about selecting a link versus leaving the
site. For example, the model will normally select the link
with the greatest scent; but if it determines that the scent of
all the unvisited links is low enough, it will instead leave
the current web site. In other words, if the scent is per-
ceived to be stronger elsewhere, it is time to leave. SNIF-
ACT 2 [13] adds Bayesian reasoning to decide incremen-
tally when to leave a page from its experiences with the
links and web pages visited from that page so far. The
model will choose Backup-a-page when the perceived scent
emanating from this page (calculated as a function of cues
on the page looked at so far) is less than scent emanating
from previously explored pages (calculated as a function of
link scent on previously visited pages). In this way, it takes
into account the impression of a page’s overall remaining
worth even if the user has not scanned the entire page. Our
models are also incremental, but in a different sense: our
models incrementally infer the information need over time.

The WUFIS (Web User Flow by Information Scent) algo-
rithm [9, 10] also models scent and foraging, but does not
require an underlying cognitive model. Instead it models
many users navigating through a web site seeking informa-
tion, predicting the probable number of users that would
reach each page by following cues most related to a particu-
lar query. It does so by estimating the scent of a link on a
web page as a function of the cosine similarity between
words in the query and words in or near the link, repre-
sented as document vectors weighted by their term fre-
quency inverse document frequency or TF-IDF [3]. Given
the scent calculation of each link on each page, WUFIS
creates a network representing the web site and weights
each edge according to its proximal cue’s scent. Then it
uses spreading activation to predict where in the site most
users, pursuing this query, would eventually end up.
Whereas SNIF-ACT is a fully functioning cognitive model,
and must be customized for each information foraging con-
text being studied, WUFIS can be applied readily in new
contexts. WUFIS can also work backward: its sibling algo-
rithm, IUNIS (Inferring User Need by Information Scent)
[9], takes the path a user traversed through a web site and
infers what their original information need was.

Prior models of information foraging when debugging built
on the WUFIS/IUNIS work. An executable model called
PFIS (Programmer Flow by Information Scent) [18, 20]
analyzed the topology of the source code, then calculated
the scent of the cues that lead to each method, and finally
propagated the scent along links with proximal cues con-
taining scent relative to the prey, using spreading activation.

Figure 1. A few lines of source code. The underlines denote the
navigational choices (links). This snippet alone consists of over

10 links, and represents a tiny portion of the class file.

PFIS predicted navigation as effectively as the aggregate
judgments of 12 human programmers, but to make these
predictions, the model required descriptions of prey up
front that defined the participants’ tasks, and furthermore,
PFIS did not account for changes to the source code. There-
fore, PFIS was inadequate for modeling information forag-
ing in which the prey and the source code evolved during
information foraging.

Understanding the principles of information foraging has
improved the design of web sites, and has resulted in sys-
tems that streamline information seeking [8, 23]; thus, we
believe that debugging tools would also benefit from under-
standing information foraging in this domain. For example,
despite efforts to develop source code search tools to help
programmers navigate, Ko et al.’s empirical investigation
of programmers’ frequent information seeking during
debugging showed that only half of the searches returned
task-relevant code [16]. Tools that account for information
scent in some way have produced impressive empirical
results that suggest information foraging theory is useful in
this domain (e.g., [11, 14, 28]). We aim to demonstrate
quantitatively that information foraging models can predict
people’s real-world behavior in this domain, to support the
theory as a foundation for tool development.

PFIS2: A NEW MODEL OF INFORMATION FORAGING

Constructs
Prior work adapted the theoretical constructs of information
foraging theory to debugging [20]. We summarize those
theoretical constructs, and also present PFIS2’s operational
approximations of those constructs.

• Prey: The knowledge the programmer seeks to under-
stand how to fix the bug. In PFIS2: A bug description,
e.g., a bug report.

• Proximal cue: A word, object, or behavior in the envi-
ronment that suggests prey. Cues are signposts. Cues ex-
ist only in the environment. In PFIS2: Words in the
source code, including comments.

• Information scent: Perceived “relatedness” of a cue to the
prey (perceived likelihood of it leading toward prey).
Scent exists only in the user’s mind. In PFIS2: Inferred
relatedness of a cue to the prey, as measured by amount
of activation from a spreading activation algorithm.

• Topology: The collection of paths through relevant
documents and on-screen displays through which the pro-
grammer can navigate. In PFIS2: An undirected graph
through the source code, in which nodes/vertices are
elements of the source code, and its edges are environ-
ment-supported links (defined below). Topology is envi-
ronment-dependent.

• Link: A connection between two nodes in the topology
that allows the programmer to traverse the connection ef-
ficiently. In PFIS2: “Efficiently” means at most one click
or keystroke. The PFIS2 implementation works in
Eclipse, which supports the links in Table 1. Because at
most one click or keystroke is necessary to scroll be-

tween contiguous methods in the editor, PFIS2 recog-
nizes links between contiguous methods.

