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ABSTRACT 
One of the least studied areas of Information Foraging The-
ory is diet: the information foragers choose to seek.  For 
example, do foragers choose solely based on cost, or do 
they stubbornly pursue certain diets regardless of cost? Do 
their debugging strategies vary with their diets? To investi-
gate “what” and “how” questions like these for the domain 
of software debugging, we qualitatively analyzed 9 profes-
sional developers’ foraging goals, goal patterns, and strate-
gies. Participants spent 50% of their time foraging. Of their 
foraging, 58% fell into distinct dietary patterns—mostly in 
patterns not previously discussed in the literature. In gen-
eral, programmers’ foraging strategies leaned more heavily 
toward enrichment than we expected, but different strate-
gies aligned with different goal types. These and our other 
findings help fill the gap as to what programmers’ dietary 
goals are and how their strategies relate to those goals.  
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INTRODUCTION 
Pirolli et al.’s pioneering work on Information Foraging 
Theory (IFT) [18] has greatly influenced our community’s 
understanding of how humans seek information within in-
formation-rich environments such as the Web. The theory is 
based on the idea that humans seek information in a manner 
analogous to the way animals seek food in the wild. In 
short, it states that a human information predator seeks in-
formation prey by following information scent through an 
environment. IFT has been well validated empirically (e.g., 
[3,6,12,13,14,20]). It has facilitated predictive models of 
how people navigate as they forage within websites (e.g., 

[3,18,21]) and during software maintenance tasks (e.g., 
[12,13]). Furthermore, the theory has spawned principles 
for the design of interfaces and tools that help people forage 
(e.g., [16,24]). 

One area of potential for IFT that so far has been mostly 
untapped is using the theory to understand the diets of pred-
ators in a particular problem domain—that is, to understand 
the types of information goals those predators desire. A 
notable exception is Evans and Card [4], who investigated 
the diets of web users who were “early adopters.” They 
discovered that these users’ diets were considerably differ-
ent from the information commonly provided by main-
stream news sites, and they identified the niche topics that 
made up the users’ diets. They also noted that the infor-
mation sources chosen by these users reduced the cost of 
attention by lowering the cost of social foraging and social 
interpretation. Clearly, these findings have strong implica-
tions for the design of sites to support such users. The Ev-
ans and Card work demonstrates the potential benefits of 
applying information foraging ideas to understand the diets 
of people in particular contexts. 

Inspired in part by the Evans/Card paper, our work aims to 
expand our understanding of IFT diets by investigating the 
diets of professional software developers engaged in de-
bugging. Work in the software engineering (SE) literature 
has investigated related ideas, such as the questions that 
programmers ask (e.g., [5,10,11,23]), but that work was not 
grounded in a theory, such as IFT. Thus, by investigating 
the information diets of professional programmers from an 
IFT perspective, our work aims to help bridge the gap be-
tween such results from the SE literature and the IFT foun-
dations and results from the HCI literature. 

For an understanding of the “whats” of diet to be truly use-
ful, we also need to understand the “hows”.  Toward this 
end, we also investigate, from an IFT perspective, the strat-
egies that programmers use during foraging. The literature 
contains numerous works on program debugging strategies 
(see [22] for a summary), but these have not been tied to 
IFT. We believe that such strategies both influence and are 
influenced by programmers’ diets, and this paper investi-
gates these ties.  

Thus, in this paper, we address the following research ques-
tions with a qualitative empirical study. 
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• RQ1 (diet “whats”): What types of information goals do 
professional programmers forage for during debugging, 
and how do those goals relate to one another? 

• RQ2 (foraging “hows”): How do professional program-
mers forage: what foraging strategies do they use? 

• RQ3 (“whats” meet “hows”): Do professional program-
mers favor different strategies when foraging for different 
types of information? 

BACKGROUND 

Information Foraging Theory  
Information foraging theory is a theory of how people seek 
information during information-intensive tasks [19]. IFT 
was inspired by biological theories of how animals seek 
food in the wild. In IFT, a predator (person seeking infor-
mation) pursues prey (valuable sources of information) 
through a topology (collection of navigable paths through 
an information environment). What information constitutes 
valuable prey depends on the predator’s information goals. 
Predators find prey by following information scent that they 
infer from cues in the environment, such as the labels on 
buttons or clickable pictures that adorn navigation options. 
Thus, the scent of a cue is the predator’s assessment of the 
value and cost of information sources obtained by taking a 
navigation option associated with that cue.   

The focus of this paper is predator diet, that is, the variety 
of information types that a predator consumes. A predator’s 
information goals define his/her “ideal” diet, but what 
predators actually consume depends also on what is availa-
ble in the environment and how costly the information is to 
obtain. The relationship between cost and diet in IFT is 
explained well by Anderson’s notion of rational analysis, 
which is based on the idea that humans tend toward strate-
gies that optimally adapt to the environment [1].   

To help satisfy their diets, predators commonly engage in 
enrichment, that is, transforming the environment to facili-
tate foraging. For example, by searching on the Web, the 
predator enriches the environment by creating a new patch 
of search results, which could potentially satisfy some or all 
of the predator’s information goals. In addition to using 
search tools, other examples of enrichment include writing 
a to-do list on a piece of paper and running a test on a pro-
gram to create a patch of relevant program output. 

The earliest IFT research was in the domain of user-web 
interaction. For example, computational models based on 
IFT have successfully predicted web foraging behavior 
[3,6,18]. IFT has gone on to inspire practical principles and 
tools for designing web sites and user interfaces [24,25]. 

