

Reactive Information Foraging: An Empirical Investigation
of Theory-Based Recommender Systems for Programmers

David Piorkowski1, Scott D. Fleming2, Christopher Scaffidi1, Christopher Bogart1,
Margaret Burnett1, Bonnie E. John3, Rachel K. E. Bellamy3, Calvin Swart3

1Oregon State University
Corvallis, OR 97331 USA

{piorkoda,cscaffid,bogart,burnett}
@eecs.oregonstate.edu

2University of Memphis
Memphis, TN 38152 USA

Scott.Fleming@memphis.edu

3IBM T.J. Watson Research
Hawthorne, NY 10532 USA

{bejohn,rachel,cals}@us.ibm.com

ABSTRACT
Information Foraging Theory (IFT) has established itself as
an important theory to explain how people seek infor-
mation, but most work has focused more on the theory itself
than on how best to apply it. In this paper, we investigate
how to apply a reactive variant of IFT (Reactive IFT) to
design IFT-based tools, with a special focus on such tools
for ill-structured problems. Toward this end, we designed
and implemented a variety of recommender algorithms to
empirically investigate how to help people with the ill-
structured problem of finding where to look for information
while debugging source code. We varied the algorithms
based on scent type supported (words alone vs. words +
code structure), and based on use of foraging momentum to
estimate rapidity of foragers’ goal changes. Our empirical
results showed that (1) using both words and code structure
significantly improved the ability of the algorithms to rec-
ommend where software developers should look for infor-
mation; (2) participants used recommendations to discover
new places in the code and also as shortcuts to navigate to
known places; and (3) low-momentum recommendations
were significantly more useful than high-momentum rec-
ommendations, suggesting rapid and numerous goal chang-
es in this type of setting. Overall, our contributions include
two new recommendation algorithms, empirical evidence
about when and why participants found IFT-based recom-
mendations useful, and implications for the design of tools
based on Reactive IFT.

Author Keywords
Information foraging; debugging; software maintenance

ACM Classification Keywords
D.2.5 [Software Engineering]: Testing and Debugging;
H.1.2 [Information Systems]: User/Machine Systems—
Human factors

INTRODUCTION
In the past two decades, Information Foraging Theory (IFT)
[23] has revolutionized our understanding of how people
seek information during information-intensive tasks, and in
particular, of how people browse the web. Models based on
the theory have accurately predicted the links that people
will click as they navigate through web sites [3, 7, 22], and
researchers have used the theory to design better tools to
help people navigate the web [4, 18, 28]. This work on web
foraging has focused on tasks where people have well-
defined, unchanging information goals.

However, when solving ill-structured problems, people’s
information goals are likely to change as they process and
assimilate new information. In particular, numerous exam-
ples of ill-structured problems relating to software devel-
opment have been discussed in the literature (e.g., [8, 9]),
and in this paper, we focus on software development tasks
in which software developers wrangle with finding and
fixing a bug (i.e., debugging). Empirical studies show that
software developers faced with such problems often start by
seeking an overall understanding of a program’s structure
and runtime behavior [25, 26], but they soon start to have
questions that lead to exploring specific code [25]. Answers
to these questions spark multiple new questions [13, 15, 25,
26]. Thus, the developers’ goals evolve, unlike in the web
foraging tasks that researchers studied using IFT.

Reactive Information Foraging Theory is a relatively new
variant of IFT that we have previously developed to incor-
porate the notion of evolving goals [16]. Reactive IFT has
been shown to predict software developers’ navigation
choices as they completed debugging tasks [16, 20]. IFT
says that a person seeking information follows information
scent emitted from cues in the environment in a manner
similar to how a predator foraging in the wild follows scent
to prey [22]. Related work provided models for inferring a
web forager’s goals from cues followed [3], and Reactive
IFT led to analogous models that infer evolving goals of
software developers [16, 20].

In this paper, we explore how to apply Reactive IFT to pro-
vide tools that infer, in real time, developers’ evolving
goals and use those inferences to recommend places in code

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
CHI’12, May 5–10, 2012, Austin, Texas, USA.
Copyright 2012 ACM 978-1-4503-1015-4/12/05...$10.00.

Session: Needle in the Haystack CHI 2012, May 5–10, 2012, Austin, Texas, USA

1471

that satisfy those goals. Several questions arise about how
to operationalize the theory to build useful tools.

One question is how much of a person’s recent history to
consider when inferring the current goal. As noted above, a
developer typically investigates code related to a certain
goal for a while—which we refer to here as “building up
foraging momentum” related to that goal—before shifting
to a new goal. Reactive IFT indicates that the software de-
veloper’s current momentum, reflected by recent navigation
actions, can be used to infer the goal, but it does not specify
how many recent navigations to use for this analysis.

Another question that arises in using IFT for tool design is
which cues to consider for inferring goals. The web forag-
ing research (e.g., [3, 22]) has emphasized operationalizing
cues as words that appear in web pages that have been vis-
ited. Program code tends to be less “wordy” and more
structured than natural-language text, and some prior mod-
els of developer navigation have hinted that at least in this
domain, it might be useful to consider both word and code-
structure cues to infer developer goals [16, 20].

Two other subsidiary questions also arise. First, because the
navigational behavior of developers changes over the
course of a task (as noted earlier), it is questionable whether
different operationalizations will be more or less appropri-
ate at different points in a task. Second, related to this point,
different developers might obtain different value from Re-
active IFT-based tools at different points in a task, raising
the question of when and why recommendations are useful.

Consequently, our specific research questions were:

• RQ1: How do a Reactive IFT-based tool’s assumptions
about foraging momentum affect its ability to infer a de-
veloper’s goal and produce useful recommendations?

• RQ2: Does a Reactive IFT-based tool that considers word
and code-structure cues yield more useful recommenda-
tions than another tool that considers only word cues?

• RQ3: Does a Reactive IFT-based tool’s ability to provide
useful recommendations change as a task progresses?

• RQ4: When and why do software developers find Reac-
tive IFT-based tools’ recommendations useful (or not)?

