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ABSTRACT  
Information Foraging Theory (IFT) has established itself as 
an important theory to explain how people seek infor-
mation, but most work has focused more on the theory itself 
than on how best to apply it. In this paper, we investigate 
how to apply a reactive variant of IFT (Reactive IFT) to 
design IFT-based tools, with a special focus on such tools 
for ill-structured problems. Toward this end, we designed 
and implemented a variety of recommender algorithms to 
empirically investigate how to help people with the ill-
structured problem of finding where to look for information 
while debugging source code. We varied the algorithms 
based on scent type supported (words alone vs. words + 
code structure), and based on use of foraging momentum to 
estimate rapidity of foragers’ goal changes. Our empirical 
results showed that (1) using both words and code structure 
significantly improved the ability of the algorithms to rec-
ommend where software developers should look for infor-
mation; (2) participants used recommendations to discover 
new places in the code and also as shortcuts to navigate to 
known places; and (3) low-momentum recommendations 
were significantly more useful than high-momentum rec-
ommendations, suggesting rapid and numerous goal chang-
es in this type of setting. Overall, our contributions include 
two new recommendation algorithms, empirical evidence 
about when and why participants found IFT-based recom-
mendations useful, and implications for the design of tools 
based on Reactive IFT.   
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INTRODUCTION 
In the past two decades, Information Foraging Theory (IFT) 
[23] has revolutionized our understanding of how people 
seek information during information-intensive tasks, and in 
particular, of how people browse the web. Models based on 
the theory have accurately predicted the links that people 
will click as they navigate through web sites [3, 7, 22], and 
researchers have used the theory to design better tools to 
help people navigate the web [4, 18, 28]. This work on web 
foraging has focused on tasks where people have well-
defined, unchanging information goals. 

However, when solving ill-structured problems, people’s 
information goals are likely to change as they process and 
assimilate new information. In particular, numerous exam-
ples of ill-structured problems relating to software devel-
opment have been discussed in the literature (e.g., [8, 9]), 
and in this paper, we focus on software development tasks 
in which software developers wrangle with finding and 
fixing a bug (i.e., debugging). Empirical studies show that 
software developers faced with such problems often start by 
seeking an overall understanding of a program’s structure 
and runtime behavior [25, 26], but they soon start to have 
questions that lead to exploring specific code [25]. Answers 
to these questions spark multiple new questions [13, 15, 25, 
26]. Thus, the developers’ goals evolve, unlike in the web 
foraging tasks that researchers studied using IFT. 

Reactive Information Foraging Theory is a relatively new 
variant of IFT that we have previously developed to incor-
porate the notion of evolving goals [16]. Reactive IFT has 
been shown to predict software developers’ navigation 
choices as they completed debugging tasks [16, 20]. IFT 
says that a person seeking information follows information 
scent emitted from cues in the environment in a manner 
similar to how a predator foraging in the wild follows scent 
to prey [22]. Related work provided models for inferring a 
web forager’s goals from cues followed [3], and Reactive 
IFT led to analogous models that infer evolving goals of 
software developers [16, 20].  

In this paper, we explore how to apply Reactive IFT to pro-
vide tools that infer, in real time, developers’ evolving 
goals and use those inferences to recommend places in code 
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that satisfy those goals. Several questions arise about how 
to operationalize the theory to build useful tools. 

One question is how much of a person’s recent history to 
consider when inferring the current goal. As noted above, a 
developer typically investigates code related to a certain 
goal for a while—which we refer to here as “building up 
foraging momentum” related to that goal—before shifting 
to a new goal. Reactive IFT indicates that the software de-
veloper’s current momentum, reflected by recent navigation 
actions, can be used to infer the goal, but it does not specify 
how many recent navigations to use for this analysis.  

Another question that arises in using IFT for tool design is 
which cues to consider for inferring goals. The web forag-
ing research (e.g., [3, 22]) has emphasized operationalizing 
cues as words that appear in web pages that have been vis-
ited. Program code tends to be less “wordy” and more 
structured than natural-language text, and some prior mod-
els of developer navigation have hinted that at least in this 
domain, it might be useful to consider both word and code-
structure cues to infer developer goals [16, 20]. 

Two other subsidiary questions also arise. First, because the 
navigational behavior of developers changes over the 
course of a task (as noted earlier), it is questionable whether 
different operationalizations will be more or less appropri-
ate at different points in a task. Second, related to this point, 
different developers might obtain different value from Re-
active IFT-based tools at different points in a task, raising 
the question of when and why recommendations are useful. 

Consequently, our specific research questions were: 

• RQ1: How do a Reactive IFT-based tool’s assumptions 
about foraging momentum affect its ability to infer a de-
veloper’s goal and produce useful recommendations?  

• RQ2: Does a Reactive IFT-based tool that considers word 
and code-structure cues yield more useful recommenda-
tions than another tool that considers only word cues?  