• Information patch: A locality in source code, related
documents or displays in which the prey might hide. In
PFIS2: source code methods.

Element Link type Element
Workspace Has Projects
Project Defines Packages
Package Defines Class or Interface
Class or Interface Imports Class or Interface
Class or Interface Extends Class or Interface
Class Implements Interfaces
Class or Interface Defines Variables
Class or Interface Defines Methods
Variable Has Class or Interface
Method Returns Class or Interface
Method Invokes Methods
Method Contiguous to Methods
Method Defines Variables
Method Uses Variables

Table 1. PFIS2 recognizes these Eclipse-provided one-click (or
less) links. “Contiguous to” represents the low cost of navigat-

ing to methods right next to each other in the text.

The PFIS2 algorithm
Because PFIS [18], an existing information foraging model
of debugging, requires the description of prey up front to
make predictions, and assumes that source code never
changes, we realized that it was ill-suited to modeling the
behavior of users during a field study where programmers’
goals evolved and source-code changed. So we developed a
new model called PFIS2.

The PFIS2 algorithm takes as input: the description of prey
(if available), the patches the user has encountered in previ-
ous navigations, and the topological links available for
navigation. (We gathered these inputs by instrumenting
Eclipse using a plug-in we built for our field study.) In our
field study, the PFIS2 algorithm updated whenever the user
navigated or modified source code, but it can be run only
whenever predictions are needed. Figure 2 summarizes the
PFIS2 algorithm.

Step 1. A map of the world according to PFIS2
PFIS2 views the information world as the union of two
graphs: the source code topology and the cues seen so far.
PFIS2 scans for cues by looking at every word, separating
by camel case, performing word stemming, and eliminating
English stop words (relatively uninteresting words such as
“the” and “and”) and Java’s reserved words. Each cue be-
comes a vertex. The source code topology provides addi-
tional vertices: one for each package, class, interface,
method, and variable. The edges are the topological links
(Table 1) plus the edges that connect cues to the location(s)
in which the cue occurred.

Initialize:
construct empty Graph G, Activation vector A, path
read description of prey (e.g., bug report)
insert each word in description into G and A, with A[word]=1

Update predictions whenever the user opens source code
files not seen before, changes source code, or navigates:

read changes to source code seen/changed
read user’s newest navigations, currentMethod

Step 1 Update G’s source code seen by the user so far: its
cues, locations, and edges between them.
Step 2 Activate each method in navigations by recency:

append navigations to end of path
x := 1.0
for i=length of path down to 1:
A[path[i]] := x
x := x * 0.9

Step 3 Spread activation through A for k iterations, decay-
ing at the rate of α=0.85:

toSpread := [currentMethod]
for k iterations:

for each node in toSpread:
w := 1 / (number of neighbors of node in G)
for each neighbor of node in G:

A[neighbor] := A[neighbor] + (A[node]*w*α)
toSpread = all neighbors processed in this iteration

Return updated vector A of activation scores.

Figure 2. The PFIS2 algorithm. (Variants in Table 2)

More formally, PFIS2’s graph G = (V1∪V2, E1∪E2). G is an
undirected graph. V1 is the set of all source code locations,
and E1 is the set of links among them (by the operational
definition of links from the previous section). V2 is C ∪ V1,
where C is the set of all cues (words) in source code ele-
ments, and each edge in E2 connects an element c∈C to an
element v1∈V1 if c occurs in v1.

Step 1 maintains this graph. For example, suppose the user
has opened the RSSOwl package in Eclipse, and in that
package the user opened the RSS class shown in Figure 3.
The prey is the following bug report, in its entirety:

“Archive feed items by age.”

Step 1 creates nodes and edges reflecting the code in Figure
3: an edge from package RSSOwl to class RSS, from class
RSS to each of its methods and variables, and from RSS’s
methods to each of the classes, methods, and variables that
they use. For each edge, it creates appropriate vertices if
they are not already in G. A portion of the graph produced
so far is shown in Figure 4’s left.

Step 1 also connects cue vertices for each word in the bug
report and each word near links to the locations in which
they occur. For example, the cue “create” connects to
methods createArchiveDir, createWorkingDir, and
startupProcess, as shown in Figure 4’s right, because
that word appears in each of those methods, as shown in
Figure 3. (In PFIS2, “near” means “in the method”.)

Spreading activation will eventually push those cues’ ef-
fects into other methods, as we explain shortly.

Note that PFIS2 knows more about code the user has seen
than it does about code not yet seen. In the example, PFIS2
knows which methods in the RSS class are contiguous to
which other methods, all the methods they call, and all the
words shared among the methods it has seen so far. In con-
trast, the user has never looked at the File class, so PFIS2
knows only the name (and words in the name) of the File
class and exists method, which it knows because a new
File instance was declared and the exists method was
called by methods in the RSS class. There are many other
methods in the RSSOwl package about which PFIS2 knows
nothing at all at this point.