RELATED WORK
Empirical studies have revealed many cases where software
developers navigate through source code. For example,
during debugging tasks in a laboratory study, developers
spent 35% of their time browsing and searching through
code [13]. Aside from debugging, code navigation is also
essential for implementing new features, porting code, doc-
umenting code, extracting reusable code, and virtually eve-
ry software development activity.

Code navigation is a key part in a learning process whereby
the developer finds the information needed to work out a
concrete goal to complete the task at hand. At the start of a

maintenance task in laboratory and field studies, a develop-
er usually searched for code that could serve as an initial
focus point [25, 30]. Over the course of a task, the develop-
er typically began to ask questions about how pieces of
code were related [6, 25]. Developers also frequently navi-
gated between locations in code, revisiting places to learn
about structural relationships [19, 26]. As developers dis-
covered answers to their questions, they broadened their
focus to include more code [26]. Eventually, they planned
specific changes that they believed would eliminate a defect
or create a new feature [13, 26].

Various tools are aimed at easing these navigations by
providing shortcuts to recommended places in the code that
might hold valuable information. Several tools provide
“history” links back to code that the developer has recently
visited [12, 19]. Others offer shortcuts to places that other
developers historically have read and/or edited after the
current location [6, 10]. Still other tools provide shortcuts to
code or other artifacts based on textual similarity, textual
proximity, method-invocation, or nesting [5, 11, 27, 29].

A limitation of these tools is that they do not explicitly take
into account the evolution in goals that typically occurs as a
developer learns during a task. For example, upon visiting a
Java method’s code at the start of debugging, a developer
might have no idea what needs to be edited; upon revisiting
the location later, the developer might have formulated a
goal to make certain kinds of edits. Yet most of the tools
above would provide exactly the same shortcuts in both
situations, regardless of the developer’s new goal. Of the
above tools, only those that show a “history” of recent plac-
es would behave differently during a particular task: they
would stop showing links to locations that were not recently
visited, which is an implicit model of evolving goals at best.

IFT, as we discuss below, offers a start toward addressing
these limitations. Our objective in the current study is to
investigate how to use this theory to help software develop-
ers find the information that they need during tasks.

BACKGROUND: INFORMATION FORAGING THEORY
IFT is a theory of how people seek information during in-
formation-intensive tasks [23]. It is based on the assump-
tion that humans generally tend toward rational strategies
that enable them to locate and process information efficient-
ly. It was inspired by biological theories of how animals
seek food in the wild. In IFT, a predator (person seeking
information) pursues prey (valuable sources of information)
through a topology (collection of navigable paths through
an information environment). To find prey, the predator
follows information scent that he/she obtained from cues in
the environment. Cues are associated with navigation op-
tions, and the scent on cues is the predator’s assessment of
the value and cost of information sources obtained by tak-
ing the associated navigation options.

IFT was originally applied to user-web interaction. Models
based on the theory have predicted the web pages to which

Session: Needle in the Haystack CHI 2012, May 5–10, 2012, Austin, Texas, USA

1472

5
3

1

2
4

1

2

3

Method header Source file

Word cues

(a) (b)

(c)

Figure 1. Eclipse interface with our Recommendation view: (a)
Eclipse layout, (b) Recommendation view, and (c) examples of

three recommendations.

people will navigate during particular tasks [3, 7, 21]. Lev-
eraging this predictive power, IFT has also inspired princi-
ples for the design of web sites [17, 28].

More recently, researchers have attempted to translate the
IFT results from the web domain to software development
[14, 15, 16]. To reconcile developers’ evolving goals with
the web-based models, which were focused on static, un-
changing goals, we proposed Reactive Information Forag-
ing Theory to describe evolving goals. A model based di-
rectly on this theory, PFIS2 [16] (later refined to PFIS3
[20]), was able to accurately predict developer navigation.

In this paper, we build upon this earlier work, adapting the-
se models to build recommender tools that try to satisfy
developer goals. In particular, we investigate the research
questions mentioned earlier about how the operationaliza-
tion of momentum and scent affect tool usefulness, as well
as about when and why developers find the resulting tools
useful. Ours is the first application of Reactive IFT as a
theory for assisting software developers.

EMPIRICAL METHOD
In our empirical study, we invited professional developers
to complete a debugging task using a new Eclipse plug-in
tool that supplied links to places in the code that might pro-
vide information needed for the task. Within this plug-in,
we activated different recommendation algorithms based on
different operationalizations of momentum and scent. Spe-
cifically, we considered different algorithms in a 2!2 facto-
rial design (with one factor for the operationalization of
momentum and another factor for the operationalization of
scent). We then measured what proportion of the time par-
ticipants went to locations recommended by different algo-
rithms. In our analysis, we also examined whether algo-
rithms’ recommendations were more or less useful at dif-
ferent periods of the task, and we qualitatively analyzed
what kinds of benefits participants obtained.

Study Environment
We implemented our recommendation system as a plug-in
for the Eclipse IDE (Figure 1). Interface elements 1–4 in
Figure 1a are all those that commonly appear in the Java
perspective of Eclipse: (1) Package Explorer view, (2) Out-
line view, (3) Java editor, and (4) Console view. Interface
element 5 is our Recommendation view.

Figure 1b depicts a close-up of this Recommendation view,
which had three areas: (1) the current method (i.e., the one
that the text cursor last entered), (2) the current recommen-
dations, and (3) methods bookmarked, or pinned, by the
developer. Each time the developer navigated to a method,
the current method updated to reflect the navigation, and
the recommendations were recalculated (using whichever of
our algorithms was activated at the time). The developer
could also manually drag the current method or any rec-
ommendation into the pinned area to save it for later.

Each recommendation displayed words to help participants
assess its relevance (Figure 1c). These words were sorted
based on their importance according to the amount of
weight given to them internally by the recommender algo-
rithm active at the time. The Recommendation view also
distinguished recommendations to methods the participant
had previously visited from recommendations to methods
not already visited by highlighting the latter in gray.