Information Foraging for Debugging Software  
In the domain of software development (and especially de-
bugging), information foraging often occurs in the context 
of sensemaking. The sensemaking process in an infor-
mation-rich domain has been represented as a series of two 
main learning loops: foraging for information, and making 

sense of the foraged information [20]. In this model, the 
role of IFT is central. In fact, in Grigoreanu et al.’s sense-
making study of end-user debugging [8] (which applied the 
Pirolli/Card sensemaking model [20]) found that the forag-
ing loop dominated the participants’ sensemaking process.  

In the software engineering community, there has been re-
cent research focused on supporting the questions pro-
grammers ask [5,10,11,23], and these questions can be 
viewed as surrogates for programmers’ information goals. 
The software engineering analyses and tools have not been 
grounded in theory, but their empirical success shows that 
they are useful. A premise of this paper is that IFT may be 
able to provide a richer, more cohesive understanding of 
programmers’ information seeking behaviors than atheoret-
ic efforts. Recently, we and a few others have begun inves-
tigating the efficacy of using IFT to understand programmer 
information-seeking (e.g., [12,13,14,15,16]). However, that 
work focused only on how programmers respond to cues. 
This paper instead investigates the whats and hows of their 
diets, i.e., the relationship between programmers’ infor-
mation goals and debugging strategies. 

METHODOLOGY 

Study Data 
To investigate our research questions, we analyzed a set of 
nine videos we collected in a previous study of professional 
software developers debugging in an Eclipse environment 
[16]. In that study, the developers used the usual Eclipse 
tools, plus a new IFT-based code recommender tool pow-
ered with a variety of recommendation algorithms. This set-
up is consistent with real-world scenarios in which devel-
opers work on unfamiliar code, such as a new team member 
being brought “onboard” a project, a developer on a team 
needing to work on code that another team member wrote, 
or a newcomer to an open-source project. 

To summarize the study setup, each video included screen-
capture video, audio of what the participant said, and video 
of the participant’s face. Participants “talked aloud” as they 
worked. Their task was to fix a real bug in the jEdit text 
editor, a mature open source project. None of the partici-
pants had seen the jEdit code before, and with 6468 meth-
ods, it provided a large information space in which to for-
age. The bug was from an actual bug report (#2548764) and 
regarded a problem with deleting “folded” text. Each de-
bugging session lasted two hours with a short break half-
way through. No participants completed the task, and all 
exhibited instances of foraging throughout the two hours.  

Categorization Procedures 
We used a qualitative, multi-part coding approach to ana-
lyze these videos. First, we segmented the videos into 30-
second intervals, resulting in roughly 70 segments per vid-
eo. (We chose 30 seconds to be long enough for partici-
pants to verbalize a goal.) We then coded each segment to 
identify (1) instances of foraging, (2) participants’ infor-



 

mation goals, and (3) participant debugging strategies, al-
lowing multiple codes per segment. To enhance generaliza-
bility, these code sets were drawn from prior studies, as we 
describe below. 

To ensure reliability, we followed standard inter-rater relia-
bility practices. Two researchers first worked together on a 
small portion of the data to agree on coding rules. They 
then independently coded 20% of the segments to test the 
agreement level. We computed agreement using the Jaccard 
index, as it is suitable when multiple codes are allowed per 
segment, as in our case. We performed a separate coding 
pass (with separate reliability checks) for each code set. For 
each pass, agreement exceeded 80%, so the two researchers 
then divided up the coding of the remaining data.  

Information Foraging Behavior Codes 
To code whether a participant showed evidence of infor-
mation foraging within a 30-second segment, we used a 
two-part coding process. First, we segmented around partic-
ipants’ utterances and coded the segments. The codes were 
foraging-start, foraging-end, and foraging-ongoing. This 
code set was inspired by the scent-following code set used 
in [14], but ours focused only on whether or not foraging 
occurred, and not whether scent was lost, gained, etc. We 
coded an utterance as foraging-start when participants stat-
ed an intention to pursue a particular information goal and 
then took accompanying action to seek that goal, like 
searching. We coded an utterance as foraging-end when 
participants stated that they had learned some information, 
or expressed giving up on a goal. We coded an utterance as 
foraging-ongoing when participants restated a previously 
stated goal, or said they were still looking for something.  

In the second part of the coding process, we used the utter-
ance codes from the first part to code each 30-second seg-
ment as foraging or non-foraging. A segment was foraging 
if it had an utterance coded as foraging-start, foraging-
ongoing, or foraging-end, else it was non-foraging. Also, to 
include segments in which a participant may not have ex-
plicitly made an utterance, we also coded segments in be-
tween foraging-start and foraging-end utterances as forag-
ing. However, some segments were exceptions. If a partici-
pant clearly never foraged during a segment, we coded the 
segment as non-foraging. Non-foraging activities included 
configuring Eclipse or reasoning aloud about the task. Us-
ing this coding scheme independently, two researchers 
achieved 82% agreement on 20% of the data before divid-
ing up and individually coding the remaining data. 

Information Goal Codes  
We based the Information Goal code set on Sillito et al.’s 
empirically based taxonomy of 44 questions programmers 
ask, which Sillito et al. had grouped into four types [23]. 
We coded the 30-second segments against the 44 questions, 
and then grouped them into the four types for presentation 
brevity. (Results for the 44 individual questions are given in 
Appendix A of the expanded version [17].) Table 1 lists the 

types, with a few examples of the Sillito questions that were 
our actual code set. We chose the Sillito questions for sev-
eral reasons. First, they are a good fit for the program-
debugging domain, because they categorize information 
needs specific to programmers. Second, they seem general-
izable to a broad range of programming languages and en-
vironments, since Sillito et al. collected them from a study 
that covered seven different programming languages and at 
least eight different programming environments. Third, they 
are consistent with information goals identified in other 
studies from both programming and non-programming do-
mains (e.g., [8,9,14,20]). Finally, they are specific and low-
level, enabling a code set with the potential for high inter-
rater reliability. 

