

The Whats and Hows of Programmers’ Foraging Diets
David Piorkowski1, Scott D. Fleming2, Irwin Kwan1, Margaret Burnett1,

Chris Scaffidi1, Rachel Bellamy3, Joshua Jordhal1
1Oregon State University

Corvallis, Oregon, USA
2University of Memphis

Memphis, Tennessee, USA
3IBM Research

Hawthorne, New York, USA
{piorkoda, kwan, burnett, cscaffid}@eecs.oregonstate.edu,

scott.fleming@cs.umemphis.edu, rachel@us.ibm.com

ABSTRACT
One of the least studied areas of Information Foraging The-
ory is diet: the information foragers choose to seek. For
example, do foragers choose solely based on cost, or do
they stubbornly pursue certain diets regardless of cost? Do
their debugging strategies vary with their diets? To investi-
gate “what” and “how” questions like these for the domain
of software debugging, we qualitatively analyzed 9 profes-
sional developers’ foraging goals, goal patterns, and strate-
gies. Participants spent 50% of their time foraging. Of their
foraging, 58% fell into distinct dietary patterns—mostly in
patterns not previously discussed in the literature. In gen-
eral, programmers’ foraging strategies leaned more heavily
toward enrichment than we expected, but different strate-
gies aligned with different goal types. These and our other
findings help fill the gap as to what programmers’ dietary
goals are and how their strategies relate to those goals.

Author Keywords
Information foraging theory; information diet; debugging
strategies

ACM Classification Keywords
D.2.5 [Software Engineering]: Testing and Debugging;

H.1.2 [Information Systems]: User/Machine Systems—
Human factors

INTRODUCTION
Pirolli et al.’s pioneering work on Information Foraging
Theory (IFT) [18] has greatly influenced our community’s
understanding of how humans seek information within in-
formation-rich environments such as the Web. The theory is
based on the idea that humans seek information in a manner
analogous to the way animals seek food in the wild. In
short, it states that a human information predator seeks in-
formation prey by following information scent through an
environment. IFT has been well validated empirically (e.g.,
[3,6,12,13,14,20]). It has facilitated predictive models of
how people navigate as they forage within websites (e.g.,

[3,18,21]) and during software maintenance tasks (e.g.,
[12,13]). Furthermore, the theory has spawned principles
for the design of interfaces and tools that help people forage
(e.g., [16,24]).

One area of potential for IFT that so far has been mostly
untapped is using the theory to understand the diets of pred-
ators in a particular problem domain—that is, to understand
the types of information goals those predators desire. A
notable exception is Evans and Card [4], who investigated
the diets of web users who were “early adopters.” They
discovered that these users’ diets were considerably differ-
ent from the information commonly provided by main-
stream news sites, and they identified the niche topics that
made up the users’ diets. They also noted that the infor-
mation sources chosen by these users reduced the cost of
attention by lowering the cost of social foraging and social
interpretation. Clearly, these findings have strong implica-
tions for the design of sites to support such users. The Ev-
ans and Card work demonstrates the potential benefits of
applying information foraging ideas to understand the diets
of people in particular contexts.

Inspired in part by the Evans/Card paper, our work aims to
expand our understanding of IFT diets by investigating the
diets of professional software developers engaged in de-
bugging. Work in the software engineering (SE) literature
has investigated related ideas, such as the questions that
programmers ask (e.g., [5,10,11,23]), but that work was not
grounded in a theory, such as IFT. Thus, by investigating
the information diets of professional programmers from an
IFT perspective, our work aims to help bridge the gap be-
tween such results from the SE literature and the IFT foun-
dations and results from the HCI literature.

For an understanding of the “whats” of diet to be truly use-
ful, we also need to understand the “hows”. Toward this
end, we also investigate, from an IFT perspective, the strat-
egies that programmers use during foraging. The literature
contains numerous works on program debugging strategies
(see [22] for a summary), but these have not been tied to
IFT. We believe that such strategies both influence and are
influenced by programmers’ diets, and this paper investi-
gates these ties.