For data collection, our plug-in recorded a log of participant
interactions with Eclipse. Additionally, we video-recorded
each session and automatically logged screen captures.

Recommendation Algorithms Considered
To investigate whether operationalizing scent as words +
structure would produce better recommendations than
words alone (RQ2), we implemented one recommender
algorithm based on words + structure, PFIS-R, and another
based on words alone, TFIDF-R. The PFIS-R recommender
is based on the PFIS3 predictive model [20], motivated by
PFIS3’s success in predicting developer navigation. The
other algorithm, TFIDF-R, is based on a vector space model
commonly used in information retrieval [1]. These two al-
gorithms represent the main camps of how to model infor-
mation foraging: strong reliance on words (e.g., TFIDF,
LSA) and balancing words with information structure (e.g.,
[3, 14, 15, 16, 18]). Both share a reliance on words, because
word-based approaches have dominated IFT (e.g., [3, 4, 7,
22]) and the literature contains some evidence that words
can be used to predict where developers will navigate [14].

Session: Needle in the Haystack CHI 2012, May 5–10, 2012, Austin, Texas, USA

1473

RQ1 required a need to manipulate the operationalization of
the foraging momentum—specifically, how much history to
use for making recommendations. To take momentum into
account, we parameterized each algorithm with ", the num-
ber of navigations to look back in making a recommenda-
tion. An algorithm with "=1 uses only the contents of the
last method visited and thus ignores any momentum that the
developer might have built up; we refer to this algorithm
configuration as low momentum. In contrast, an algorithm
with "=10 uses the contents of the last 10 methods visited
and will thus be influenced by momentum built up during
those navigations; we refer to this algorithm configuration
as high momentum. Thus, the greater the value of ", the
more momentum the recommender assumes in making its
recommendations. Combining two momentum configura-
tions, "=1 and "=10, with the two different algorithms
(PFIS-R vs. TFIDF-R) gives the 4 possible combinations of
our 2!2 factor design.

The algorithms take as an input the sequence of methods to
which a developer has navigated so far. In the current study,
we recorded a navigation to a method m each time the de-
veloper performed an action that caused the text cursor to
enter the text of m. For our purposes, the text of a method
comprises the method’s signature, body, and (Javadoc)
comments. Both PFIS-R and TFIDF-R normalize this tex-
tual input by excluding punctuation and stop words, which
include common words, like the, as well as the list of Java
keywords. Camel-case words are broken into separate case-
insensitive words, although the original camel-case word is
retained as well (e.g., setFoldText would be treated as an
input of setfoldtext, set, fold, and text). For the remainder of
the paper, method text refers to normalized method text.

The algorithms produce as output 10 recommendations,
divided evenly between methods previously visited by the
developer and methods not previously visited. Developers
commonly revisit methods to recover mental state and ex-
plore new methods to find and understand the program’s
essential elements [19]. Thus, by recommending both visit-
ed and unvisited methods, we sought to support both types
of navigation. If there are fewer than 5 previously visited
recommendations, the algorithms fill out the remainder of
the 10 recommendations with new recommendations, and
vice versa. The algorithms would sometimes need to re-
solve ties when generating this list. The reason is that alt-
hough the algorithm ranks methods by computing a contin-
uous measure of relatedness (as discussed in the algorithm
details below), the variables in those calculations take on a
small number of distinct values in practice. When selecting
the 10 methods to recommend, ties were resolved by choos-
ing nondeterministically among the tied methods.

PFIS-R Recommender
Figure 2 summarizes the PFIS-R recommendation algo-
rithm, which builds on the earlier PFIS2 and PFIS3 models
by informing its recommendations using word cues and

code-structure cues (i.e., call dependences) in methods that
the developer previously visited. In brief, PFIS-R maintains
a graph of word and method vertices such that edges be-
tween method vertices capture the structural relationships
between methods, and edges between words and methods
capture lexical relationships between methods. The algo-
rithm spreads activation [22] over this graph, starting from
the vertices for the last " methods that the developer visited.
To account for momentum, vertices for methods that the
developer visited more recently are initialized with greater
activation. The algorithm considers methods with the high-
est resulting activation to be the best recommendations, and
those are the ones that sort first in Figure 1c.

TFIDF-R Recommender
In contrast to PFIS-R,TFIDF-R bases its recommendations
on lexical similarity only. TFIDF-R treats the code base as
a corpus of documents with the (normalized) text of each
method being a document. The algorithm maintains a word-
by-document matrix MW that specifies the importance of
each word in W to each method in M by computing the tf–
idf (term frequency–inverse document frequency [1])
weight for every word-method combination. It uses MW to
assess the lexical similarity between methods by construct-
ing a document-by-document matrix MS that specifies the
cosine similarity measure [1] for all pairs of documents.
MS(m) denotes the vector of cosine similarity scores associ-
ated with a particular method m in MS.

PFIS-R Algorithm
Definitions:
• Method set M: set of all methods in the code base.
• Navigation history H: sequence of methods to which the

developer has navigated so far.
• Word set W: set of all words in all method text in M.
• Graph G = (Vm ! Vw, Em ! Ew) such that Vm and Vw have a

one-to-one relationship with M and W, respectively. For
all ma, mb in M and their associated method vertices mva,
mvb in Vm, Em contains one and only one edge connecting
mva and mvb if and only if the body of ma contains a call
to mb or the body of mb contains a call to ma. For each
word w in W and method m in M, Ew contains one and on-
ly one edge connecting wv and mv if and only if w is in
the method text of m.

Steps for making recommendations:
• Set activation of each vertex in G to 0.
• For each method m such that m is the kth method in H and

|H|–" < k, increment the method vertex mv by 0.9|H|–k.
• Spread activation (#=0.85 and edge weights=1) such that

only word vertices receive activation.
• Spread activation again (#=0.85 and edge weights=1)

such that only method vertices receive activation.
• Recommend methods with greatest activation.