We coded each participant utterance in the foraging seg-
ments (as per our foraging code set above) to one of Silli-
to’s questions. We also included a code of other goals, for 
utterances that did not match any of the questions. Using 
this scheme, two coders achieved 80% agreement on 20% 
of the data, and then split up the rest of the coding task. 

The coding resulted in 384 goals coded using the Sillito 
question codes and 286 other goals. About one fourth of the 
utterances coded other were similar to one of the Sillito 
questions, but were not a precise match, so for reasons of 
rigor, we did not include them. The remaining other goals 
were about concepts (e.g., the bug’s specifications, how to 
use the jEdit “fold” feature, the Eclipse environment, etc.) 
that are beyond the scope of this paper.  

Information Goal Patterns 
To investigate how information goals relate to each other, 
we categorized the information goal data into the five pat-
terns in Table 2. Four of the patterns (Stairstep, Restart, 
Pyramid, and Oscillate) came from literature suggesting 
progressions in these sequences (e.g., [8,20,23]). The fifth 
pattern, Repeat, emerged as a common pattern during the 
course of our analysis.  

Following the Table 2 definitions, we used a greedy pat-

Goal Type Codes Examples of Sillito questions  
1-initial: 
Find initial 
focus points 

Sillito 
questions  
1–5 

#2: Where in the code is the text of 
this error message or UI element? 
#5: Is there an entity named some-
thing like this in that unit? 

2-build: 
Build on those 
points 

Sillito 
questions  
6–20 

#14: Where are instances of this class 
created? 
#20: What data is being modified in 
this code? 

3-group: 
Understand a 
group of relat-
ed code 

Sillito 
questions 
21–33 

#22: How are these types or objects 
related? 
#29: How is control getting (from 
here to) here? 

4-groups: 
Understand 
groups of 
groups 

Sillito 
questions 
34–44 

#35: What are the differences between 
these files or types? 
#43: What will be the total impact of 
this change? 

Table 1. Information goal types with examples [23]. 
 



 

tern-matching algorithm (which always returned the longest 
possible matches) to identify instances of the patterns in the 
goal data. We did not allow matches that contained a gap of 
5 or more minutes (i.e., 10 or more 30-second segments) 
between goal utterances or contained an interrup-
tion/intervention, such as the between-session break. We 
permitted overlapping patterns, except for instances of Os-
cillate completely contained within a Stairstep or Pyramid, 
and for instances of Stairstep completely contained within a 
Pyramid. We omitted Oscillate and Stairstep instances in 
these cases, because they were essential components of the 
containing patterns. A single author performed this analysis 
because the definitions were objective and the analysis au-
tomatable. 

Debugging Strategy Codes  
To code participant strategies, we reused Grigoreanu et al.’s 
debugging strategy code set [7]. We chose these strategy 
codes because, while being specific to the program debug-
ging domain, each also maps cleanly to one of the three key 
foraging activities [19]: within-patch foraging, between-
patch foraging, and enrichment. (Technically, enrichment is 
a between-patch foraging activity; however, in this paper, 
we use the term between-patch foraging to include only 
non-enrichment activities.)  

Table 3 lists the strategy codes grouped by type of foraging 
activity. The Within-Patch strategies all involve looking for 
information within the contents of a single patch, such as in 
a Java method or web page. The Between-Patch strategies 
all involve navigating between different patches by select-
ing and clicking links, such as those provided by the rec-
ommender tool. The Enrichment strategies all involve ma-
nipulating the environment to facilitate foraging, for exam-
ple, by creating a new patch of search results. 

For each segment, we looked for evidence of the participant 
applying each strategy using indicators such as those shown 
in Table 3. A segment could have multiple strategy codes. 
Using this scheme, two coders achieved 80% agreement on 
28% of the data, and then divided up the remaining data. 

RESULTS 

Preliminaries: How much foraging did they do?  
As Table 4 shows, participants spent 50% of their 2-hour 
sessions foraging on average. We were unable to find prior 
measures of programmer foraging with which to compare 
this result, but Ko et al. measured time spent on mechanics 
of navigation. Their programmers spent 35% of the time on 
“the mechanics of navigation between code fragments” 
[10]. Even our participant who foraged the least still did so 
more than 35% of the time. 

RQ1: The Whats of Programmers’ Diets 

A Diversity of Dietary Whats  
Although all participants had the same high-level infor-
mation goal (to find the information needed to fix the bug), 

their dietary preferences were diverse, as Table 5 shows. 
(Recall the four goal types defined in Table 1.) In aggre-
gate, participants pursued the most goals of Type 1-initial, 

Pattern  Example Formal Definition  
Oscillate: Back and 
forth between two 
adjacent types repeat-
edly. 

1121212212 O= O1 | O2  
   where: 
O1=UpDn(1,2) | UpDn(2,1) 
O2=UpDn(2,3) | UpDn(3,2) 
UpDn(a,b)=a+b+(a+b+)+a* 

Stairstep: From 1 up 
through adjacent types 
to at least 3. 

1122223 Stairstep= 
(1+2*)+ (2+3*)+ 3 

Restart: Jump off the 
Stairstep down to 1 

112331 Restart=Stairstep 1 

Pyramid: Up then 
down the stairsteps. 
 