• RQ3: Does a Reactive IFT-based tool’s ability to provide 
useful recommendations change as a task progresses?  

• RQ4: When and why do software developers find Reac-
tive IFT-based tools’ recommendations useful (or not)? 

RELATED WORK  
Empirical studies have revealed many cases where software 
developers navigate through source code. For example, 
during debugging tasks in a laboratory study, developers 
spent 35% of their time browsing and searching through 
code [13]. Aside from debugging, code navigation is also 
essential for implementing new features, porting code, doc-
umenting code, extracting reusable code, and virtually eve-
ry software development activity. 

Code navigation is a key part in a learning process whereby 
the developer finds the information needed to work out a 
concrete goal to complete the task at hand. At the start of a 

maintenance task in laboratory and field studies, a develop-
er usually searched for code that could serve as an initial 
focus point [25, 30]. Over the course of a task, the develop-
er typically began to ask questions about how pieces of 
code were related [6, 25]. Developers also frequently navi-
gated between locations in code, revisiting places to learn 
about structural relationships [19, 26]. As developers dis-
covered answers to their questions, they broadened their 
focus to include more code [26]. Eventually, they planned 
specific changes that they believed would eliminate a defect 
or create a new feature [13, 26]. 

Various tools are aimed at easing these navigations by 
providing shortcuts to recommended places in the code that 
might hold valuable information. Several tools provide 
“history” links back to code that the developer has recently 
visited [12, 19]. Others offer shortcuts to places that other 
developers historically have read and/or edited after the 
current location [6, 10]. Still other tools provide shortcuts to 
code or other artifacts based on textual similarity, textual 
proximity, method-invocation, or nesting [5, 11, 27, 29].  

A limitation of these tools is that they do not explicitly take 
into account the evolution in goals that typically occurs as a 
developer learns during a task. For example, upon visiting a 
Java method’s code at the start of debugging, a developer 
might have no idea what needs to be edited; upon revisiting 
the location later, the developer might have formulated a 
goal to make certain kinds of edits. Yet most of the tools 
above would provide exactly the same shortcuts in both 
situations, regardless of the developer’s new goal. Of the 
above tools, only those that show a “history” of recent plac-
es would behave differently during a particular task: they 
would stop showing links to locations that were not recently 
visited, which is an implicit model of evolving goals at best.  

IFT, as we discuss below, offers a start toward addressing 
these limitations. Our objective in the current study is to 
investigate how to use this theory to help software develop-
ers find the information that they need during tasks. 

BACKGROUND: INFORMATION FORAGING THEORY  
IFT is a theory of how people seek information during in-
formation-intensive tasks [23]. It is based on the assump-
tion that humans generally tend toward rational strategies 
that enable them to locate and process information efficient-
ly. It was inspired by biological theories of how animals 
seek food in the wild. In IFT, a predator (person seeking 
information) pursues prey (valuable sources of information) 
through a topology (collection of navigable paths through 
an information environment). To find prey, the predator 
follows information scent that he/she obtained from cues in 
the environment. Cues are associated with navigation op-
tions, and the scent on cues is the predator’s assessment of 
the value and cost of information sources obtained by tak-
ing the associated navigation options. 

IFT was originally applied to user-web interaction. Models 
based on the theory have predicted the web pages to which 
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Figure 1. Eclipse interface with our Recommendation view: (a) 
Eclipse layout, (b) Recommendation view, and (c) examples of 

three recommendations. 

people will navigate during particular tasks [3, 7, 21]. Lev-
eraging this predictive power, IFT has also inspired princi-
ples for the design of web sites [17, 28]. 

More recently, researchers have attempted to translate the 
IFT results from the web domain to software development 
[14, 15, 16]. To reconcile developers’ evolving goals with 
the web-based models, which were focused on static, un-
changing goals, we proposed Reactive Information Forag-
ing Theory to describe evolving goals. A model based di-
rectly on this theory, PFIS2 [16] (later refined to PFIS3 
[20]), was able to accurately predict developer navigation.  

In this paper, we build upon this earlier work, adapting the-
se models to build recommender tools that try to satisfy 
developer goals. In particular, we investigate the research 
questions mentioned earlier about how the operationaliza-
tion of momentum and scent affect tool usefulness, as well 
as about when and why developers find the resulting tools 
useful. Ours is the first application of Reactive IFT as a 
theory for assisting software developers. 

EMPIRICAL METHOD  
In our empirical study, we invited professional developers 
to complete a debugging task using a new Eclipse plug-in 
tool that supplied links to places in the code that might pro-
vide information needed for the task. Within this plug-in, 
we activated different recommendation algorithms based on 
different operationalizations of momentum and scent. Spe-
cifically, we considered different algorithms in a 2!2 facto-
rial design (with one factor for the operationalization of 
momentum and another factor for the operationalization of 
scent). We then measured what proportion of the time par-
ticipants went to locations recommended by different algo-
rithms. In our analysis, we also examined whether algo-
rithms’ recommendations were more or less useful at dif-
ferent periods of the task, and we qualitatively analyzed 
what kinds of benefits participants obtained. 