Thus, in this paper, we address the following research ques-
tions with a qualitative empirical study.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
CHI 2013, April 27–May 2, 2013, Paris, France.
Copyright © 2013 ACM 978-1-4503-1899-0/13/04...$15.00.

• RQ1 (diet “whats”): What types of information goals do
professional programmers forage for during debugging,
and how do those goals relate to one another?

• RQ2 (foraging “hows”): How do professional program-
mers forage: what foraging strategies do they use?

• RQ3 (“whats” meet “hows”): Do professional program-
mers favor different strategies when foraging for different
types of information?

BACKGROUND

Information Foraging Theory
Information foraging theory is a theory of how people seek
information during information-intensive tasks [19]. IFT
was inspired by biological theories of how animals seek
food in the wild. In IFT, a predator (person seeking infor-
mation) pursues prey (valuable sources of information)
through a topology (collection of navigable paths through
an information environment). What information constitutes
valuable prey depends on the predator’s information goals.
Predators find prey by following information scent that they
infer from cues in the environment, such as the labels on
buttons or clickable pictures that adorn navigation options.
Thus, the scent of a cue is the predator’s assessment of the
value and cost of information sources obtained by taking a
navigation option associated with that cue.

The focus of this paper is predator diet, that is, the variety
of information types that a predator consumes. A predator’s
information goals define his/her “ideal” diet, but what
predators actually consume depends also on what is availa-
ble in the environment and how costly the information is to
obtain. The relationship between cost and diet in IFT is
explained well by Anderson’s notion of rational analysis,
which is based on the idea that humans tend toward strate-
gies that optimally adapt to the environment [1].

To help satisfy their diets, predators commonly engage in
enrichment, that is, transforming the environment to facili-
tate foraging. For example, by searching on the Web, the
predator enriches the environment by creating a new patch
of search results, which could potentially satisfy some or all
of the predator’s information goals. In addition to using
search tools, other examples of enrichment include writing
a to-do list on a piece of paper and running a test on a pro-
gram to create a patch of relevant program output.

The earliest IFT research was in the domain of user-web
interaction. For example, computational models based on
IFT have successfully predicted web foraging behavior
[3,6,18]. IFT has gone on to inspire practical principles and
tools for designing web sites and user interfaces [24,25].

Information Foraging for Debugging Software
In the domain of software development (and especially de-
bugging), information foraging often occurs in the context
of sensemaking. The sensemaking process in an infor-
mation-rich domain has been represented as a series of two
main learning loops: foraging for information, and making

sense of the foraged information [20]. In this model, the
role of IFT is central. In fact, in Grigoreanu et al.’s sense-
making study of end-user debugging [8] (which applied the
Pirolli/Card sensemaking model [20]) found that the forag-
ing loop dominated the participants’ sensemaking process.

In the software engineering community, there has been re-
cent research focused on supporting the questions pro-
grammers ask [5,10,11,23], and these questions can be
viewed as surrogates for programmers’ information goals.
The software engineering analyses and tools have not been
grounded in theory, but their empirical success shows that
they are useful. A premise of this paper is that IFT may be
able to provide a richer, more cohesive understanding of
programmers’ information seeking behaviors than atheoret-
ic efforts. Recently, we and a few others have begun inves-
tigating the efficacy of using IFT to understand programmer
information-seeking (e.g., [12,13,14,15,16]). However, that
work focused only on how programmers respond to cues.
This paper instead investigates the whats and hows of their
diets, i.e., the relationship between programmers’ infor-
mation goals and debugging strategies.

METHODOLOGY

Study Data
To investigate our research questions, we analyzed a set of
nine videos we collected in a previous study of professional
software developers debugging in an Eclipse environment
[16]. In that study, the developers used the usual Eclipse
tools, plus a new IFT-based code recommender tool pow-
ered with a variety of recommendation algorithms. This set-
up is consistent with real-world scenarios in which devel-
opers work on unfamiliar code, such as a new team member
being brought “onboard” a project, a developer on a team
needing to work on code that another team member wrote,
or a newcomer to an open-source project.