Figure 2. Formal definition of the PFIS-R Algorithm.

Session: Needle in the Haystack CHI 2012, May 5–10, 2012, Austin, Texas, USA

1474

To account for the developer’s foraging momentum,
TFIDF-R sums the MS(m) vectors for the last " methods to
which the developer navigated, decaying older navigations
at a rate of 0.9. Specifically, for each method m such that m
is the kth method in H, decayedMS(m) = 0.9|H|–k$MS(m). A
final recommendation vector VR sums the decayed vectors
for the last " methods in H. The algorithm regards the
methods with the greatest values in VR as the best recom-
mendations, and those sort first in Figure 1c.

Participants
We recruited eleven professional software developers from
a large company to participate in an empirical study com-
paring the usefulness of our four different algorithm con-
figurations. Technical failures in the study environment
invalidated the data for two of these participants; thus, we
analyzed only the data for the remaining nine participants.
We asked each participant to fix a defect in the jEdit soft-
ware project. None of the participants had ever seen the
jEdit code before, and with 6,468 methods, the jEdit code
base provided a large space to forage within. The defect
was from an actual bug report, #2548764, which described
a problem with jEdit’s text “folding” functionality.

Procedure
Each study session took about 180 min. Participants began
by filling out a pre-questionnaire that gathered background
information. Next, they engaged in two back-to-back task
periods. Prior to the first task period, we introduced partici-
pants to the video equipment and started recording. Each
task period was associated with a different treatment (i.e.,
one of our four algorithm configurations). Table 1 lists the
treatment assignments, which we balanced to account for
learning effects.

Each task period began with a short tutorial task on the tool.
Some algorithms may have produced poor recommenda-
tions in the first task period, and we did not want partici-
pants who received such treatments to ignore recommenda-
tions in the second task period. Consequently, the tutorial in
the second task period informed the participant that the
tool’s recommendation algorithm had been switched and
asked the participant to repeat the tutorial task to see how
the recommendations had changed.

Within each task period after the corresponding tutorial,
participants worked on the jEdit debugging task for 35
minutes. To assess how participants used recommendations
and when they were useful, we asked them to “talk aloud”

as they worked. At the end of each task period, we inter-
rupted participants and had them fill out a questionnaire
that asked for their opinion of the recommendations.

After both task periods, the study session ended with a 35-
minute semi-structured retrospective interview in which an
interviewer stepped through events of interest in the screen
capture videos and asked the participant questions about
those events. For each time the participant navigated to a
method, the interviewer asked, “What did you learn from
this place?” and for each time the participant clicked on a
recommendation, the interviewer asked the participant why
he/she did that. Due to time constraints, the interviewer was
sometimes unable to ask about all these events of interest in
a session.

Analysis Procedure
Ultimately, a recommender’s quality is its usefulness, but
evaluating usefulness raises challenges. For instance, a par-
ticipant may ignore recommendations that would otherwise
be useful because the participant is unfamiliar with the tool.
As professional developers, our participants have honed
their navigation strategies over years of experience, and
they might favor their practiced strategies over a relatively
unfamiliar tool.

To address this problem, we conducted two analyses. The
first was a quantitative analysis of hit rate. This analysis
compared the algorithms’ recommendations to the places
that participants actually navigated, regardless of whether
they actually used the tool to navigate there. The second
was a qualitative analysis of demonstrated usefulness,
which assessed whether recommendations participants fol-
lowed via the tool were useful in the participants’ opinions.

Hit rate
To assess hit rate, we computed the top-10 recommenda-
tions from the tool algorithm that was active at the moment
before each user made each navigation. We scored the rec-
ommendations as a hit if the user navigated to a recom-
mended location within the next s navigations. It was diffi-
cult to estimate the window of time in which a recommen-
dation might have been usefully pertinent to a participant,
so we explored two time-window sizes: a hit within the next
10 navigations (s=10) and a hit on the next navigation
(s=1). Note that the time-window size s is concerned with
how we score the hit rate of recommendations (over future
navigations), not to be confused with the sensitivity to mo-
mentum factor " in this study, which also had values of 1
and 10 (the number of past navigations from recent history).

Recall that nondeterminism arises in the case of ties be-
tween recommendations. To account for this nondetermin-
ism, we took the best tie-breaking choice to make a best-
case list of recommendations (maximizing hit rate), and we
took the worst tie-breaking choice to make the worst-case
list (minimizing hit rate), thereby bounding the effects of
nondeterministic tie-breaking.

Algorithm Task period assignment for each participant
2 3 5 6 7 8 9 10 11

PFIS-R("=1) 2nd 2nd 1st 1st
PFIS-R("=10) 2nd 2nd 1st 1st 2nd
TFIDF-R("=1) 1st 1st 2nd 2nd 1st

TFIDF-R("=10) 1st 1st 2nd 2nd

Table 1. Treatment assignments to participants and task peri-
ods. (Participants 1 and 4 removed due to technical failures.)

Session: Needle in the Haystack CHI 2012, May 5–10, 2012, Austin, Texas, USA

1475

Given the two choices of s and the two choices of tie-
breaking, we obtained four separate assessments of each
recommendation algorithm's hit rate. Each of these was
treated as a separate dependent variable in a separate re-
gression. Because our dependent variable was dichotomous
(indicating whether or not a recommendation was consid-
ered a hit), we used logistic regression. In addition to algo-
rithm, our regression model also included task period and
participant as categorical independent variables (i.e., indica-
tor variables). After performing the regression, we used the
Wald test to assess whether each variable (algorithm con-
figuration, participant, and task period) had a statistically
significant effect on hit rate. Using the coefficients provid-
ed by the regression, we also computed the overall hit rate
of each algorithm, after subtracting out the effects of partic-
ipant and task period.