Step 2: Setting up the activations
Activation values are how PFIS2 tracks which nodes in G
are most active. Thus, having updated graph G in Step 1, in
Step 2, PFIS2 updates the activation vector A for the loca-

...
public static void main(String[] args) {
 startupProcess();
 new RSS();
}
private static void createWorkingDir() {
 String homePath = ‘/.rssowl’;
 File homeDir = new File(homePath);
 if (!homeDir.exists()) {homeDir.mkdir();}
 GlobalSettings.WORK_DIR = homePath;
}
private static void createArchiveDir() {
 File archive = ‘/archive’;
 if (!archive.exists()){archive.mkdir();}
}
private static void startupProcess() {
 createWorkingDir();
 createArchiveDir();
}

Figure 3. Example RSSOwl source code.

Figure 4. (Left) The topology of example RSSOwl source code

(G1=(V1, E1)).

(Right) The union of the source code topology with encoun-
tered cues G = (V1∪V2, E1∪E2). Nodes in strongly connected

subgraphs of cues and methods reinforce each other when they
become highly active. For example, createWorkingDir() and
createArchiveDir() share 6 adjacent nodes and an edge, so

activation of either node also activates the other node.

tion nodes that have become “active” recently. Suppose the
user navigated from main to startupProcess to cre-
ateArchiveDir to createWorkingDir. Step 2 would
result in the following nodes having these activation values,
due to the exponential decay in path distance from the cur-
rent position: createWorkingDir 1, createArchiveDir
0.9, startupProcess 0.81, main 0.729. If createWork-
ingDir occurs twice in path, only the most recent activa-
tion is considered.

In the initialization step, PFIS2 already activated words that
were in the bug report: archive 1, feed 1, item 1, age 1.
Based on which words the user follows up persistently in
navigations, the activation level of these cues and methods
in which they appear will increase or decrease in Step 3.

Step 3: Spreading activation
In Step 3, PFIS2 spreads activation along edges to model
the user’s evolving interests. In its first iteration, it spreads
activations from the current method by increasing the acti-
vation of the cues and locations linked to the current
method in the topology. For example, since the current
method is createArchiveDir, activation will spread di-
rectly to class RSS, to any classes used in cre-
ateArchiveDir (in this case File), to the methods it calls
(exists, mkdir), to the methods contiguous to it (cre-
ateWorkingDir, startupProcess), and to cues in it
(create, archive, dir, file, exist, …). At this point, it has rein-
forced one cue from the bug report, namely archive, be-
cause the user has navigated to methods related to that cue.

At this point, all direct neighbors (location nodes and word
nodes depicted in Figure 4’s right side) of the current
method in G have been activated. Thus, PFIS2 thinks each
has scent relative to the user’s current interests. In the next
iteration, all of those vertices spread further decayed scent
to their neighboring locations and cues (one of which is the
current method), and in the third iteration, every vertex that
just received activation spreads a further decayed scent to
their neighbors. (It has been our experience that the activa-
tion ranks become stable after three iterations.) PFIS2 then
returns a ranked list of activation scores for methods, which
is PFIS2’s estimation of each method’s scent. The highest
ranked method is PFIS2’s prediction of the next method to
which the user will navigate.

Note that the edges constrain where activation can flow:
methods near to or called by active methods become more
active, and cues in active methods become stronger. Thus,
whenever the user navigates, even if it is to a method PFIS2
did not expect, that method becomes highly activated, alert-
ing the model to the user’s evolving interests. Activation
then spreads to cues in that method, incrementally modeling
the evolution as to which cues will next be of highest inter-
est next.. The more active cues, in turn, strengthen method
nodes containing those words, especially those with direct
links to the active methods. This combination of cues and
history in spreading activation allows PFIS2 to quickly
evolve its notion of the prey.

Representation of cues as nodes with undirected links to
their origins is a practical alternative to other information
foraging approaches that estimate locations’ relevance to
cues. This approach is akin to TF-IDF (used in PFIS and
WUFIS); both track degree of word sharing among docu-
ments. Other approaches have used latent semantic analysis
[17] or point-wise mutual information [21], which require
corpora, leading to the need to find a suitable corpus. The
cues-as-vertices approach of PFIS2 does not need a corpus.
Instead, PFIS2 conceptually uses the past code it has seen
as its “corpus” for the purpose of informing semantic rele-
vance. For example, if the programmer pursues a cue not
literally found in the bug report but discovered in the code
as they navigate, activation of that cue will spread to all
locations containing that cue. Thus, by continually inform-
ing relevance estimations with new navigations, we sacri-
fice some predictive power at the start of a navigation path
in exchange for greater flexibility in modeling evolving
discoveries affecting the user’s definition of the prey.