To summarize the study setup, each video included screen-
capture video, audio of what the participant said, and video
of the participant’s face. Participants “talked aloud” as they
worked. Their task was to fix a real bug in the jEdit text
editor, a mature open source project. None of the partici-
pants had seen the jEdit code before, and with 6468 meth-
ods, it provided a large information space in which to for-
age. The bug was from an actual bug report (#2548764) and
regarded a problem with deleting “folded” text. Each de-
bugging session lasted two hours with a short break half-
way through. No participants completed the task, and all
exhibited instances of foraging throughout the two hours.

Categorization Procedures
We used a qualitative, multi-part coding approach to ana-
lyze these videos. First, we segmented the videos into 30-
second intervals, resulting in roughly 70 segments per vid-
eo. (We chose 30 seconds to be long enough for partici-
pants to verbalize a goal.) We then coded each segment to
identify (1) instances of foraging, (2) participants’ infor-

mation goals, and (3) participant debugging strategies, al-
lowing multiple codes per segment. To enhance generaliza-
bility, these code sets were drawn from prior studies, as we
describe below.

To ensure reliability, we followed standard inter-rater relia-
bility practices. Two researchers first worked together on a
small portion of the data to agree on coding rules. They
then independently coded 20% of the segments to test the
agreement level. We computed agreement using the Jaccard
index, as it is suitable when multiple codes are allowed per
segment, as in our case. We performed a separate coding
pass (with separate reliability checks) for each code set. For
each pass, agreement exceeded 80%, so the two researchers
then divided up the coding of the remaining data.

Information Foraging Behavior Codes
To code whether a participant showed evidence of infor-
mation foraging within a 30-second segment, we used a
two-part coding process. First, we segmented around partic-
ipants’ utterances and coded the segments. The codes were
foraging-start, foraging-end, and foraging-ongoing. This
code set was inspired by the scent-following code set used
in [14], but ours focused only on whether or not foraging
occurred, and not whether scent was lost, gained, etc. We
coded an utterance as foraging-start when participants stat-
ed an intention to pursue a particular information goal and
then took accompanying action to seek that goal, like
searching. We coded an utterance as foraging-end when
participants stated that they had learned some information,
or expressed giving up on a goal. We coded an utterance as
foraging-ongoing when participants restated a previously
stated goal, or said they were still looking for something.

In the second part of the coding process, we used the utter-
ance codes from the first part to code each 30-second seg-
ment as foraging or non-foraging. A segment was foraging
if it had an utterance coded as foraging-start, foraging-
ongoing, or foraging-end, else it was non-foraging. Also, to
include segments in which a participant may not have ex-
plicitly made an utterance, we also coded segments in be-
tween foraging-start and foraging-end utterances as forag-
ing. However, some segments were exceptions. If a partici-
pant clearly never foraged during a segment, we coded the
segment as non-foraging. Non-foraging activities included
configuring Eclipse or reasoning aloud about the task. Us-
ing this coding scheme independently, two researchers
achieved 82% agreement on 20% of the data before divid-
ing up and individually coding the remaining data.

Information Goal Codes
We based the Information Goal code set on Sillito et al.’s
empirically based taxonomy of 44 questions programmers
ask, which Sillito et al. had grouped into four types [23].
We coded the 30-second segments against the 44 questions,
and then grouped them into the four types for presentation
brevity. (Results for the 44 individual questions are given in
Appendix A of the expanded version [17].) Table 1 lists the

types, with a few examples of the Sillito questions that were
our actual code set. We chose the Sillito questions for sev-
eral reasons. First, they are a good fit for the program-
debugging domain, because they categorize information
needs specific to programmers. Second, they seem general-
izable to a broad range of programming languages and en-
vironments, since Sillito et al. collected them from a study
that covered seven different programming languages and at
least eight different programming environments. Third, they
are consistent with information goals identified in other
studies from both programming and non-programming do-
mains (e.g., [8,9,14,20]). Finally, they are specific and low-
level, enabling a code set with the potential for high inter-
rater reliability.