Demonstrated usefulness
To assess recommendation usefulness, we looked at the
recommendations that the developers followed to see if the
recommendations helped the developers make progress. To
do this analysis, we qualitatively analyzed the verbaliza-
tions the participants made during task performance and
their answers to our probes during the retrospective inter-
view. In particular, for each followed recommendation, our
interviewer asked the participant “What did you learn from
this place?” If the participant responded negatively (e.g., “I
learned nothing”) or with apparent uncertainty (e.g., “I
don’t know”), we coded the navigation as not useful; oth-
erwise, we coded it as useful.

RESULTS: HIT RATE AND USEFULNESS

Hit Rate
Participants averaged one navigation every 90 seconds, or
447 navigations in all (Figure 3). We used this data to ana-
lyze hit rate. Figure 4 depicts the hit-rate results by algo-
rithm configuration for window sizes s=10 and s=1. Our
data revealed significant differences in the hit rates for the
four configurations. Specifically, we consistently found
!2(3) % 9 and p & 0.03 regardless of whether we used s=1 or
s=10, worst- or best-case tie-breaking, and "=1 or "=10.

Low vs. high sensitivity to momentum (RQ1)
Each low-momentum ("=1) algorithm consistently scored a
significantly better hit rate than the corresponding high-
momentum ("=10) algorithm (Figure 4). We found z % 2.45,
p & 0.01 regardless of whether we used s=1 or s=10, worst-
or best-case tie-breaking, and TFIDF-R or PFIS-R. Thus,
with respect to RQ1, we found that low-momentum algo-
rithms outperformed high-momentum.

Word and code-structure cues vs. word cues alone (RQ2)
We found no meaningful difference between PFIS-R and
TFIDF-R, regardless of whether we used s=1 or s=10, or
worst- or best-case tie-breaking. Neither low-momentum
("=1) configuration of PFIS-R and TFIDF-R outperformed
the other (at p < 0.05). Between high-momentum ("=10)

configurations, PFIS-R outperformed TFIDF-R, but the
difference was not statistically significant (at p < 0.05).
Additionally, we found no significant interaction between
algorithm and sensitivity to momentum (")

First vs. second task period (RQ3)
Participants navigated almost twice as frequently during the
second task period as during the first (Figure 3). Comparing
between task periods (Figure 5), we saw suggestive differ-

!" !"#" #"$" $"%" %"&" &"'" '"(" (")*")*"))"))"*"
)*"
!*"
#*"
+*"
$*"
%*"

,-./"012345")" ,-./"012345"!"6
78

91
2"4

:"6
-;
3<
-=

4>
."

0-2=?3@->A."B247@15"9C",-./"012345"
Figure 3. Number of navigations by each participant.

!"#

$%"#

%!"#

&%"#

'!!"#

()'# ()'!# ()'# ()'!# ()'# ()'!# ()'# ()'!#

!")#'!# !")#'#
*+,-./# 0+,1+./# *+,-./# 0+,1+./#

23
4#5
64
7#

Figure 4. Hit rate of each algorithm (averaged over all task
periods and participants) for s=10 (left half) and s=1 (right
half), with rectangles indicating ranges between best- and

worst-case tie-breaking. The !=1 algorithms consistently out-
performed the !=10 ones (see arrows).

!"#

$%"#

%!"#

&%"#

'!!"#

()'# ()$# ()'# ()$# ()'# ()$# ()'# ()$#

*+
,#-
.,
/#
0!
1'
!2
#

)34567081'2# (349367081'2#)34567081'!2# (349367081'!2#
Figure 5. Hit rate (s=10) of each algorithm in the first (TP1)

and second (TP2) task periods, with rectangles indicating
ranges between best- and worst-case tie-breaking. Hit rates

increased in the second task period (see arrows).

Session: Needle in the Haystack CHI 2012, May 5–10, 2012, Austin, Texas, USA

1476

ences when evaluating recommendations with respect to the
developer’s next navigation (s=1), but these differences
were not statistically significant (at p < 0.05). However,
with respect to the developer’s next 10 navigations (s=10),
both algorithms improved significantly in the second task
period over the first (pairwise z = 2.37, p = 0.02 for worst-
case tie-breaking; z = 3.44, p < 0.001 for best-case).

Demonstrated Usefulness
All participants clicked some recommendations (Figure 6),
for 62 clicks in total, and we collected interview responses
for 44 clicks. Figure 7 summarizes the proportion of those
clicks that participants reported as useful. We did not test
for statistical significance due to the low number of clicks
in each of the treatments.

Low vs. high sensitivity to momentum (RQ1)
The participants reported as useful a greater proportion of
the recommendations from low-momentum algorithms than
the recommendations from high-momentum algorithms
(RQ1). This tendency triangulates with our finding that the
low-momentum ("=1) algorithms demonstrated a higher hit
rate than the high-momentum ("=10) ones.

Word and code-structure cues vs. word cues alone (RQ2)
Also triangulating with our hit-rate results, our demonstrat-
ed-usefulness results showed no consistent difference be-
tween PFIS-R and TFIDF-R.

First vs. second task period (RQ3)
Similar to what we saw with hit rate, the participants
clicked recommendations more frequently during the se-
cond task period than during the first.

Opinion Questionnaire
Figure 8 illustrates the opinion results. Participants com-
pleted a total of 18 opinion questionnaires (1 per task peri-
od) that asked the question (5-point Likert) “Was this tool
valuable in getting you to useful parts of the source code?”
Again, we omitted statistical tests when analyzing this data
due to the low number of clicks in each treatment.

Low vs. high sensitivity to momentum (RQ1)
Triangulating with our hit-rate and demonstrated-usefulness
results, participants rated the low-momentum algorithms
more favorably than the high-momentum ones (Figure 8b).

Word and code-structure cues vs. word cues alone (RQ2)
Similar to our hit-rate and demonstrated-usefulness results,
the opinion results showed no suggestive difference be-
tween TFIDF-R and PFIS-R.

First vs. second task period (RQ3)
Participants seemed to rate all algorithms more favorably in
the second task period than in the first (Figure 8c), con-
sistent with our hit rate analysis where the second task peri-
od had a higher hit rate than the first.