Constraint: If Pyramid, 
then not Stairstep. 

12321 Pyramid= Pup Pdown | 
 2+ Pup Pdown 1 
   where: 
Pup=(1+2*)+(2+3*)+ 
Pdown=(3+2*)+(2+1*)+ 

Repeat: One type at 
least 10 times. 

1111111111  Repeat = 11111111111* | 
 22222222222* | 
 33333333333* | 
 44444444444* 

Table 2. Information goal patterns. Each definition is a regular 
expression of Goal Type instances (+ means 1 or more instances, 

* means 0 or more; “|” means “or”). E.g.: 1+2+ means one or 
more instances of Type 1, then one or more of Type 2. We omit 
Type 4s next to Type 3s because 4 never followed 3 in our data. 

Strategy Example Indicators 
Within-Patch Strategies 
Specification 
checking 

Looking for info by reading within the bug 
description 

Spatial Looking for info by reading through the list of 
package contents in the Package Explorer  

Code inspec-
tion 

Looking for info by reading within a Java 
code file 

File inspec-
tion 

Looking for info by reading within a non-code 
file, such as a Java properties file 

Seeking help-
Docs 

Looking for info by reading within the jEdit 
documentation 

Between-Patch Strategies 
Control flow Following control dependencies 
Dataflow Following data dependencies 
Feedback 
following 

Following method links from the recommend-
er tool 

Enrichment Strategies 
Code search Creating a patch of search results with the 

Eclipse code search utility 
Testing Creating a patch of program output or internal 

state to inspect 
To-do listing Writing notes on paper 
Seeking help-
Search 

Creating a patch of search results with an (ex-
ternal) web search for info on bug/code 

Table 3. Debugging strategy code set [7] with example indicators 
for each strategy.  

Participant: P2 P3 P5 P6 P7 P8 P9 P10 P11 Mean 
Time Foraging: 52% 71% 38% 63% 46% 43% 48% 42% 49% 50% 
Table 4. Participants spent a large fraction of their time, ranging 

from 38% to 71%, foraging for information. 



 

with slightly fewer in 2-build, and many fewer in the more 
complex 3-group and 4-groups. However, most participants 
did not conform to the aggregate: Only P6 and P9 had goal 
counts consistent with the aggregate. 

Patterns of Dietary Relationships 
Despite their dietary diversity, the progression of infor-
mation goals that participants pursued often followed cer-
tain patterns (summarized in Table 6 and Figure 1; patterns 
defined in Table 2). Eight of the nine participants displayed 
one or more of the patterns, and 58% of segments in which 
a participant expressed a goal were part of a larger pattern. 
Participants exhibited a median of 1.5 patterns each, with 
P6 exhibiting all five. 

For example, P6’s use of the Restart pattern at the end of a 
Stairstep is shown in the Figure 1e example. The Restart 
occurred when his Stairstep progression culminated in gain-
ing the information he sought about the handleMessage 
method’s relationship to the editor (a Type 3-group goal):  

P6: “So this (handleMessage) is handling some events for the 
editor.” 

This was what P6 had wanted to know, so he then changed 
to a new line of foraging, thus dropping down to a Type 1-
initial goal: 

P6: “But I don’t know how the menu is hooked up to this. … I 
wonder if there is some method that might be named ‘delete 
lines’ …” [P6 starts searching in package explorer.] 

Some of these patterns were predicted by the literature. 
Sillito et al. [23] suggested one progression: find an initial 
focus (1-initial), then build on it (2-build), then understand 
a group of related foci (3-group), and finally understand 
groups of groups (4-groups). Other empirical studies have 
found a similar progression from 1-initial to 2-build, includ-
ing our previous work on information foraging during de-
bugging (characterized there as “debugging modes”) [14], 
and earlier work on how people seek information in web 
environments (summarized in [9]). Furthermore, the notion 
of progressing from Type 1-initial to 2-build to 3-group to 
4-groups is consistent with prior results from applying Pi-
rolli and Card’s sensemaking model [20] to intelligence 
analysts and to end-user debuggers [8].  

However, participants did not usually organize their forag-
ing in the ways suggested by the above literature: Stairstep, 
Pyramid, and Restart together accounted for only 22% of 
the pattern segments. In fact, only four of the participants 
used any of them at all! This finding suggests that idealized 
progressions outlined in prior research miss much of how 
programmers forage for information in code, at least in the 
widely used Eclipse environment.  

In contrast to the patterns from the literature, the Repeat 
pattern, which emerged from our study, occurred frequent-
ly. In Repeat, a participant spent extended periods follow-
ing one information goal type. 6 of the 9 participants exhib-
ited this pattern—greater usage than any other pattern.  

Why did participants exhibit the above patterns? To answer 
this question, we need two pieces of information: what 
strategies they used for their foraging, and how those strat-
egies came together with their goals and goal patterns. We 
discuss each of these in turn in the next two sections. 

RQ2: The Hows: Strategies during Foraging 
Recall from Methodology (Table 3) that each debugging 
strategy maps to an IFT activity: within-patch foraging, 
between-patch foraging, and enrichment. Table 7 shows 
each participant’s strategy usage by IFT category.  

Debugging Strategies Meet IFT   
Since much of the prior IFT research has focused on be-
tween-patch scent following (e.g., [3,13]), we were sur-
prised that only 24% of participants’ foraging fell into that 
category. Participants spent considerably more time forag-
ing within patches and performing enrichment.  