We coded each participant utterance in the foraging seg-
ments (as per our foraging code set above) to one of Silli-
to’s questions. We also included a code of other goals, for
utterances that did not match any of the questions. Using
this scheme, two coders achieved 80% agreement on 20%
of the data, and then split up the rest of the coding task.

The coding resulted in 384 goals coded using the Sillito
question codes and 286 other goals. About one fourth of the
utterances coded other were similar to one of the Sillito
questions, but were not a precise match, so for reasons of
rigor, we did not include them. The remaining other goals
were about concepts (e.g., the bug’s specifications, how to
use the jEdit “fold” feature, the Eclipse environment, etc.)
that are beyond the scope of this paper.

Information Goal Patterns
To investigate how information goals relate to each other,
we categorized the information goal data into the five pat-
terns in Table 2. Four of the patterns (Stairstep, Restart,
Pyramid, and Oscillate) came from literature suggesting
progressions in these sequences (e.g., [8,20,23]). The fifth
pattern, Repeat, emerged as a common pattern during the
course of our analysis.

Following the Table 2 definitions, we used a greedy pat-

Goal Type Codes Examples of Sillito questions
1-initial:
Find initial
focus points

Sillito
questions
1–5

#2: Where in the code is the text of
this error message or UI element?
#5: Is there an entity named some-
thing like this in that unit?

2-build:
Build on those
points

Sillito
questions
6–20

#14: Where are instances of this class
created?
#20: What data is being modified in
this code?

3-group:
Understand a
group of relat-
ed code

Sillito
questions
21–33

#22: How are these types or objects
related?
#29: How is control getting (from
here to) here?

4-groups:
Understand
groups of
groups

Sillito
questions
34–44

#35: What are the differences between
these files or types?
#43: What will be the total impact of
this change?

Table 1. Information goal types with examples [23].

tern-matching algorithm (which always returned the longest
possible matches) to identify instances of the patterns in the
goal data. We did not allow matches that contained a gap of
5 or more minutes (i.e., 10 or more 30-second segments)
between goal utterances or contained an interrup-
tion/intervention, such as the between-session break. We
permitted overlapping patterns, except for instances of Os-
cillate completely contained within a Stairstep or Pyramid,
and for instances of Stairstep completely contained within a
Pyramid. We omitted Oscillate and Stairstep instances in
these cases, because they were essential components of the
containing patterns. A single author performed this analysis
because the definitions were objective and the analysis au-
tomatable.

Debugging Strategy Codes
To code participant strategies, we reused Grigoreanu et al.’s
debugging strategy code set [7]. We chose these strategy
codes because, while being specific to the program debug-
ging domain, each also maps cleanly to one of the three key
foraging activities [19]: within-patch foraging, between-
patch foraging, and enrichment. (Technically, enrichment is
a between-patch foraging activity; however, in this paper,
we use the term between-patch foraging to include only
non-enrichment activities.)

Table 3 lists the strategy codes grouped by type of foraging
activity. The Within-Patch strategies all involve looking for
information within the contents of a single patch, such as in
a Java method or web page. The Between-Patch strategies
all involve navigating between different patches by select-
ing and clicking links, such as those provided by the rec-
ommender tool. The Enrichment strategies all involve ma-
nipulating the environment to facilitate foraging, for exam-
ple, by creating a new patch of search results.

For each segment, we looked for evidence of the participant
applying each strategy using indicators such as those shown
in Table 3. A segment could have multiple strategy codes.
Using this scheme, two coders achieved 80% agreement on
28% of the data, and then divided up the remaining data.