FIELD STUDY METHODOLOGY
To evaluate PFIS2 and our research contributions, we con-
ducted a field study. We collected logs of participants’ day-
to-day work in Eclipse over seven months, using a plug-in
that we built. We first tested the plug-in on a few pilot par-
ticipants. After we addressed performance issues identified
by the pilots, we invited a group of professional program-
mers at IBM to install the plug-in and participate by engag-
ing in their normal, day-to-day activities.

Two professional programmers used our plug-in for the full
seven months of the field study. Those two participants
(one male, one female) worked at IBM and used Eclipse in
their day-to-day work. Both were team leaders for compo-
nents of Rational products, including a visualization toolkit,
a server product, and Jazz (built on Eclipse). Beginning in
the summer of 2008 and ending in the winter of 2009, we
captured participants’ every action within Eclipse, a total of
2.3 million actions, generating 4,795 predictions of be-
tween-method navigations. Note, it is these 4,795 predic-
tions that are the experimental units used in our analysis,
not the outcomes of participants’ actions themselves.

Experimental variants of PFIS2
We experimented with different versions of PFIS2 to com-
pare their predictions by manipulating the initial activation
vector (step 2 of the algorithm) as shown in Table 2.

PFIS′ (“PFIS-prime”) is our baseline system for compari-
son. PFIS′ is conceptually the same as the original PFIS
[18]. Whereas PFIS computed information scent as cosine
similarity weighted by TF-IDF, PFIS′ computed informa-
tion scent as the activation of cues in the spreading activa-
tion graph. We implemented PFIS′ using PFIS2 because
PFIS did not handle enough details of navigation to allow a
fair comparison of the “explicit prey only” base situation.
Like PFIS, PFIS′ does not inform prey with cues observed
along the way.

In all versions, the model predicted the next navigation step
given where the programmer had just been.

Variant Step 2 activation strategy
PFIS′ (baseline) None. (path=empty list.)
PFIS2-
ImmedScent-
Explicit

Activate current method only.
(path=[currentMethod].)

PFIS2-
AllScent-
Explicit

Activate all methods encountered so far
with most recent weighted most heavily.
(the path variable is as given in Figure 2.)

Table 2. These variants of PFIS2 were constructed by chang-
ing the activation in step 2 of the algorithm.

Quality measure
To assess and compare the above model variants, for each
navigation step, we ranked current predictions according to
strength (activation value), removing the prediction of the
user’s current method. Then we checked to see what rank
was held by the prediction that matched the participant’s
actual navigation. For example, if a participant navigated to
method Y, we looked up Y in the model’s list of predic-
tions. Suppose the predictions were: X first, Y second, and
Z third. Since the participant navigated to the second ranked
method, the model’s prediction rank would be 2. For each
model variant, we statistically evaluated these prediction
ranks at each of the users’ navigations. Note that this meas-
ures a very strict criterion, requiring that PFIS2 predict
where participants went in their very next click.

RESULTS
Our plug-in recorded Eclipse sessions, defined as the time
between when a participant started Eclipse until he or she
terminated Eclipse. We analyzed the 76 sessions that in-
volved active navigation and edits, reinitializing after each
session. The median session lasted 94 minutes, but many
sessions lasted several hours and even days (the mean was
about 28 hours). The data represented over 2000 hours of
observation of 4,795 between-method navigations. We used
the data to evaluate our information foraging models.

Incrementally redefining the prey in a changing world
Past work on information foraging has viewed prey as well
defined up front. We hypothesized that PFIS2 would pro-
vide a more accurate model of users’ prey when debugging
than an unchanging representation of the prey.

For the original description of the prey, we expected to use
bug reports, but although our participants had told us they
do use issue tracking, they did not do so during the seven
months of our study. However, they retrospectively pro-
vided us design documents and time-stamped revision logs
describing the bug fixes, such as in Figure 5. The revision
logs, like bug report titles, could uniquely identify source
code artifacts and changes that closed bugs [15, 19]. (Bug
reports have widely differing quality [5], which has impli-
cations for their use in models, a point we return to later.)
Our evaluation was done by replaying logs against the
model variants; thus we used the descriptions like bug re-

ports, namely as explicit prey at the beginning of each rele-
vant session, as determined by manually tying them by par-
ticipant and timestamp to the relevant sessions. These ses-
sions covered 1,209 of our participants’ between-method
navigations.