As Table 7 shows, participants used a diverse mix of strate-

Goal Type P2 P3 P5 P6 P7 P8 P9 P10 P11 Total 
1-initial 6 76 0 34 18 8 18 8 2 170 
2-build 3 1 2 24 34 17 16 15 11 123 
3-group 2 2 2 3 2 3 15 9 11 49 
4-groups 13 1 0 0 0 9 0 3 16 42 
Total 24 80 4 61 54 37 49 35 40 384 
Table 5. Number of segments spent on the (codeable) types of 
information goals. Gray highlights each participant’s most-

pursued goal type. 

Pattern P2 P3 P5 P6 P7 P8 P9 P10 P11 
Repeat 1(4) 2(1)  1(1) 1(2)   1(2) 1(4) 
Oscillate    1(1,2) 2(1,2)   1(3,2) 1(3,2) 
Stairstep    1      
Pyramid    1  1 2 1  
Restart    1      
Table 6: Frequency of pattern instances exhibited by each par-
ticipant. The numbers in parentheses indicate the type of goals 

within the pattern (e.g., 1(3,2) in the Oscillate row indicates 
patterns like 33322322, as defined in Table 2). 
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Figure 1. Frequency of goal patterns.  Y-axis is count of seg-
ments in each pattern. Each bar is labeled with an example 
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been found); and numbers denote the goal types. 

 



 

gies (median of 8 different strategies); however, each forag-
ing category had clearly dominant strategies. Spatial was 
the participants’ primary Within-Patch strategy; Control 
Flow was their primary Between-Patch strategy; and Code 
Search and Testing were together (but especially Testing) 
their primary Enrichment strategies.  

What Participants Used Enrichment For 
Enrichment is an activity wherein the predator changes the 
environment to facilitate foraging [19]. The participants 
changed their environments in two ways. Code Search, 
Seek Help-Search, and To-Do Listing involved creating a 
patch of links to other patches for the predator to navigate. 
In contrast, Testing involved creating patches of infor-
mation content for the predator to process. 

Most participants strongly favored one or the other of these 
types of enrichment strategies. In particular, they either 
favored creating patches of linked search results with Code 
Search, or creating patches of runtime state information 
with Testing. In fact, over half of the participants used only 
one of Code Search or Testing. For example, Participant P7 
used Code Search repeatedly, trying to find methods that 
implemented line deletion and folding in jEdit:  

P7: “Let’s see if I can find something like what is in that bug 
report.” [Searches for delete lines. No results.] “Let’s just look 
for ‘explicit fold’.” [Searches for explicit fold.] “Finally, 
something that actually has to do with folding...” 

In contrast, P5 stepped through program runs repeatedly, 
collecting information about its internal state:  

P5: [Looks at the debugger’s Variable Watch view.] 
“lineCount is zero.” [Reads code.] “I’m going to step into that 

(method)” [Steps.] “count is greater than–now count is zero. 
[Steps again.] “I’m stepping through the code. ... I’m trying to 
understand what this code is doing.” 

Despite prior findings about users’ preference for searching 
(e.g., [2]), four of the nine participants used neither Code 
Search nor Seek Help-Search. This lack of searching cannot 
be because the task was too easy (no one finished) or the 
code base was too small (it had 6468 methods). However, 
earlier findings on web information processing [9] may 
explain this result. Hearst points out that, in many cases, 
browsing works better than searching because it is mentally 
less costly to recognize a piece of information than it is to 
recall it, and recall is often needed to formulate an effective 
search query. Consistent with Hearst’s observation, every 
participant used the Code Inspection strategy. 

Go-To Strategies for Foraging 
Reconsidering Table 7 from a most-used perspective, some 
strategies stand out as having been used particularly often 
for one or more aspects of foraging. The leftmost four 
(white) columns of Table 8 summarize. 

RQ3: Whats Meet Hows: Dietary Strategies 

Strategies by Goal Type 
Table 9 and Figure 2 tie all 12 of the strategies back to the 
participants’ dietary goals. As the table and figure show, 
some strategies were strongly tied to particular goal types. 
For example, Specification Checking was used only for 
Type 1-initial goals, and Code Inspection was used primari-
ly for Type 2-build goals. Figure 2 shows that participants 
used Code Search (labeled a) and Spatial (labeled b) more 
than the other strategies with their Type 1-initial goals. 
From a patch perspective, Spatial seemed particularly suited 
to helping participants cope with large patches, and Code 
Search with large spaces of patches. For example, P6 spent 
considerable time performing Spatial in the Package 

Strategy P2 P3 P5 P6 P7 P8 P9 P10 P11 Total 
Within-Patch Strategies 
Spec. Checking 2 9 0 11 0 0 0 3 0 25 
Spatial 25 39 5 28 31 14 47 19 12 220 
Code Inspection 4 9 10 16 17 15 22 7 30 130 
File Inspection 0 6 0 4 0 0 0 3 0 13 
Seek Help-Doc  4 0 0 0 0 0 0 2 0 6 
Total: 35 63 15 59 48 29 69 34 42 394 
Between-Patch Strategies 
Control Flow 19 1 18 14 20 27 23 14 21 157 
Data Flow 0 0 5 1 2 4 0 7 5 24 
Feedback Follow. 4 8 12 5 6 4 6 1 6 52 
Total: 23 9 35 20 28 35 29 22 31 232 
Enrichment Strategies 
Code Search 0 51 0 29 33 4 0 12 0 129 
Testing 36 0 34 14 5 37 30 22 45 223 
Todo Listing 1 1 0 1 1 2 0 0 5 11 
Seek Help-Search 0 4 0 0 0 0 0 0 0 4 
Total: 37 56 34 44 39 43 30 34 49 366 
Overall Total: 95 128 84 123 115 107 128 90 122 992 

Table 7. Usage (segment counts) of each strategy during 
foraging. Gray cells indicate the maximum frequency by 

participant and by strategy category. Although participants 
foraged in a total of 660 segments, the overall total of strategy 
segments (992) is greater because participants used multiple 

strategies during some segments. 
 