RESULTS & DISCUSSION: WHAT PARTICIPANTS SAID
To better understand when and why participants found rec-
ommendations useful (RQ4), we qualitatively analyzed the
talk-aloud and retrospective interview recordings.

Using Recommendations for Efficiency

Benefits of recommendations based on code structure
Some participants benefitted from PFIS-R’s use of code
structure in making recommendations. For example, Partic-

!" !"#" #"$" $"%" %"&" &"'" '"(" (")*")*"))"))"*"

$"

)*"

)$"

+,-."/01234")" +,-."/01234"!"

5
36
"3
7"8

09
3:

:
0;

4,
<3

;-
"

=>
29
.0
4"

/,1<92?,;@-"A13B?04"CD"+,-."/01234"
Figure 6. Number of times that participants clicked recom-

mendations. Annotations indicate participant ID.

!"#$
%&#$

!'#$
'(#$

")#$

&(#$

(#$

*&#$

&(#$

"&#$

+((#$

,-./01$
234+5$

6-.7-01$
234+5$

,-./01$
234+(5$

6-.7-01$
234+(5$

34+$ 34+($

8
9:
;<
=$

>:
?@
A
A
:B

CD
E@

B9
$

Figure 7. Percentage of recommendations that participants

reported learning something from, grouped by algorithm and
by low and high momentum.

!"
#"
$"
%"
&"

'()"*+,!-" ./01"*+,!2-"

'/
34
56
"7
48
9(

:8
4"

;(<4:6=<"

!"

#"

$"

%"

&"

>?@AB7*+,!-" C?@D?B7*+,!-" >?@AB7*+,!2-" C?@D?B7*+,!2-"

'/
34
56
"7
48
9(

:8
4"

EF0(5/61<"

2"

&"

!2"

!" #" $" %" &"

?5
4G

=4
:H
I"

'/3456"7489(:84"

CJ83">45/(K"!"
CJ83">45/(K"#"

(a)

(b) (c)
Figure 8. Results of questionnaires on the value of the recom-
mendation system (1 = Entirely worthless, 5 = Very valuable).

Session: Needle in the Haystack CHI 2012, May 5–10, 2012, Austin, Texas, USA

1477

ipant 2 found code-structure-based recommendations useful
while using an exception stack trace to navigate through
code. He used the stack trace to open a method that con-
tained a call to another method recalculateLast-
PhysicalLine (i.e., following the call graph structure):

Participant 2: “I wanted to go to the declaration of [recalculate-
LastPhysicalLine] and you know, my god, the [recommendation
system] had it sitting there so I thought I'll go over and select it…
I like that it was bigger and it was right there so it just seemed like
I would both go to it and maybe learn something in the process…”

This quote reveals a case where a structure-based recom-
mendation led directly to a desired method, making it effi-
cient to navigate there in a single mouse click. PFIS-R’s use
of code-structure cues made a difference in this case. In
contrast, running the TFIDF-R algorithm (with "=1 and
"=10) on Participant 2’s navigations revealed that this
words-only algorithm would not have made this recom-
mendation (even in the best case).

Recommendations as working set
Several participants used recommendations to efficiently
navigate back to previously visited methods; e.g.:

Participant 9: “At this point, I'm kind of abusing the recommenda-
tions as a history because they are the fastest way to get where I
want to go.”

As another example, Participant 8 took advantage of the
implicit “history” when, using Eclipse’s debugger, he acci-
dently stepped out of a method transactionComplete
that he meant to inspect:

Participant 8: “So that kicks me out to the catch and I remembered
it was in the transactionComplete method… I had remembered
that this recommendation had shown a bunch of transactionCom-
pletes, so I was just clicking around to just find where I was.”

It could have taken Participant 8 considerably more effort
to get back to transactionComplete (e.g., by rerunning
the debugger) without the recommendation. Participants
received historical recommendations from both low- and
high-momentum algorithms because all algorithms made
recommendations to previously visited methods.

Participants who used recommendations to get back to pre-
viously visited methods were essentially using the recom-
mendations as a sort of working set. Previous research has
shown that developers tend to navigate frequently to meth-
ods in their working set [19, 20], and several successful
tools have been developed that emphasize working set [2, 6,
12]. A novel feature of our operationalization of Reactive
IFT is that it implicitly supports working set while also
helping the user explore new places.

Using Recommendations for Discovery

“Aha! moments”
Some participants followed recommendations to methods
that they were apparently unaware of and expressed ex-

citement about how useful the recommendation turned out
to be. For instance, Participant 2 was having difficulty find-
ing code to focus on. He perused the recommendations:

Participant 2: “‘You might want to go here.’ … ‘collapseFold’ …
‘expandFold’ ... OK, ‘collapseFold.’ [Selects collapseFold rec-
ommendation; reads code comments.] ‘Collapses the fold associ-
ated at the specified line index.’ OK! Now, this is where I want to
be! Collapsing the fold.”

Participant 6 was having similar difficulty finding code to
focus on when he turned to the recommendations:

Participant 6: “[Selects loadMenu recommendation; reads code
comments.] ‘Creates a menu, the menu label is set from the name
property, name.label propery.’ Oh! Oh! Yes! … This thing looks
like the class that might put up the menu. I like that!”

Our choice to make half of the recommendations be to pre-
viously unvisited methods created opportunities for partici-
pants engaged in exploratory navigation to have “aha mo-
ments” such as these. However, not all exploratory naviga-
tions were to unvisited methods. Participant 6 had already
visited loadMenu when he followed the recommendation.
On his first visit, he did not notice anything interesting
about the method. It was only after he followed a recom-
mendation to the method that he discovered needed infor-
mation in the method.

Misleading cues
In some instances, participants navigated to methods that
contained cues that generated strong scent, but the recom-
mendations did not help them discover methods that would
satisfy their goals. For instance, Participant 6 wanted to find
the method that implemented the action for one of the items
in jEdit’s Edit menu. All the methods that he navigated to
contained words (i.e., cues) related to his goal, such as
menu, edit, and action. He then noticed a recommendation
for JEditAbstractEditAction that included the key-
words edit and action:

Participant 6: “I was looking for the method that would get run
when someone picked on that [Edit] menu item. So again, [the
recommendation] could be the mnemonic suggestion of the class
that maybe that was some kind of action that would get run in the
Edit menu.”