RESULTS

Preliminaries: How much foraging did they do?
As Table 4 shows, participants spent 50% of their 2-hour
sessions foraging on average. We were unable to find prior
measures of programmer foraging with which to compare
this result, but Ko et al. measured time spent on mechanics
of navigation. Their programmers spent 35% of the time on
“the mechanics of navigation between code fragments”
[10]. Even our participant who foraged the least still did so
more than 35% of the time.

RQ1: The Whats of Programmers’ Diets

A Diversity of Dietary Whats
Although all participants had the same high-level infor-
mation goal (to find the information needed to fix the bug),

their dietary preferences were diverse, as Table 5 shows.
(Recall the four goal types defined in Table 1.) In aggre-
gate, participants pursued the most goals of Type 1-initial,

Pattern Example Formal Definition
Oscillate: Back and
forth between two
adjacent types repeat-
edly.

1121212212 O= O1 | O2
 where:
O1=UpDn(1,2) | UpDn(2,1)
O2=UpDn(2,3) | UpDn(3,2)
UpDn(a,b)=a+b+(a+b+)+a*

Stairstep: From 1 up
through adjacent types
to at least 3.

1122223 Stairstep=
(1+2*)+ (2+3*)+ 3

Restart: Jump off the
Stairstep down to 1

112331 Restart=Stairstep 1

Pyramid: Up then
down the stairsteps.

Constraint: If Pyramid,
then not Stairstep.

12321 Pyramid= Pup Pdown |
 2+ Pup Pdown 1
 where:
Pup=(1+2*)+(2+3*)+
Pdown=(3+2*)+(2+1*)+

Repeat: One type at
least 10 times.

1111111111 Repeat = 11111111111* |
 22222222222* |
 33333333333* |
 44444444444*

Table 2. Information goal patterns. Each definition is a regular
expression of Goal Type instances (+ means 1 or more instances,

* means 0 or more; “|” means “or”). E.g.: 1+2+ means one or
more instances of Type 1, then one or more of Type 2. We omit
Type 4s next to Type 3s because 4 never followed 3 in our data.

Strategy Example Indicators
Within-Patch Strategies
Specification
checking

Looking for info by reading within the bug
description

Spatial Looking for info by reading through the list of
package contents in the Package Explorer

Code inspec-
tion

Looking for info by reading within a Java
code file

File inspec-
tion

Looking for info by reading within a non-code
file, such as a Java properties file

Seeking help-
Docs

Looking for info by reading within the jEdit
documentation

Between-Patch Strategies
Control flow Following control dependencies
Dataflow Following data dependencies
Feedback
following

Following method links from the recommend-
er tool

Enrichment Strategies
Code search Creating a patch of search results with the

Eclipse code search utility
Testing Creating a patch of program output or internal

state to inspect
To-do listing Writing notes on paper
Seeking help-
Search

Creating a patch of search results with an (ex-
ternal) web search for info on bug/code

Table 3. Debugging strategy code set [7] with example indicators
for each strategy.

Participant: P2 P3 P5 P6 P7 P8 P9 P10 P11 Mean
Time Foraging: 52% 71% 38% 63% 46% 43% 48% 42% 49% 50%
Table 4. Participants spent a large fraction of their time, ranging

from 38% to 71%, foraging for information.

with slightly fewer in 2-build, and many fewer in the more
complex 3-group and 4-groups. However, most participants
did not conform to the aggregate: Only P6 and P9 had goal
counts consistent with the aggregate.

Patterns of Dietary Relationships
Despite their dietary diversity, the progression of infor-
mation goals that participants pursued often followed cer-
tain patterns (summarized in Table 6 and Figure 1; patterns
defined in Table 2). Eight of the nine participants displayed
one or more of the patterns, and 58% of segments in which
a participant expressed a goal were part of a larger pattern.
Participants exhibited a median of 1.5 patterns each, with
P6 exhibiting all five.

For example, P6’s use of the Restart pattern at the end of a
Stairstep is shown in the Figure 1e example. The Restart
occurred when his Stairstep progression culminated in gain-
ing the information he sought about the handleMessage
method’s relationship to the editor (a Type 3-group goal):

P6: “So this (handleMessage) is handling some events for the
editor.”