Comparing these models revealed that informing prey with
scent encountered during foraging more accurately modeled
user behavior than an unchanging representation of the
prey. PFIS′, which used an unchanging notion of prey, was
the worst model of the variants in Table 2; its median pre-
diction rank was 99 (out of a median of over 700 possible
navigation choices). On the other hand, PFIS2-
ImmedScent-Explicit, which incrementally updates its no-
tion of the prey using only the most recent navigation, had a
median rank of 31 (out of 700+ choices). PFIS2-AllScent-
Explicit was much more effective than either PFIS2-
ImmedScent-Explicit or PFIS′. PFIS2-AllScent-Explicit,
which starts with a bug report and updates the prey in light
of cues encountered at each step along the way, predicted
participants’ navigations with a median rank of 8 (out of
700+ choices). This means that about 604 of the partici-
pants’ 1,209 navigations were in PFIS2-AllScent-Explicit’s
top 8 choices. In fact, 10% of the places participants navi-
gated were this model’s first choice. Figure 6 shows the
distributions of prediction ranks for these three models.

The differences among these three models were statistically
significant1: PFIS2-AllScent-Explicit was a significantly
better model than PFIS2-ImmediateScent-Explict (paired
Wilcoxon signed rank test, N=1209, Z=-24.131, p<.001),
which in turn was better than PFIS′ (paired Wilcoxon
signed rank test, N=1209, Z=-20.377, p<.001). These dif-
ferences clearly show the importance of the acquisition of
incremental scent throughout the user’s journey.

In Figure 6, note the long tails. The end of the long tail of
the best model, PFIS2-AllScent-Explicit, was rank 658 as
its worst prediction. In total, it had 88 predictions at rank
100 or worse (cropped off in the figure), but this long tail
covered only about 7% of all the navigations.

A session in detail
A look at individual sessions helps to clarify the strengths
and weaknesses of the best model: PFIS2-AllScent-
Explicit. Figure 7 shows one session in which the partici-
pant navigated between methods 22 times before ending the

1 Figure 6 shows that the distribution of prediction ranks for
each model was not normal, hence the nonparametric tests.

Cleaner version of the output format.
ROLLBACK & other optimization.
Classpath, PPTx with names merged, name changes in
formatter.
Figure 5. Three of the revision logs used as explicit descrip-
tions of the prey.

session. Patterns like this occurred frequently in almost all
of the sessions. In the example shown, its first prediction
was rank 9. The quality of the first prediction should be
strongly affected by the quality of the bug report itself.

The predictions tended to improve over time, but at some
point, the user would do something wildly unexpected:
navigate between seemingly unrelated methods, a “sur-
prise” from PFIS2’s perspective. The second navigation in
Figure 7 was a surprise (prediction rank 109). Recall that
about 7% of the navigations were surprises to PFIS2-
AllScent-Explicit. We believe such surprises are inevitable
in real-world situations such as refactoring or switching
contexts.

Notice in Figure 7 how quickly PFIS2 corrected its course
when such unexpected navigations arose. It almost always
recovered within one or two navigations, getting back to the
single-digit rankings very soon (median recovery time: 1
navigation). Out of 1209 predictions, the worst it did was a
run of three in a row in 3-digit territory. (Compare this to its
best run: 24 in a row in single-digit territory.) In Figure 7, it
took two navigations for it to recover, at which point its
rank improved to 2 (fourth navigation).

In contrast, PFIS′ had more surprises; in fact, 50% of the
navigations produced three-digit rankings (median 99). For
PFIS′, the only “expected” methods were those with scent
related to the explicit prey or close to methods with scent
related to the explicit prey. Figure 8, which shows PFIS′
performance for the same session as Figure 7, demonstrates
where course correction could have helped PFIS′. For ex-
ample, the user went back to the same method as in the
original surprise two more times, and also visited two
methods with closely related functionally to that one, all of
which were high-rank surprises to PFIS′.

What about the influence of time? For PFIS2-AllScent-
Explicit, predictions after surprises usually got continually
better until the next big surprise, as in the running average
graph in Figure 7 right. However, as Figure 9 demonstrates,
length of the session did not help; perhaps because the
user’s prey changed substantially enough that early knowl-
edge may not have been useful many navigations later. Nor
did sheer number of sessions help, because we did not use a
machine learning approach to try to learn about a partici-
pant or project; rather, each session was predicted inde-
pendently of any previous session’s data.

In general, then, our characterization of PFIS2-AllScent-
Explicit, which took into account cues encountered all
along the user’s journey, is as follows:
• The model often started out reasonably well (depending

on the bug report), and got better with the consideration
of cues observed along the way.

Figure 6. Histograms of the prediction rank distributions by
model. The x-axis represents the rank of the prediction (only

predictions ranked 1-100), the y-axis represents the frequency
of those ranks. Callouts denote the percentage of data (e.g.,
50% of PFIS′ prediction ranks were greater than 100). Top
left: PFIS′. Top right: PFIS2-ImmedScent-Explicit. Bottom:

PFIS2-AllScent-Explicit.

Figure 7. Left: One session predicted by PFIS2-AllScent-
Explicit. X-axis: time as navigation actions. Y-axis: the rank
of the prediction. Patterns like to this were common among
sessions. Right: Running average rank for the same session.