Study Environment 
We implemented our recommendation system as a plug-in 
for the Eclipse IDE (Figure 1). Interface elements 1–4 in 
Figure 1a are all those that commonly appear in the Java 
perspective of Eclipse: (1) Package Explorer view, (2) Out-
line view, (3) Java editor, and (4) Console view. Interface 
element 5 is our Recommendation view. 

Figure 1b depicts a close-up of this Recommendation view, 
which had three areas: (1) the current method (i.e., the one 
that the text cursor last entered), (2) the current recommen-
dations, and (3) methods bookmarked, or pinned, by the 
developer. Each time the developer navigated to a method, 
the current method updated to reflect the navigation, and 
the recommendations were recalculated (using whichever of 
our algorithms was activated at the time). The developer 
could also manually drag the current method or any rec-
ommendation into the pinned area to save it for later.  

Each recommendation displayed words to help participants 
assess its relevance (Figure 1c). These words were sorted 
based on their importance according to the amount of 
weight given to them internally by the recommender algo-
rithm active at the time. The Recommendation view also 
distinguished recommendations to methods the participant 
had previously visited from recommendations to methods 
not already visited by highlighting the latter in gray. 

For data collection, our plug-in recorded a log of participant 
interactions with Eclipse. Additionally, we video-recorded 
each session and automatically logged screen captures.  

Recommendation Algorithms Considered 
To investigate whether operationalizing scent as words + 
structure would produce better recommendations than 
words alone (RQ2), we implemented one recommender 
algorithm based on words + structure, PFIS-R, and another 
based on words alone, TFIDF-R. The PFIS-R recommender 
is based on the PFIS3 predictive model [20], motivated by 
PFIS3’s success in predicting developer navigation. The 
other algorithm, TFIDF-R, is based on a vector space model 
commonly used in information retrieval [1]. These two al-
gorithms represent the main camps of how to model infor-
mation foraging: strong reliance on words (e.g., TFIDF, 
LSA) and balancing words with information structure (e.g., 
[3, 14, 15, 16, 18]). Both share a reliance on words, because 
word-based approaches have dominated IFT (e.g., [3, 4, 7, 
22]) and the literature contains some evidence that words 
can be used to predict where developers will navigate [14].  
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RQ1 required a need to manipulate the operationalization of 
the foraging momentum—specifically, how much history to 
use for making recommendations. To take momentum into 
account, we parameterized each algorithm with ", the num-
ber of navigations to look back in making a recommenda-
tion. An algorithm with "=1 uses only the contents of the 
last method visited and thus ignores any momentum that the 
developer might have built up; we refer to this algorithm 
configuration as low momentum. In contrast, an algorithm 
with "=10 uses the contents of the last 10 methods visited 
and will thus be influenced by momentum built up during 
those navigations; we refer to this algorithm configuration 
as high momentum. Thus, the greater the value of ", the 
more momentum the recommender assumes in making its 
recommendations. Combining two momentum configura-
tions, "=1 and "=10, with the two different algorithms 
(PFIS-R vs. TFIDF-R) gives the 4 possible combinations of 
our 2!2 factor design. 

The algorithms take as an input the sequence of methods to 
which a developer has navigated so far. In the current study, 
we recorded a navigation to a method m each time the de-
veloper performed an action that caused the text cursor to 
enter the text of m. For our purposes, the text of a method 
comprises the method’s signature, body, and (Javadoc) 
comments. Both PFIS-R and TFIDF-R normalize this tex-
tual input by excluding punctuation and stop words, which 
include common words, like the, as well as the list of Java 
keywords. Camel-case words are broken into separate case-
insensitive words, although the original camel-case word is 
retained as well (e.g., setFoldText would be treated as an 
input of setfoldtext, set, fold, and text). For the remainder of 
the paper, method text refers to normalized method text. 

The algorithms produce as output 10 recommendations, 
divided evenly between methods previously visited by the 
developer and methods not previously visited. Developers 
commonly revisit methods to recover mental state and ex-
plore new methods to find and understand the program’s 
essential elements [19]. Thus, by recommending both visit-
ed and unvisited methods, we sought to support both types 
of navigation. If there are fewer than 5 previously visited 
recommendations, the algorithms fill out the remainder of 
the 10 recommendations with new recommendations, and 
vice versa. The algorithms would sometimes need to re-
solve ties when generating this list. The reason is that alt-
hough the algorithm ranks methods by computing a contin-
uous measure of relatedness (as discussed in the algorithm 
details below), the variables in those calculations take on a 
small number of distinct values in practice. When selecting 
the 10 methods to recommend, ties were resolved by choos-
ing nondeterministically among the tied methods. 