This was what P6 had wanted to know, so he then changed
to a new line of foraging, thus dropping down to a Type 1-
initial goal:

P6: “But I don’t know how the menu is hooked up to this. … I
wonder if there is some method that might be named ‘delete
lines’ …” [P6 starts searching in package explorer.]

Some of these patterns were predicted by the literature.
Sillito et al. [23] suggested one progression: find an initial
focus (1-initial), then build on it (2-build), then understand
a group of related foci (3-group), and finally understand
groups of groups (4-groups). Other empirical studies have
found a similar progression from 1-initial to 2-build, includ-
ing our previous work on information foraging during de-
bugging (characterized there as “debugging modes”) [14],
and earlier work on how people seek information in web
environments (summarized in [9]). Furthermore, the notion
of progressing from Type 1-initial to 2-build to 3-group to
4-groups is consistent with prior results from applying Pi-
rolli and Card’s sensemaking model [20] to intelligence
analysts and to end-user debuggers [8].

However, participants did not usually organize their forag-
ing in the ways suggested by the above literature: Stairstep,
Pyramid, and Restart together accounted for only 22% of
the pattern segments. In fact, only four of the participants
used any of them at all! This finding suggests that idealized
progressions outlined in prior research miss much of how
programmers forage for information in code, at least in the
widely used Eclipse environment.

In contrast to the patterns from the literature, the Repeat
pattern, which emerged from our study, occurred frequent-
ly. In Repeat, a participant spent extended periods follow-
ing one information goal type. 6 of the 9 participants exhib-
ited this pattern—greater usage than any other pattern.

Why did participants exhibit the above patterns? To answer
this question, we need two pieces of information: what
strategies they used for their foraging, and how those strat-
egies came together with their goals and goal patterns. We
discuss each of these in turn in the next two sections.

RQ2: The Hows: Strategies during Foraging
Recall from Methodology (Table 3) that each debugging
strategy maps to an IFT activity: within-patch foraging,
between-patch foraging, and enrichment. Table 7 shows
each participant’s strategy usage by IFT category.

Debugging Strategies Meet IFT
Since much of the prior IFT research has focused on be-
tween-patch scent following (e.g., [3,13]), we were sur-
prised that only 24% of participants’ foraging fell into that
category. Participants spent considerably more time forag-
ing within patches and performing enrichment.

As Table 7 shows, participants used a diverse mix of strate-

Goal Type P2 P3 P5 P6 P7 P8 P9 P10 P11 Total
1-initial 6 76 0 34 18 8 18 8 2 170
2-build 3 1 2 24 34 17 16 15 11 123
3-group 2 2 2 3 2 3 15 9 11 49
4-groups 13 1 0 0 0 9 0 3 16 42
Total 24 80 4 61 54 37 49 35 40 384
Table 5. Number of segments spent on the (codeable) types of
information goals. Gray highlights each participant’s most-

pursued goal type.

Pattern P2 P3 P5 P6 P7 P8 P9 P10 P11
Repeat 1(4) 2(1) 1(1) 1(2) 1(2) 1(4)
Oscillate 1(1,2) 2(1,2) 1(3,2) 1(3,2)
Stairstep 1
Pyramid 1 1 2 1
Restart 1
Table 6: Frequency of pattern instances exhibited by each par-
ticipant. The numbers in parentheses indicate the type of goals

within the pattern (e.g., 1(3,2) in the Oscillate row indicates
patterns like 33322322, as defined in Table 2).

0!
20!
40!
60!
80!
100!
120!
140!

Re
pe
at!

Os
cill
ate
!

Sta
irs
tep
!

Py
ram
id!