Figure 8. PFIS′ predictions for the same session as Figure 7.

Figure 9. A session of more than 500 navigations. PFIS2-

AllScent-Explicit’s accuracy was not tied to session length.

• The user changed direction, surprising the model.
• The model rapidly recovered (within one click at least

half the time), and usually had a continual improvement
trend (as in Figure 7 right) until the next substantial
change in direction.

What if there are no bug reports?
Sometimes, no explicit descriptions of prey are available,
such as when an information seeking task is described only
verbally. Lack of an explicit prey description is common in
web foraging, and also occurs in debugging. For example,
the participants worked for seven months on tasks that
never found their way into actual bug reports.

Is it reasonable to suggest that information foraging models
can predict people's behavior when the model has no ex-
plicit description of the prey? The precedent of IUNIS [9]
having some success at predicting people’s initial goals
from their navigations supports this possibility, as does our
PFIS2-AllScent-Explicit model’s gainful incorporation of
the cues the user observed along the way. To investigate
this question, we used the PFIS2 algorithm as in the previ-
ous section but without providing any explicit prey at all. In
terms of Figure 2, there was no description; the algorithm
omits the following step: insert each word in description into G
and A, with A[word]=1

Surprisingly, the results were better than with explicit prey
descriptions. PFIS2-AllScent turned in a remarkable me-
dian rank of 3 (out of 700+ choices): almost 2,400 of the
participants’ 4,795 total navigations were in PFIS2’s top 3
choices. In fact, in this model, 27% of the methods partici-
pants navigated to were the model’s number 1 choice. Fig-
ure 10 shows the results of running these models on our full
set of 4,795 between-method navigations.

Table 3 shows that the improvement over the best model of
the previous section was highly significant. The less ambi-
tious version, PFIS2-ImmedScent, also performed signifi-
cantly better than its counterpart from the previous section,
PFIS2-ImmedScent-Explicit, but not as well as the previous
section’s best, PFIS2-AllScent-Explicit, as shown in Table

3. Comparing all models using solely the 1,209 navigations
for which all could be evaluated, the differences between
the models were all statistically significant (see Table 3).

Interestingly, PFIS2-AllScent did not have unique strengths
and weaknesses. Instead, it had mostly the same patterns as
PFIS2-AllScent-Explicit, but tended to do just a little better
on everything. Both had similar patterns of surprises, often
in the same places. PFIS2-AllScent’s advantage was perva-
sive: 89% of its individual predictions were at least as good
as PFIS2-AllScent-Explicit’s. Its within-session medians
and means were as good or better on 100% of the sessions,
as were the ranks of its first-prediction-of-sessions 88% of
the time and of its session-end predictions 75% of the time.

PFIS2-AllScent’s superiority over PFIS2-AllScent-Explicit
might seem to suggest that a less-than-ideal bug report,
such as the ones we used, is worse than having none at all.
This is indeed one explanation. Recall that our participants
wrote many of the descriptions as post-navigation revision
logs. Thus, our results could mean that those descriptions
did not capture the participants’ initial verbal prey descrip-
tions well; perhaps the log descriptions were indeed worse
than bug reports. This interpretation is a testament to the
power of cues-observed-along-the-way, providing very
good performance in PFIS2-AllScent-Explicit despite poor
initial descriptions.

An alternative explanation is also a testament to the impor-
tance of cues observed along the way. When bug reports
provide incomplete information, people must rely more on
cues along the way than on the report, simply because they
have little alternative. We posit that PFIS2-AllScent’s re-
markable performance is precisely because it captures the
importance of cues observed along the journey.

Under either explanation, the success brought about by in-
cremental scent in both the explicit-prey and non-explicit-
prey models is consistent with the fact that people start
navigating and, along the way, they learn information that
influences where they will go next. People rarely assemble
a complete goals list up front and then pursue it to the bitter

Figure 10. (Left) PFIS2-ImmedScent (Median rank: 8). (Right): PFIS2-AllScent (Median rank: 3). Callouts denote the percentage of data.

end. Rather, cues encountered along the way build a better
picture of what a sensible goal may be. PFIS2’s ability to
model incremental redefinition of prey captures this aspect
of human behavior.

DISCUSSION
The scale of our data set contributes to the validity of the
results, which were based on 4,795 navigation actions from
over 2000 hours of observation of participants' day-to-day
work over seven months. Even so, the observations came
from just two participants who may have peculiar naviga-
tion habits that influenced PFIS2’s predictions. Also, al-
though we expect the approach to generalize to other forag-
ing activities that have incrementally evolving goals, this
premise must be evaluated empirically.

From a theory perspective, PFIS2 differs from previous
models in that it adjusts its notion of the prey itself after
each navigation step. In essence, PFIS2 explicitly models a
forager’s evolving goals in response to new information
encountered during navigation. Detailed analysis of the
timeline of our model’s predictions showed how the model
corrected its notion of the prey based on cues users encoun-
tered along the way.