PFIS-R Recommender 
Figure 2 summarizes the PFIS-R recommendation algo-
rithm, which builds on the earlier PFIS2 and PFIS3 models 
by informing its recommendations using word cues and  
 

code-structure cues (i.e., call dependences) in methods that 
the developer previously visited. In brief, PFIS-R maintains 
a graph of word and method vertices such that edges be-
tween method vertices capture the structural relationships 
between methods, and edges between words and methods 
capture lexical relationships between methods. The algo-
rithm spreads activation [22] over this graph, starting from 
the vertices for the last " methods that the developer visited. 
To account for momentum, vertices for methods that the 
developer visited more recently are initialized with greater 
activation. The algorithm considers methods with the high-
est resulting activation to be the best recommendations, and 
those are the ones that sort first in Figure 1c.  

TFIDF-R Recommender 
In contrast to PFIS-R,TFIDF-R bases its recommendations 
on lexical similarity only. TFIDF-R treats the code base as 
a corpus of documents with the (normalized) text of each 
method being a document. The algorithm maintains a word-
by-document matrix MW that specifies the importance of 
each word in W to each method in M by computing the tf–
idf (term frequency–inverse document frequency [1]) 
weight for every word-method combination. It uses MW to 
assess the lexical similarity between methods by construct-
ing a document-by-document matrix MS that specifies the 
cosine similarity measure [1] for all pairs of documents. 
MS(m) denotes the vector of cosine similarity scores associ-
ated with a particular method m in MS.  

 

PFIS-R Algorithm 
Definitions: 
• Method set M: set of all methods in the code base. 
• Navigation history H: sequence of methods to which the 

developer has navigated so far. 
• Word set W: set of all words in all method text in M. 
• Graph G = (Vm ! Vw, Em ! Ew) such that Vm and Vw have a 

one-to-one relationship with M and W, respectively. For 
all ma, mb in M and their associated method vertices mva, 
mvb in Vm, Em contains one and only one edge connecting 
mva and mvb if and only if the body of ma contains a call 
to mb or the body of mb contains a call to ma. For each 
word w in W and method m in M, Ew contains one and on-
ly one edge connecting wv and mv if and only if w is in 
the method text of m. 

Steps for making recommendations: 
• Set activation of each vertex in G to 0. 
• For each method m such that m is the kth method in H and 

|H|–" < k, increment the method vertex mv by 0.9|H|–k. 
• Spread activation (#=0.85 and edge weights=1) such that 

only word vertices receive activation. 
• Spread activation again (#=0.85 and edge weights=1) 

such that only method vertices receive activation.  
• Recommend methods with greatest activation. 

Figure 2. Formal definition of the PFIS-R Algorithm. 
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To account for the developer’s foraging momentum, 
TFIDF-R sums the MS(m) vectors for the last " methods to 
which the developer navigated, decaying older navigations 
at a rate of 0.9. Specifically, for each method m such that m 
is the kth method in H, decayedMS(m) = 0.9|H|–k$MS(m). A 
final recommendation vector VR sums the decayed vectors 
for the last " methods in H. The algorithm regards the 
methods with the greatest values in VR as the best recom-
mendations, and those sort first in Figure 1c. 

Participants 
We recruited eleven professional software developers from 
a large company to participate in an empirical study com-
paring the usefulness of our four different algorithm con-
figurations. Technical failures in the study environment 
invalidated the data for two of these participants; thus, we 
analyzed only the data for the remaining nine participants. 
We asked each participant to fix a defect in the jEdit soft-
ware project. None of the participants had ever seen the 
jEdit code before, and with 6,468 methods, the jEdit code 
base provided a large space to forage within. The defect 
was from an actual bug report, #2548764, which described 
a problem with jEdit’s text “folding” functionality.  

Procedure 
Each study session took about 180 min. Participants began 
by filling out a pre-questionnaire that gathered background 
information. Next, they engaged in two back-to-back task 
periods. Prior to the first task period, we introduced partici-
pants to the video equipment and started recording. Each 
task period was associated with a different treatment (i.e., 
one of our four algorithm configurations). Table 1 lists the 
treatment assignments, which we balanced to account for 
learning effects.  

Each task period began with a short tutorial task on the tool. 
Some algorithms may have produced poor recommenda-
tions in the first task period, and we did not want partici-
pants who received such treatments to ignore recommenda-
tions in the second task period. Consequently, the tutorial in 
the second task period informed the participant that the 
tool’s recommendation algorithm had been switched and 
asked the participant to repeat the tutorial task to see how 
the recommendations had changed.  

Within each task period after the corresponding tutorial, 
participants worked on the jEdit debugging task for 35 
minutes. To assess how participants used recommendations 
and when they were useful, we asked them to “talk aloud” 

as they worked. At the end of each task period, we inter-
rupted participants and had them fill out a questionnaire 
that asked for their opinion of the recommendations.  