Strategy 
How 
many 

used it? 

Top strategy for... 
... which 

participants 
... which 
IFT cate-

gory 

... which 
Goal 
Type 

... which 
Patterns 

Within-Patch Strategies 
Spatial all 9 P9 Within 2-Build Pyramid 
Code 
Inspect. 

all 9 - - - - 

Between-Patch Strategies 
Control 
Flow 

all 9 - Between - Restart 

Feedback 
Follow. 

all 9 - - - - 

Enrichment Strategies 
Code 
Search 

5 P3, P6, P7 - 1-initial Repeat, 
Oscillate, 
Stairstep 

Testing 8 P2, P5, P8, 
P10, P11 

Enrich. 3-group,  
4-groups 

- 

Table 8. These 6 strategies (out of 12) stood out. Each of these 
was used by everyone, was at least one person’s most-used 

strategy, or was the top strategy for an IFT category. 
 



 

Explorer view (a patch containing hundreds of lines), 
looking for a Java class on which to focus: 

P6: “I keep thinking this menu package gotta be involved 
somehow.” [P6 scans down the list of Java classes inside the 
menu package in Eclipse’s Package Explorer view.] 

P3, on the other hand, applied Code Search to search the 

6468 methods for code related to deleting lines in jEdit: 

P3: “I would imagine that I would look for the word ‘delete’ 
perhaps, especially given that that’s the term that’s used in the 
menu.” [Executes a search for delete.] 

Participants tended toward different strategies for the Type 
2–4 goals, which express progressively deeper relationships 
among code entities. For example, Figure 2 shows the shift 
away from Code Search and Spatial, and toward Code 
Inspection (c) and Control Flow (d) for Type 2-build and 
Type 3-group goals. Testing in particular (e) increased 
markedly from Type 2-build to Type 4-groups goals.  

Considering participants’ goal patterns in the context of 
their strategies (summarized in Table 10) sheds additional 
light on why the patterns emerged. 

Pattern Repeat: Constant Goal Type, Constant Strategies 
Pattern Repeat, repeated pursuit of a single goal type, was 
also characterized by repeated participant use of a constant 
handful of strategies. The Repeat instances occurred in two 
cases. In one case, participants’ debugging strategies were 
producing the desired goals efficiently, i.e., at such low cost 
to the participants that staying with that goal type and strat-
egy was a good way to optimize their costs. In the other 
case, their strategy for that goal type was so ineffective, 
they needed a long time to fulfill that type of dietary need. 

As an example of the first case, P7 followed the Repeat 
pattern on Type 2-build goals using three strategies contin-
uously: Spatial, Code Inspection, and Control Flow. Eclipse 
supports all three with low-cost navigation tools, such as 

Strategy Information Goal Type Total 
1-initial 2-build 3-group 4-groups 

Within-Patch Strategies 
Spec Checking 24 0 0 0 24 
Spatial 92 62 23 8 185 
Code Inspection 13 56 20 4 93 
File Inspection 10 0 0 0 10 
Seeking Help-Docs 2 0 0 0 2 
Total: 141 118 43 12 314 
Between-Patch Strategies 
Control Flow 21 46 14 9 90 
Dataflow 1 4 3 1 9 
Feedback Following 13 15 7 1 36 
Total: 35 65 24 11 135 
Enrichment Strategies 
Code Search 104 47 2 1 154 
Testing 25 26 26 30 107 
To-Do Listing 1 4 1 3 9 
Seeking Help-Search 0 0 0 0 0 
Total: 130 77 29 34 270 
Overall Total: 306 260 96 57 719 

Table 9. Strategy usage by goal types. Gray highlights the 
maximum strategy usage for each goal type. The overall total 
(719) is greater than the total foraging segments (660) because 

some segments contained multiple strategies. The total for 
Seeking Help-Search was 0 because none of the strategy’s 4 

instances co-occurred with a goal statement.  
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Figure 2: Strategy proportions by goal type. Strategies are 
color-coded, with black bars separating the IFT categories. 

Red: Within-Patch. Green: Between-Patch. Blue: Enrichment. 

 

 

Pattern Participant 
Strategy 

Within-Patch Between-Patch Enrichment 
Repeat(1) P3 70% 6% 71% 
 P6 75% 0% 75% 
Repeat(2) P7 83% 72% 48% 
 P10 50% 38% 63% 
Repeat(4) P2 40% 10% 80% 
 P11 30% 40% 90% 
 Median: 60% 24% 73% 
Oscillate(1,2) P6 79% 8% 63% 
 P7 74% 57% 60% 
Oscillate(3,2) P10 40% 47% 73% 
 P11 100% 48% 62% 
 Median: 77% 47% 62% 
Pyramid P6 62% 57% 76% 

P8 53% 53% 88% 
P9 100% 21% 7% 
P10 53% 29% 76% 
Median: 57% 41% 76% 

Restart P6 61% 57% 70% 
Stairstep P6 62% 57% 76% 
Table 10. Percentage of goal-pattern segments that co-occurred 
with each category of strategy. Recall that multiple strategies 

were allowed per segment. Gray denotes the maximum catego-
ry for each pattern.  