From an algorithm perspective, PFIS2 has the advantage of
its inherent simplicity. Unlike information foraging models
such as SNIF-ACT, PFIS2 does not require a cognitive
modeling engine. It also does not require a corpus in order
to estimate semantic relatedness. Rather, it operationalizes
the theory using only the users’ overt actions and the infor-
mation environment, without trying to model fine-grained
details of what goes on in the user’s mind. In short, it is a
rational analysis of navigation. Its simplicity may increase
the viability of incorporating information foraging models
directly into tools.

As for PFIS2’s contributions to the programming domain,
PFIS2’s modeling results demonstrate the strong foraging
orientation of our participants’ seven months of program-
ming. This suggests that PFIS2, while not a programming
tool, can inform the design of programming tools and
source-code libraries. The theoretical constructs suggest
questions designers of code should ask themselves such as:
Does this code have sufficient information scent with re-
spect to its functionality? By showing where programmers
are likely to navigate, model-informed tools could evaluate

the design of code with respect to how well it facilitates
programmer navigation. Incorporating the model into issue
trackers and IDEs may also help ease program navigation.

Our research raises many open questions regarding the ap-
proach per se, the best ways to operationalize it, and its
application in the programming domain. For example, how
much would a high-quality initial description of the prey
(e.g., a high-quality bug report) influence the predictions of
each model? What types of cues most influence program-
mers’ navigation? Would better accounting for enrichment
activities, such as the arrangement of windows and tabs,
and note-taking, improve the model? Finally, would upfront
provision of synonyms and linguistic relationships improve
on PFIS2’s graph-based treatment of cues, in which words’
relatedness must be “discovered” over time?

CONCLUSION
In this paper we presented PFIS2, an information foraging
model of navigation during everyday software development
tasks. PFIS2 tackles three real-world situations. First, its
perspective of prey changes incrementally, modeling users’
changing notions of the prey. Second, PFIS2 operates under
a very high number of navigation choices. Third, the infor-
mation world can change significantly while foraging.

We evaluated PFIS2’s suitability for modeling real-world
foraging by logging 4795 navigations by two professional
programmers over seven months and comparing how well
PFIS2 could predict where these programmers really navi-
gated. Our empirical results revealed that:

• PFIS2 accurately predicted our participants’ navigation.
The most successful PFIS2 variant (PFIS2-AllScent)
achieved a median prediction rank of 3, and even pre-
dicted our participants’ navigations as its first choice
27% of the time.

• PFIS2 predicted our participants’ navigations success-
fully even in the absence of explicit descriptions of the
prey such as bug reports.

• PFIS2’s success was tied to course correction. Its incre-
mental notions of prey allowed it to recover from big
surprises very quickly (median: only one navigation for
the two best variants).

Incremental prey is a novel contribution to information for-
aging theory. Its inclusion in the model demonstrates how
foragers respond to changes in the world as they occur. It
also demonstrates how opinions of the “right” scents to
pursue changes incrementally in response to cues encoun-
tered along the way.

Most important, the study’s results demonstrate the external
validity of an information foraging model of human naviga-
tion behavior, even in the face of changing information and
goals that evolve over time.

ACKNOWLEDGMENTS
This work was supported in part by AFOSR FA9550-09-1-
0213, by NSF ITR-0325273, by an IBM International Fac-
ulty Award, and by J. Lawrance’s IBM PhD Scholarship.

Predictions Model variant Wilcoxon Z, p<.001
Worst PFIS′
Poor PFIS2-ImmedScent-Explicit
Good PFIS2-ImmedScent
Better PFIS2-AllScent-Explicit
Best PFIS2-AllScent

} Z= -24.131
} Z= -19.221

} Z= -20.377
} Z= -21.501

Table 3. The paired Wilcoxon signed rank test (N=1209)
compared each model with the model in the row above it.

Each model was significantly better than the model above it
(p<.001). Because explicit prey were available for only 1209 of

the predictions, N=1209 for all comparisons.

REFERENCES
1. Anderson, J. R. The Adaptive Character Of Thought.

Erlbaum, Hillsdale, NJ, USA, 1990.
2. Anderson, J. R. Rules of the Mind. Erlbaum, Hillsdale,

NJ, USA, 1993.
3. Baeza-Yates, R. and Ribeiro-Neto, B. Modern Infor-

mation Retrieval. Addison Wesley Longman, Reading,
MA, 1999.

4. Becchetti, L., Castillo, C., Donato, D., Baeza-Yates, R.
and Leonardi, S. Link analysis for web spam detection.
ACM Transactions on the Web 2, 1 (2008).

5. Bettenburg, N., Just, S., Schroeter, A., Weiss, C.,
Premraj, R., and Zimmermann, T., What makes a good
bug report? In Proc. FSE 2008, ACM Press (2008),
308-318.