After both task periods, the study session ended with a 35-
minute semi-structured retrospective interview in which an 
interviewer stepped through events of interest in the screen 
capture videos and asked the participant questions about 
those events. For each time the participant navigated to a 
method, the interviewer asked, “What did you learn from 
this place?” and for each time the participant clicked on a 
recommendation, the interviewer asked the participant why 
he/she did that. Due to time constraints, the interviewer was 
sometimes unable to ask about all these events of interest in 
a session.  

Analysis Procedure 
Ultimately, a recommender’s quality is its usefulness, but 
evaluating usefulness raises challenges. For instance, a par-
ticipant may ignore recommendations that would otherwise 
be useful because the participant is unfamiliar with the tool. 
As professional developers, our participants have honed 
their navigation strategies over years of experience, and 
they might favor their practiced strategies over a relatively 
unfamiliar tool. 

To address this problem, we conducted two analyses. The 
first was a quantitative analysis of hit rate. This analysis 
compared the algorithms’ recommendations to the places 
that participants actually navigated, regardless of whether 
they actually used the tool to navigate there. The second 
was a qualitative analysis of demonstrated usefulness, 
which assessed whether recommendations participants fol-
lowed via the tool were useful in the participants’ opinions.   

Hit rate 
To assess hit rate, we computed the top-10 recommenda-
tions from the tool algorithm that was active at the moment 
before each user made each navigation. We scored the rec-
ommendations as a hit if the user navigated to a recom-
mended location within the next s navigations. It was diffi-
cult to estimate the window of time in which a recommen-
dation might have been usefully pertinent to a participant, 
so we explored two time-window sizes: a hit within the next 
10 navigations (s=10) and a hit on the next navigation 
(s=1). Note that the time-window size s is concerned with 
how we score the hit rate of recommendations (over future 
navigations), not to be confused with the sensitivity to mo-
mentum factor "  in this study, which also had values of 1 
and 10 (the number of past navigations from recent history). 

Recall that nondeterminism arises in the case of ties be-
tween recommendations. To account for this nondetermin-
ism, we took the best tie-breaking choice to make a best-
case list of recommendations (maximizing hit rate), and we 
took the worst tie-breaking choice to make the worst-case 
list (minimizing hit rate), thereby bounding the effects of 
nondeterministic tie-breaking. 

Algorithm Task period assignment for each participant 
2 3 5 6 7 8 9 10 11 

PFIS-R("=1) 2nd   2nd   1st 1st  
PFIS-R("=10)  2nd 2nd  1st 1st   2nd 
TFIDF-R("=1) 1st  1st   2nd 2nd  1st 

TFIDF-R("=10)  1st  1st 2nd   2nd  

Table 1. Treatment assignments to participants and task peri-
ods. (Participants 1 and 4 removed due to technical failures.) 
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Given the two choices of s and the two choices of tie-
breaking, we obtained four separate assessments of each 
recommendation algorithm's hit rate. Each of these was 
treated as a separate dependent variable in a separate re-
gression. Because our dependent variable was dichotomous 
(indicating whether or not a recommendation was consid-
ered a hit), we used logistic regression. In addition to algo-
rithm, our regression model also included task period and 
participant as categorical independent variables (i.e., indica-
tor variables). After performing the regression, we used the 
Wald test to assess whether each variable (algorithm con-
figuration, participant, and task period) had a statistically 
significant effect on hit rate. Using the coefficients provid-
ed by the regression, we also computed the overall hit rate 
of each algorithm, after subtracting out the effects of partic-
ipant and task period.  

Demonstrated usefulness 
To assess recommendation usefulness, we looked at the 
recommendations that the developers followed to see if the 
recommendations helped the developers make progress. To 
do this analysis, we qualitatively analyzed the verbaliza-
tions the participants made during task performance and 
their answers to our probes during the retrospective inter-
view. In particular, for each followed recommendation, our 
interviewer asked the participant “What did you learn from 
this place?” If the participant responded negatively (e.g., “I 
learned nothing”) or with apparent uncertainty (e.g., “I 
don’t know”), we coded the navigation as not useful; oth-
erwise, we coded it as useful. 

RESULTS: HIT RATE AND USEFULNESS 

Hit Rate 
Participants averaged one navigation every 90 seconds, or 
447 navigations in all (Figure 3). We used this data to ana-
lyze hit rate. Figure 4 depicts the hit-rate results by algo-
rithm configuration for window sizes s=10 and s=1. Our 
data revealed significant differences in the hit rates for the 
four configurations. Specifically, we consistently found 
!2(3) % 9 and p & 0.03 regardless of whether we used s=1 or 
s=10, worst- or best-case tie-breaking, and "=1 or "=10. 