 

one-click navigation to the declaration of any class, method, 
or variable. P7 used these features to efficiently fulfill his 
Type 2-build goals, and fulfilled multiple goals, often build-
ing from one goal to the next using the same strategies. 

When participants followed the Repeat pattern on goals of 
Type 1-initial or of Type 4-groups, their strategies were still 
constant, but not as fruitful. In the cases involving Type 1-
initial, participants used Code Search (Enrichment) and 
Spatial (Within-Patch) extensively, but not particularly 
fruitfully, looking for a place to start. For example, Figure 3 
shows P3 repeatedly using Code Search to find an initial 
starting point. Likewise, in P11’s use of Repeat on his Type 
4-groups goals, he used Testing across numerous segments 
of the pattern, trying to understand the relationship between 
changes he had made and the rest of jEdit’s functionality. 
He pieced the information together by laboriously gathering 
it in small bits, one execution of the program at a time. 

Pattern Oscillate: Changing Strategies to Dig Deeper 
For the participants who followed the Oscillate pattern on 
Type 1-initial and 2-build goals, the story was similar to 
Repeat on Type 1-initial, except the oscillators tended to 
seek additional information from their search results. In 
particular, the oscillating participants would typically do a 
code search, explore the results a bit, decide they were on 
the wrong track, and return to searching. Unlike the Repeat 
pattern, the participants we observed within the Oscillate 
pattern switched strategies rapidly along with their goals. 
Figure 4 illustrates this behavior for P6.  

Patterns for Enrichment and Goal Switching 
Table 10 suggests that Enrichment tended to drive the inter-
related Pyramid (up then down the stairs), Restart (stairs 
followed by starting again), and Stairstep (climb the stairs) 
patterns. Participants following the Pyramid pattern used 
the Enrichment strategies of Code Search and Testing 
equally often, but P6’s instances of Stairstep and Repeat 
were characterized by almost exclusive use of the Code 
Search strategy. (Only P6 followed these two patterns.) 

All three patterns were characterized by rapid goal fulfill-
ment followed by a rapid switch to the next goal. This rapid 
fulfillment and initiation of the next goal type is consistent 
with our previous findings pointing to the reactiveness of 
foraging in this domain [13,16].  

The Most-Used Strategies’ Strengths 
This brings us to the particular strengths of different strate-
gies. Refer back to Table 8; the rightmost (shaded) columns 
include the goal types and patterns we have just discussed 
for the most-used foraging strategies. As the table shows, 
certain classic debugging strategies were used heavily in 
foraging but often were concentrated into dietary niches. 
For example, Code Inspection and Feedback Following 
were generalists—used by everyone, but not the top in any 
particular IFT category, any goal type, or any pattern. In 
contrast, Code Search was a specialist, dominating some of 

the patterns and one of the goal types, but still used by only 
half the participants.  

DISCUSSION 

Generalizability 
As in any empirical study, our results may have been influ-
enced by the environment the participants used, the tools 
available to them, the task they worked on, etc. Issues like 

24:30: Let me try to look for ‘delete’ again. [Searches for ‘delete’]. 
27:00: If I could search across the text—I’m sorry, search through all 

the source code and found out delete lines, then I would be able to
—I should be able to find where and what that function is called. 

31:00: Let’s just look for ‘delete’ again. [Searches for ‘delete’]. 
37:00: I am going to look for references show me all references to 

deleteLineLabel. [Search for references to deleteLineLabel]. 

6:30: [Searches]. Java search, in the workspace, a method including 
‘delete.’ 

9:00: So one of the things I’m looking to do is open a fold, so if I 
ask for methods about methods can methods involving folds  or 
even better, opening a fold. 

18:00: I would imagine that I would look for the word delete 
perhaps, especially given that that’s the terms that’s used in the 
menu, but I um I think I’ll try again. [Searches for ‘delete’].  

----- ------ --- ---- -- ---- -- - ------ --- - . . .  . .  . . .  .  . .  .  . .  .  . .  . . . . . .  . . . .  

 
Figure 3. P3 continuously used Code Search (underlined) to find 
code relevant to deleting lines of text.  He often complemented it 

with Spatial (dots). The beige background denotes foraging; 
white is non-foraging and the numbers indicate the minutes in 

the session. 
 

25:00: So whose subclass is this? How can I figure that out? 
26:00: I am looking for a concrete class, not a abstract class 

(EditAction).  
27:00: If I look for references to the abstract class it will show me 

someone who implements this class. [Searches for references 
to EditAction]. 

28:00: So I don’t think that search helped me understand who 
implements the EditAction class. Well I guess I could start 
with main and start debugging from that.  

28:30: [Searches]. Find method, “main.” Search. 

32:30: Let’s look and see the references to this constructor. 
[Searches References to main]. 
33:30: There are no references for the constructor for the 
main class what does this mean?!
34:00: There must be some public methods here.  So, let’s 
search for public. [Searches for ‘public’]. 
35:00: [Scanning results]. “public static void main” Oh, 
there it is.  

.  .  .  .  .  .  .  . .  -- - -- - 

 
Figure 4. The Oscillate pattern for P6.  The abandonment of 

goals is highlighted in bold. The underlines are segments with 
Code Search.  The dots are segments with Spatial. Note that 

strategies alternate with the goal types. 
 