Participant 6 clicked the recommendation, but unfortunately
the method did not contain code for implementing menu-
item actions. Instead, it contained code that implemented
the menu framework.

The recommendation system (running TFIDF-R, "=10)
could not help Participant 6 because it could not relate the
word cues that he was following to the method that would
satisfy his goal. That method contained entirely different
word cues from the menu-framework code. Because the
participant was navigating through the framework code,
building momentum on those cues, the algorithm did not
recognize the relevance of the needed method.

Session: Needle in the Haystack CHI 2012, May 5–10, 2012, Austin, Texas, USA

1478

Code structure cues used by PFIS-R might help overcome
this problem generally; however, in this particular case,
PFIS-R would not have had access to the structural infor-
mation needed to connect the menu and action code be-
cause that information was contained in a properties file
that was not part of jEdit’s Java code base. This problem
highlights the importance of having complete structural
information in operationalizing Reactive IFT.

DISCUSSION: IMPLICATIONS AND OPEN QUESTIONS

Sensitivity to Momentum
The Reactive IFT tools that were less sensitive to partici-
pants’ foraging momentum (i.e., low momentum, "=1) pro-
duced better recommendations than those more sensitive to
momentum (i.e., high momentum, "=10). This result runs
counter to previous work on recommender systems, which
suggested that using more history was better for predicting
future navigation [16, 20]. Outside software maintenance,
successful recommender systems use historical behavior
going back days, weeks, and years [24]. In light of this past
work, our result that "=1 produced better recommendations
than "=10 was unexpected.

One interpretation is that this result may be due to partici-
pants’ goals evolving rapidly and repeatedly. Studies have
shown that as developers navigate through code, they con-
tinually ask new questions [13, 25, 26]. If participants’
goals did change frequently, it would put the high-
momentum operationalizations at a considerable disad-
vantage, because a high-momentum operationalization con-
siders cues associated with a mix of goals, some of which
are no longer relevant.

These results underscore the importance of understanding a
predator’s foraging momentum in operationalizing Reactive
IFT. For these developers engaged in debugging, low-
momentum was apparently better at inferring goals, but
depending on the foraging context (e.g., government agents
performing intelligence analyses or end users debugging
spreadsheets), a higher foraging momentum may produce
better outcomes. One limitation of the current study is that
we examined only two values of ". Future studies could
further investigate the effect of momentum.

Changes in Foraging Behavior over Time
Changes in participants’ foraging behavior as the task pro-
gressed may have been responsible for the algorithms’ im-
proved hit rate in the second task period. Studies have
shown that developers pursue different kinds of information
[6, 25, 30] and engage in different types of activities [15] as
a task progresses. In our study, the participants may have
had difficulty finding strong scents in the earlier stages of
debugging. As they foraged, they may have homed in on
places with stronger scent. Since our algorithms relied on
scentful cues to approximate goals, they might have been
less accurate earlier in the task when the participants were

navigating through low-scent methods, and became more
accurate as scent increased.

One possible way to handle low-scent periods is to switch
algorithms during such periods. For instance, an algorithm
might detect changes in a user’s foraging momentum and
swap in the most appropriate algorithm for approximating
the user’s goal. Open questions for future research include
how to detect a user’s shifts in momentum and how to make
recommendations in the absence of scentful cues.

Beyond Word Cues
Although not reaching statistical significance, the hit-rate
results showed a tendency to favor PFIS-R over TFIDF-R,
and this tendency triangulates with the suggestive differ-
ence between PFIS-R and TFIDF-R in the opinion ques-
tionnaire results (Figure 8a). This tendency was consistent
with the qualitative data. We observed many participants
following call dependences while debugging. Moreover, we
saw one instance (Participant 6) where a method that would
have satisfied the participant’s goal contained none of the
words that the participant followed scent from.

The implication for tools is that when operationalizing Re-
active IFT for a new context, the tool may need to consider
other cues in addition to words. Word cues exclusively have
dominated the work on web foraging, and they may be par-
ticularly effective in that context due to the large volume of
unstructured natural language text that web pages contain.
However, in a context like programming, where there is
less natural language text and more structure, other types of
cues may be valuable.

One limitation of the current study is that we only investi-
gated two models for using word and structural scent. Fu-
ture work may investigate other models that analyze other
forms of scent or that are tailored to the needs of different
users and different contexts.

CONCLUSION
This paper is the first to investigate how to bring Reactive
Information Foraging Theory to recommender tools for
information-intensive, ill-structured problems. The algo-
rithms we investigated with professional software develop-
ers in a debugging task showed that:

• RQ1: Surprisingly, assuming low foraging momentum
(using only one navigation to inform its choices) pro-
duced better recommendations than those produced by as-
suming high momentum (the past ten navigations).

• RQ2: There was suggestive but inconclusive evidence
that participants found the tool to be more valuable when
it used words + structure than when it used words only.

• RQ3: The tool’s recommendations were more useful to
participants later in the task, suggesting that tools may
need to be sensitive to shifts in users’ foraging behavior.

• RQ4: Recommendations helped participants by revealing
useful places that the participants were unaware of and al-
so by facilitating navigation to known places.

Session: Needle in the Haystack CHI 2012, May 5–10, 2012, Austin, Texas, USA

1479

Most importantly, this study has demonstrated Reactive
Information Foraging Theory’s potential as a basis for the
design of tools that help people solve ill-structured prob-
lems. We believe that such tools could help people in con-
texts beyond software development—for example, helping
users debug spreadsheets, security analysts understand rela-
tionships among cartels, and the myriad other people who
wrangle with complex, ill-structured problems every day.