Low vs. high sensitivity to momentum (RQ1) 
Each low-momentum ("=1) algorithm consistently scored a 
significantly better hit rate than the corresponding high-
momentum ("=10) algorithm (Figure 4). We found z % 2.45, 
p & 0.01 regardless of whether we used s=1 or s=10, worst- 
or best-case tie-breaking, and TFIDF-R or PFIS-R. Thus, 
with respect to RQ1, we found that low-momentum algo-
rithms outperformed high-momentum. 

Word and code-structure cues vs. word cues alone (RQ2) 
We found no meaningful difference between PFIS-R and 
TFIDF-R, regardless of whether we used s=1 or s=10, or 
worst- or best-case tie-breaking. Neither low-momentum 
("=1) configuration of PFIS-R and TFIDF-R outperformed 
the other (at p < 0.05). Between high-momentum ("=10) 

configurations, PFIS-R outperformed TFIDF-R, but the 
difference was not statistically significant (at p < 0.05). 
Additionally, we found no significant interaction between 
algorithm and sensitivity to momentum (") 

First vs. second task period (RQ3) 
Participants navigated almost twice as frequently during the 
second task period as during the first (Figure 3). Comparing 
between task periods (Figure 5), we saw suggestive differ-
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Figure 4. Hit rate of each algorithm (averaged over all task 
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!"#

$%"#

%!"#

&%"#

'!!"#

()'# ()$# ()'# ()$# ()'# ()$# ()'# ()$#

*+
,#-
.,
/#
0!
1'
!2
#

)34567081'2# (349367081'2# )34567081'!2# (349367081'!2#  
Figure 5. Hit rate (s=10) of each algorithm in the first (TP1) 

and second (TP2) task periods, with rectangles indicating 
ranges between best- and worst-case tie-breaking. Hit rates 

increased in the second task period (see arrows).  
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ences when evaluating recommendations with respect to the 
developer’s next navigation (s=1), but these differences 
were not statistically significant (at p < 0.05). However, 
with respect to the developer’s next 10 navigations (s=10), 
both algorithms improved significantly in the second task 
period over the first (pairwise z = 2.37, p = 0.02 for worst-
case tie-breaking; z = 3.44, p < 0.001 for best-case).   

Demonstrated Usefulness 
All participants clicked some recommendations (Figure 6), 
for 62 clicks in total, and we collected interview responses 
for 44 clicks. Figure 7 summarizes the proportion of those 
clicks that participants reported as useful. We did not test 
for statistical significance due to the low number of clicks 
in each of the treatments. 

Low vs. high sensitivity to momentum (RQ1) 
The participants reported as useful a greater proportion of 
the recommendations from low-momentum algorithms than 
the recommendations from high-momentum algorithms 
(RQ1). This tendency triangulates with our finding that the 
low-momentum ("=1) algorithms demonstrated a higher hit 
rate than the high-momentum ("=10) ones. 

Word and code-structure cues vs. word cues alone (RQ2) 
Also triangulating with our hit-rate results, our demonstrat-
ed-usefulness results showed no consistent difference be-
tween PFIS-R and TFIDF-R. 

First vs. second task period (RQ3) 
Similar to what we saw with hit rate, the participants 
clicked recommendations more frequently during the se-
cond task period than during the first. 

Opinion Questionnaire 
Figure 8 illustrates the opinion results. Participants com-
pleted a total of 18 opinion questionnaires (1 per task peri-
od) that asked the question (5-point Likert) “Was this tool 
valuable in getting you to useful parts of the source code?” 
Again, we omitted statistical tests when analyzing this data 
due to the low number of clicks in each treatment. 

Low vs. high sensitivity to momentum (RQ1) 
Triangulating with our hit-rate and demonstrated-usefulness 
results, participants rated the low-momentum algorithms 
more favorably than the high-momentum ones (Figure 8b). 

Word and code-structure cues vs. word cues alone (RQ2) 
Similar to our hit-rate and demonstrated-usefulness results, 
the opinion results showed no suggestive difference be-
tween TFIDF-R and PFIS-R. 

First vs. second task period (RQ3) 
Participants seemed to rate all algorithms more favorably in 
the second task period than in the first (Figure 8c), con-
sistent with our hit rate analysis where the second task peri-
od had a higher hit rate than the first. 

RESULTS & DISCUSSION: WHAT PARTICIPANTS SAID 
To better understand when and why participants found rec-
ommendations useful (RQ4), we qualitatively analyzed the 
talk-aloud and retrospective interview recordings. 