 



 

these can be resolved only through additional studies. How-
ever, our methodology was designed to strengthen generali-
zability through the use of code sets and methodological 
conventions from other pertinent studies (e.g., [7,8,22]), 
and through the use of realistic elements: The software pro-
ject was a real open source project; the bug was from a real 
bug report; the participants were experienced professionals 
(not students) using a popular IDE; and the participants 
worked alone on fairly long tasks (similar to what they 
would encounter professionally, even in a team context).  

Diet Whats: The Long Tail 
Participants' dietary needs varied greatly. This variety was 
not only between participants, but also within each partici-
pant’s session from one moment to the next.   

Our participants’ diverse diets are reminiscent of the highly 
varied and personal diets reported by the Evans/Card study 
[4]. Evans and Card attributed this finding to a “long tail” 
demand curve, in which an abundance of available infor-
mation makes it possible for people to satisfy their own 
individual, even quirky, desires for information. However, 
in the Evans/Card study, people foraged as part of their own 
individual tasks. Interestingly, we saw the same phenome-
non with our participants, even though they all had the 
same overall goal (to fix the bug). 

The participants’ sometimes stubborn pursuit of particular 
information goals—tolerating very high costs even when 
their efforts showed only meager promise of delivering the 
needed dietary goal—highlights an important difference in 
the software domain versus other foraging domains: Pro-
grammers’ dietary needs are often very specific. For an 
information forager on the Web, one dictionary page is of-
ten as good as another. But for a programmer trying to fix a 
bug, only very particular information about very specific 
code locations will help them in their task. This high dietary 
selectiveness in this domain may explain the high costs 
programmers were sometimes willing to pay. 

Whats Meet Hows: Diet-Specific Strategies 
Our results identified particular strategies that participants 
preferred for certain information goals. Of the 12 strategies 
we coded, 6 dominated, but in different ways.  

Among the Within-Patch strategies, two strategies, Spatial 
(scanning lists) and Code Inspection (reading code), 
showed distinct associations to particular goal types. Spatial 
was ubiquitous across all goal types—it seemed that there 
was almost always some patch of information that a partici-
pant could scan. In contrast, Code inspection was particu-
larly tied to Type 2-build and 3-group goals. Apparently, 
participants tended not to read code in detail when looking 
for an initial place to start (1-initial) or when trying to un-
derstand more complex relationships among groups of enti-
ties (4-groups). Instead, they dug into the code only when 
they needed information about more basic relationships (2-
build and 3-group).  

Turning to the Between-Patch strategies, participants ap-
plied Control Flow (following control dependencies) for all 
goals that involved understanding relationships between 
code entities (i.e., goal types 2–4). The proportion of partic-
ipants who used the strategy relative to other strategies held 
steady, whether they were building up a basic understand-
ing about a code entity (2-build) or understanding complex 
inter-relationships among groups of entities (4-groups). 

Participants used the two most frequently used Enrichment 
strategies, Code Search (via a search utility) and Testing 
(running code), for different purposes. They used Code 
Search heavily for finding initial starting places and build-
ing upon them (Types 1 and 2). In contrast, they favored 
Testing for acquiring more complex information about the 
relationships between entities and between groups of enti-
ties (Types 3 and 4). 

Participants’ goal patterns reveal a close relationship be-
tween these Enrichment strategies and many of the goal 
patterns in Table 2. For example, participants who followed 
Repeat on Type 1-initial goals and who followed Oscillate 
on Type 1-initial and 2-build goals were generally using 
Code Search (Enrichment) repetitively (expending much 
effort with little success), looking for code relevant to the 
bug to investigate in more depth. Similarly, participants 
who used Repeat on Type 4-groups goals were generally 
Testing (Enrichment) by repetitively stepping through exe-
cutions of the program over and over to build up infor-
mation about the program’s internal execution state. Over-
all, Enrichment strategies were heavily used in all patterns. 

CONCLUSION 
In this paper, we considered what programmers want in 
their diets and how they forage to fulfill each of their die-
tary needs. Some results this diet perspective revealed were: 

RQ1 (whats): 
• Diversity: Even though all participants were pursuing the 

same overall goal (the bug), they sought highly diverse 
diets. This suggests a need for debugging tools to support 
“long tail” demand curves of programmer information. 

• Dietary patterns: Most foraging fell into distinct dietary 
patterns—including 78% in a new pattern not previously 
proposed in the literature. 

RQ2 (hows): 
• Foraging strategies: Participants spent only 24% of their 

time following between-patch foraging strategies, but be-
tween-patch foraging has received most of the research 
attention. This suggests a need for more research on how 
to support within-patch and enrichment foraging.  

• Search unpopularity: Search was not a very popular strat-
egy, accounting for less than 15% of participants’ infor-
mation foraging—and not used at all by 4 of our 9 partic-
ipants—suggesting that tool support is still critical for 
non-search strategies in debugging. 



 

RQ3 (what meets how): 
• Strategies’ diet-specificity: Some foraging strategies were 

of general use across information goal types, but others 
were concentrated around particular dietary niches. This 
suggests tool opportunities; for example, tools aimed at 
supporting a particular strategy may be able to improve 
performance by focusing on the strategy’s dietary niche.  

• Cost of selectivity: Participants stubbornly pursued par-
ticular information in the face of high costs and meager 
returns. This emphasizes a key difference between soft-
ware development and other foraging domains: the highly 
selective nature of programmers’ dietary needs. 

As Evans and Card summarize from Simon: “For an infor-
mation system to be useful, it must reduce the net demand 
on its users’ attention” [4]. Our results suggest that the diet 
perspective can help reveal when programming tools help 
to reduce this net demand—and when they do not—during 
the 50% of debugging time programmers spend foraging. 
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