ACKNOWLEDGMENTS
We thank our participants for their help, IBM for support
under an OCR grant, and AFOSR for support under
FA9550-09-1-0213. The views and conclusions in this pa-
per are those of the authors and should not be interpreted as
representing the official policies, either expressed or im-
plied, of AFOSR, IBM, or the U.S. Government.

REFERENCES
1. Baeza-Yates, R., Ribeiro-Neto, B. Modern Information

Retrieval, Addison Wesley Longman, 1999.
2. Bragdon, A., Zeleznik, R., Reiss, S., Karumuri, S.,

Cheung, W., Kaplan, J., Coleman, C., Adeputra, F., and
LaViola, J. Proc. CHI, ACM (2010), 2503–2512.

3. Chi, E., Pirolli, P, Chen, K., and Pitkow, J. Using infor-
mation scent to model user information needs and ac-
tions on the web. Proc. CHI, ACM (2001), 490–497.

4. Chi, E., Rosien, A., Supattanasiri, G., Williams, A.,
Royer, C., Chow, C., Robles, E., Dalal, B., Chen, J., and
Cousins, S. The Bloodhound project: Automating dis-
covery of web usability issues using the InfoScent simu-
lator, Proc. CHI, ACM (2003), 505–512.

5. Cubranic, D, and Murphy, G. Hipikat: Recommending
pertinent software development artifacts. Proc. ICSE,
ACM/IEEE (2003), 408–418.

6. DeLine, R., Khella, A., Czerwinski, M., and Robertson,
G. Towards understanding programs through wear-
based filtering. Proc. Softvis, ACM (2005), 183–192.

7. Fu, W. and Pirolli, P. SNIF-ACT: A cognitive model of
user navigation on the World Wide Web, Human-
Computer Interaction 22, 4 (2007), 355–412.

8. Grigoreanu, V., Burnett, M., Wiedenbeck, S., Cao, J.,
Rector, K., and Kwan, I. End-User Debugging Strate-
gies: A Sensemaking Perspective. ACM Trans. Comput.-
Hum. Interact. (to appear).

9. Gross, P. and Kelleher, C. Non-programmers identifying
functionality in unfamiliar code: Strategies and barriers.
Proc. VL/HCC. IEEE (2009), 75–82.

10. Hill, W., Hollan, J., Wroblewski, D., McCandless, T.
Edit wear and read wear. Proc. CHI, ACM (1992), 3–9.

11. Jakobsen, M. and Hornbaek, K. Evaluating a fisheye
view of source code. Proc. CHI, ACM (2006), 377–386.

12. Kersten, M. and Murphy, G. Mylar: A degree-of-interest
model for IDEs. Proc. ASOD, ACM (2005), 159–168.

13. Ko, A., Myers, B., Coblenz, M., and Aung, H. An ex-
ploratory study of how developers seek, relate, and col-

lect relevant information during software maintenance
tasks. IEEE Trans. Soft. Eng. 32, (2006), 971–987.

14. Lawrance, J., Bellamy, R., Burnett, M., and Rector, K.
Using information scent to model the dynamic foraging
behavior of programmers in maintenance tasks, Proc.
CHI, ACM (2008), 1323–1332.

15. Lawrance, J., Bogart, C., Burnett, M., Bellamy, R., Rec-
tor, K., and Fleming, S. How programmers debug, revis-
ited: An information foraging theory perspective, IEEE
Trans. Soft. Eng. (to appear 2012).

16. Lawrance, J., Burnett, M., Bellamy, R., Bogart, C., and
Swart, C. Reactive information foraging for evolving
goals. Proc. CHI, ACM (2010), 25–34.

17. Nielsen, J. Information foraging: Why Google makes
people leave your site faster. http://www.useit.com/
alertbox/20030630.html. June 30, 2003.

18. Olston, C. and Chi, E. ScentTrails: Integrating browsing
and searching on the web. ACM Trans. Comput.-Hum.
Interact. 10, 3 (2003), 177–197.

19. Parnin, C. and Gorg, C. Building usage contexts during
program comprehension. Proc. ICPC, IEEE (2006), 13–22

20. Piorkowski, D., Fleming, S. D., Scaffidi, C., John, L.,
Bogart, C., John, B. E., Burnett, M., and Bellamy, R.
Modeling programmer navigation: A head-to-head em-
pirical evaluation of predictive models. Proc. VL/HCC,
IEEE (2011), 109–116.

21. Pirolli, P. Computational models of information scent-
following in a very large browsable text collection.
Proc. CHI 1997, ACM Press (1997), 3–10.

22. Pirolli, P. Information Foraging Theory: Adaptive In-
teraction with Information. Oxford Univ. Press, 2007.

23. Pirolli, P. and Card, S.K. Information foraging. Psycho-
logical Review 106, 4 (1999), 643–675.

24. Resnick, P. and Varian, H. Recommender systems.
Commun. ACM 40, 3 (1997), 56-58.

25. Sillito, J., Murphy, G., and De Volder, K. Questions
programmers ask during software evolution tasks. Proc.
FSE, ACM (2006), 23–34.

26. Sillito, J., De Voider, K., Fisher, B., and Murphy, G.
Managing software change tasks: An exploratory study.
Proc. ISESE, IEEE (2005), 1–10.

27. Sinha, V., Karger, D., and Miller, R. Relo: Helping us-
ers manage context during interactive exploratory visu-
alization of large codebases. Proc. VL/HCC, IEEE
(2006), 187–194.

28. Spool, J., Profetti, C., and Britain, D., Designing for the
scent of information, User Interface Engineering,
(2004).

29. Storey, M, Best, C, Michaud, J, Rayside, D, Litoiu, M,
and Musen, M. SHriMP views: An interactive environ-
ment for information visualization and navigation. Ext.
Abstracts CHI ’02, (2002), 520–521.

30. Wiedenbeck, S. and Evans, N. Beacons in program
comprehension. ACM SIGCHI Bulletin 18, 2 (1986),
56–57.

Session: Needle in the Haystack CHI 2012, May 5–10, 2012, Austin, Texas, USA

1480