Using Recommendations for Efficiency 

Benefits of recommendations based on code structure 
Some participants benefitted from PFIS-R’s use of code 
structure in making recommendations. For example, Partic-
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ipant 2 found code-structure-based recommendations useful 
while using an exception stack trace to navigate through 
code. He used the stack trace to open a method that con-
tained a call to another method recalculateLast-
PhysicalLine (i.e., following the call graph structure): 

Participant 2: “I wanted to go to the declaration of [recalculate-
LastPhysicalLine] and you know, my god, the [recommendation 
system] had it sitting there so I thought I'll go over and select it… 
I like that it was bigger and it was right there so it just seemed like 
I would both go to it and maybe learn something in the process…”  

This quote reveals a case where a structure-based recom-
mendation led directly to a desired method, making it effi-
cient to navigate there in a single mouse click. PFIS-R’s use 
of code-structure cues made a difference in this case. In 
contrast, running the TFIDF-R algorithm (with "=1 and 
"=10) on Participant 2’s navigations revealed that this 
words-only algorithm would not have made this recom-
mendation (even in the best case). 

Recommendations as working set 
Several participants used recommendations to efficiently 
navigate back to previously visited methods; e.g.: 

Participant 9: “At this point, I'm kind of abusing the recommenda-
tions as a history because they are the fastest way to get where I 
want to go.”  

As another example, Participant 8 took advantage of the 
implicit “history” when, using Eclipse’s debugger, he acci-
dently stepped out of a method transactionComplete 
that he meant to inspect: 

Participant 8: “So that kicks me out to the catch and I remembered 
it was in the transactionComplete method… I had remembered 
that this recommendation had shown a bunch of transactionCom-
pletes, so I was just clicking around to just find where I was.” 

It could have taken Participant 8 considerably more effort 
to get back to transactionComplete (e.g., by rerunning 
the debugger) without the recommendation. Participants 
received historical recommendations from both low- and 
high-momentum algorithms because all algorithms made 
recommendations to previously visited methods.  

Participants who used recommendations to get back to pre-
viously visited methods were essentially using the recom-
mendations as a sort of working set. Previous research has 
shown that developers tend to navigate frequently to meth-
ods in their working set [19, 20], and several successful 
tools have been developed that emphasize working set [2, 6, 
12]. A novel feature of our operationalization of Reactive 
IFT is that it implicitly supports working set while also 
helping the user explore new places. 

Using Recommendations for Discovery 

“Aha! moments” 
Some participants followed recommendations to methods 
that they were apparently unaware of and expressed ex-

citement about how useful the recommendation turned out 
to be. For instance, Participant 2 was having difficulty find-
ing code to focus on. He perused the recommendations: 

Participant 2: “‘You might want to go here.’ … ‘collapseFold’ … 
‘expandFold’ ... OK, ‘collapseFold.’ [Selects collapseFold rec-
ommendation; reads code comments.] ‘Collapses the fold associ-
ated at the specified line index.’ OK! Now, this is where I want to 
be! Collapsing the fold.” 

Participant 6 was having similar difficulty finding code to 
focus on when he turned to the recommendations: 

Participant 6: “[Selects loadMenu recommendation; reads code 
comments.] ‘Creates a menu, the menu label is set from the name 
property, name.label propery.’ Oh! Oh! Yes! … This thing looks 
like the class that might put up the menu. I like that!” 

Our choice to make half of the recommendations be to pre-
viously unvisited methods created opportunities for partici-
pants engaged in exploratory navigation to have “aha mo-
ments” such as these. However, not all exploratory naviga-
tions were to unvisited methods. Participant 6 had already 
visited loadMenu when he followed the recommendation. 
On his first visit, he did not notice anything interesting 
about the method. It was only after he followed a recom-
mendation to the method that he discovered needed infor-
mation in the method. 

Misleading cues 
In some instances, participants navigated to methods that 
contained cues that generated strong scent, but the recom-
mendations did not help them discover methods that would 
satisfy their goals. For instance, Participant 6 wanted to find 
the method that implemented the action for one of the items 
in jEdit’s Edit menu. All the methods that he navigated to 
contained words (i.e., cues) related to his goal, such as 
menu, edit, and action. He then noticed a recommendation 
for JEditAbstractEditAction that included the key-
words edit and action: 

Participant 6: “I was looking for the method that would get run 
when someone picked on that [Edit] menu item. So again, [the 
recommendation] could be the mnemonic suggestion of the class 
that maybe that was some kind of action that would get run in the 
Edit menu.” 

Participant 6 clicked the recommendation, but unfortunately 
the method did not contain code for implementing menu-
item actions. Instead, it contained code that implemented 
the menu framework.  

The recommendation system (running TFIDF-R, "=10) 
could not help Participant 6 because it could not relate the 
word cues that he was following to the method that would 
satisfy his goal. That method contained entirely different 
word cues from the menu-framework code. Because the 
participant was navigating through the framework code, 
building momentum on those cues, the algorithm did not 
recognize the relevance of the needed method. 
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Code structure cues used by PFIS-R might help overcome 
this problem generally; however, in this particular case, 
PFIS-R would not have had access to the structural infor-
mation needed to connect the menu and action code be-
cause that information was contained in a properties file 
that was not part of jEdit’s Java code base. This problem 
highlights the importance of having complete structural 
information in operationalizing Reactive IFT. 