6. Brooks, R., Towards a theory of the comprehension of
computer programs. Int. J. Man-Mach. Stud. 18,
(1983), 543–554.

7. Card, S., Pirolli, P., Van Der Wege, M., Morrison, J.,
Reeder, R., Schraedley, P., & Boshart, J. Information
scent as a driver of web behavior graphs: Results of a
protocol analysis method for web usability, In Proc.
CHI 2001, ACM Press (2001), 498-505.

8. Chi, E., Hong, L., Heiser, J., Card, S. ScentIndex: Con-
ceptually reorganizing subject indexes for reading. In
Proc. IEEE VAST, IEEE (2006), 159-166.

9. Chi, E., Pirolli, P, Chen, K. and Pitkow, J, Using in-
formation scent to model user information needs and
actions on the web. In Proc. CHI 2001, ACM Press
(2001), 490-497.

10. Chi, E., Rosien, A., Supattanasiri, G., Williams, A.,
Royer, C., Chow, C., Robles, E., Dalal, B., Chen, J.,
Cousins, S. The Bloodhound project: Automating
discovery of web usability issues using the InfoScent
simulator, In Proc. CHI 2003, ACM Press (2003), 505-
512.

11. Cubranic, D., Murphy, G., Singer, J. and Booth, K.
Hipikat: A project memory for software development,
IEEE Trans. Soft. Engr. 31, 6 (June 2005), 446-465.

12. Fetterly, D., Manasse, M., Najork, M. and Wiener, J. A
large-scale study of the evolution of web pages. In
Proc. 12th International World Wide Web Conf., ACM
Press (May 2003), 669-678.

13. Fu, W. and Pirolli, P. SNIF-ACT: A cognitive model of
user navigation on the world wide web, Human-
Computer Interaction 22, 4 (Nov. 2007), 355-412.

14. Hill, E., Pollock, L., and Vijay-Shanker, K. Automati-
cally capturing source code context of NL-queries for
software maintenance and reuse, In Proc. ICSE 2009,
IEEE Computer Society (2009), 232-242.

15. Ko, A., Myers, B., and Chau, D. A linguistic analysis
of how people describe software problems, In Proc.
VLHCC, IEEE (2006), 127-136.

16. Ko, A., Myers, B., Coblenz, M., and Aung, H., An ex-
ploratory study of how developers seek, relate, and col-
lect relevant information during software maintenance
tasks, IEEE Trans. Software Engineering 32, 12 (Dec.
2006), 971-987.

17. Landauer, T. K. and Dumais, S. T. A solution to Plato's
problem: the Latent Semantic Analysis theory of acqui-
sition, induction and representation of knowledge. Psy-
chological Review, 104, 2 (1997), 211-240.

18. Lawrance, J., Bellamy, R., Burnett, M., and Rector, K.
Using information scent to model the dynamic foraging
behavior of programmers in maintenance tasks, In
Proc. CHI 2008, ACM Press (2008), 1323-1332.

19. Lawrance, J., Bellamy, R., Burnett, M. and Rector, K.
Can information foraging pick the fix? A field study, In
Proc. IEEE VLHCC, IEEE (2008), 57-64.

20. Lawrance, J., Bogart, C., Burnett, M., Bellamy, R., and
Rector, K. How people debug, revisited: An informa-
tion foraging theory perspective. IBM Technical Report
RC24783 (2009). (Under review.)

21. Manning, C. and Schutze, Foundations of Statistical
Natural Language Processing. MIT Press, Cambridge,
MA, USA, May 1999.

22. Nielsen, J. Information foraging: Why Google makes
people leave your site faster
http://www.useit.com/alertbox/20030630.html. June
30, 2003.

23. Olston, C., Chi, E. ScentTrails: Integrating browsing
and searching on the web. ACM Trans. Computer-
Human Interaction, 10, 3 (2003), 177-197.

24. Pirolli, P. and Card, S., Information foraging in infor-
mation access environments. In Proc. CHI 1995, ACM
Press (1995), 51-58.

25. Pirolli, P. Computational models of information scent-
following in a very large browsable text collection. In
Proc. CHI 1997, ACM Press (1997), 3-10.

26. Pirolli, P. and Card, S. Information foraging, Psychol-
ogy Review 106, 4 (1999), 643-675.

27. Pirolli, P. Information Foraging Theory: Adaptive In-
teraction with Information. Oxford University Press,
New York, NY, USA, 2007.

28. Robillard, M. P. and Murphy, G. C. Concern Graphs:
Finding and describing concerns using structural pro-
gram dependencies, In Proc. ICSE 2002, ACM Press
(2002), 406-416.

29. Spool, J., Profetti, C., and Britain, D., Designing for
the scent of information, User Interface Engineering,
(2004).