DISCUSSION: IMPLICATIONS AND OPEN QUESTIONS 

Sensitivity to Momentum 
The Reactive IFT tools that were less sensitive to partici-
pants’ foraging momentum (i.e., low momentum, "=1) pro-
duced better recommendations than those more sensitive to 
momentum (i.e., high momentum, "=10). This result runs 
counter to previous work on recommender systems, which 
suggested that using more history was better for predicting 
future navigation [16, 20]. Outside software maintenance, 
successful recommender systems use historical behavior 
going back days, weeks, and years [24]. In light of this past 
work, our result that "=1 produced better recommendations 
than "=10 was unexpected.  

One interpretation is that this result may be due to partici-
pants’ goals evolving rapidly and repeatedly. Studies have 
shown that as developers navigate through code, they con-
tinually ask new questions [13, 25, 26]. If participants’ 
goals did change frequently, it would put the high-
momentum operationalizations at a considerable disad-
vantage, because a high-momentum operationalization con-
siders cues associated with a mix of goals, some of which 
are no longer relevant.  

These results underscore the importance of understanding a 
predator’s foraging momentum in operationalizing Reactive 
IFT. For these developers engaged in debugging, low-
momentum was apparently better at inferring goals, but 
depending on the foraging context (e.g., government agents 
performing intelligence analyses or end users debugging 
spreadsheets), a higher foraging momentum may produce 
better outcomes. One limitation of the current study is that 
we examined only two values of ". Future studies could 
further investigate the effect of momentum.  

Changes in Foraging Behavior over Time 
Changes in participants’ foraging behavior as the task pro-
gressed may have been responsible for the algorithms’ im-
proved hit rate in the second task period. Studies have 
shown that developers pursue different kinds of information 
[6, 25, 30] and engage in different types of activities [15] as 
a task progresses. In our study, the participants may have 
had difficulty finding strong scents in the earlier stages of 
debugging. As they foraged, they may have homed in on 
places with stronger scent. Since our algorithms relied on 
scentful cues to approximate goals, they might have been 
less accurate earlier in the task when the participants were 

navigating through low-scent methods, and became more 
accurate as scent increased. 

One possible way to handle low-scent periods is to switch 
algorithms during such periods. For instance, an algorithm 
might detect changes in a user’s foraging momentum and 
swap in the most appropriate algorithm for approximating 
the user’s goal. Open questions for future research include 
how to detect a user’s shifts in momentum and how to make 
recommendations in the absence of scentful cues.  

Beyond Word Cues 
Although not reaching statistical significance, the hit-rate 
results showed a tendency to favor PFIS-R over TFIDF-R, 
and this tendency triangulates with the suggestive differ-
ence between PFIS-R and TFIDF-R in the opinion ques-
tionnaire results (Figure 8a). This tendency was consistent 
with the qualitative data. We observed many participants 
following call dependences while debugging. Moreover, we 
saw one instance (Participant 6) where a method that would 
have satisfied the participant’s goal contained none of the 
words that the participant followed scent from.  

The implication for tools is that when operationalizing Re-
active IFT for a new context, the tool may need to consider 
other cues in addition to words. Word cues exclusively have 
dominated the work on web foraging, and they may be par-
ticularly effective in that context due to the large volume of 
unstructured natural language text that web pages contain. 
However, in a context like programming, where there is 
less natural language text and more structure, other types of 
cues may be valuable. 

One limitation of the current study is that we only investi-
gated two models for using word and structural scent. Fu-
ture work may investigate other models that analyze other 
forms of scent or that are tailored to the needs of different 
users and different contexts. 

CONCLUSION 
This paper is the first to investigate how to bring Reactive 
Information Foraging Theory to recommender tools for 
information-intensive, ill-structured problems. The algo-
rithms we investigated with professional software develop-
ers in a debugging task showed that: 

• RQ1: Surprisingly, assuming low foraging momentum 
(using only one navigation to inform its choices) pro-
duced better recommendations than those produced by as-
suming high momentum (the past ten navigations). 

• RQ2: There was suggestive but inconclusive evidence 
that participants found the tool to be more valuable when 
it used words + structure than when it used words only.   

• RQ3: The tool’s recommendations were more useful to 
participants later in the task, suggesting that tools may 
need to be sensitive to shifts in users’ foraging behavior. 

• RQ4: Recommendations helped participants by revealing 
useful places that the participants were unaware of and al-
so by facilitating navigation to known places.  
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Most importantly, this study has demonstrated Reactive 
Information Foraging Theory’s potential as a basis for the 
design of tools that help people solve ill-structured prob-
lems. We believe that such tools could help people in con-
texts beyond software development—for example, helping 
users debug spreadsheets, security analysts understand rela-
tionships among cartels, and the myriad other people who 
wrangle with complex, ill-structured problems every day. 
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