Re
sta
rt!

a"

b"

c"

d"

e"

a"

b"

c"

d"

e"

Examples"

Figure 1. Frequency of goal patterns. Y-axis is count of seg-
ments in each pattern. Each bar is labeled with an example

from the participants’ videos. The beige background denotes
foraging; white is non-foraging (e.g., studying the code that has

been found); and numbers denote the goal types.

gies (median of 8 different strategies); however, each forag-
ing category had clearly dominant strategies. Spatial was
the participants’ primary Within-Patch strategy; Control
Flow was their primary Between-Patch strategy; and Code
Search and Testing were together (but especially Testing)
their primary Enrichment strategies.

What Participants Used Enrichment For
Enrichment is an activity wherein the predator changes the
environment to facilitate foraging [19]. The participants
changed their environments in two ways. Code Search,
Seek Help-Search, and To-Do Listing involved creating a
patch of links to other patches for the predator to navigate.
In contrast, Testing involved creating patches of infor-
mation content for the predator to process.

Most participants strongly favored one or the other of these
types of enrichment strategies. In particular, they either
favored creating patches of linked search results with Code
Search, or creating patches of runtime state information
with Testing. In fact, over half of the participants used only
one of Code Search or Testing. For example, Participant P7
used Code Search repeatedly, trying to find methods that
implemented line deletion and folding in jEdit:

P7: “Let’s see if I can find something like what is in that bug
report.” [Searches for delete lines. No results.] “Let’s just look
for ‘explicit fold’.” [Searches for explicit fold.] “Finally,
something that actually has to do with folding...”

In contrast, P5 stepped through program runs repeatedly,
collecting information about its internal state:

P5: [Looks at the debugger’s Variable Watch view.]
“lineCount is zero.” [Reads code.] “I’m going to step into that

(method)” [Steps.] “count is greater than–now count is zero.
[Steps again.] “I’m stepping through the code. ... I’m trying to
understand what this code is doing.”

Despite prior findings about users’ preference for searching
(e.g., [2]), four of the nine participants used neither Code
Search nor Seek Help-Search. This lack of searching cannot
be because the task was too easy (no one finished) or the
code base was too small (it had 6468 methods). However,
earlier findings on web information processing [9] may
explain this result. Hearst points out that, in many cases,
browsing works better than searching because it is mentally
less costly to recognize a piece of information than it is to
recall it, and recall is often needed to formulate an effective
search query. Consistent with Hearst’s observation, every
participant used the Code Inspection strategy.

Go-To Strategies for Foraging
Reconsidering Table 7 from a most-used perspective, some
strategies stand out as having been used particularly often
for one or more aspects of foraging. The leftmost four
(white) columns of Table 8 summarize.

RQ3: Whats Meet Hows: Dietary Strategies

Strategies by Goal Type
Table 9 and Figure 2 tie all 12 of the strategies back to the
participants’ dietary goals. As the table and figure show,
some strategies were strongly tied to particular goal types.
For example, Specification Checking was used only for
Type 1-initial goals, and Code Inspection was used primari-
ly for Type 2-build goals. Figure 2 shows that participants
used Code Search (labeled a) and Spatial (labeled b) more
than the other strategies with their Type 1-initial goals.
From a patch perspective, Spatial seemed particularly suited
to helping participants cope with large patches, and Code
Search with large spaces of patches. For example, P6 spent
considerable time performing Spatial in the Package

Strategy P2 P3 P5 P6 P7 P8 P9 P10 P11 Total
Within-Patch Strategies
Spec. Checking 2 9 0 11 0 0 0 3 0 25
Spatial 25 39 5 28 31 14 47 19 12 220
Code Inspection 4 9 10 16 17 15 22 7 30 130
File Inspection 0 6 0 4 0 0 0 3 0 13
Seek Help-Doc 4 0 0 0 0 0 0 2 0 6
Total: 35 63 15 59 48 29 69 34 42 394
Between-Patch Strategies
Control Flow 19 1 18 14 20 27 23 14 21 157
Data Flow 0 0 5 1 2 4 0 7 5 24
Feedback Follow. 4 8 12 5 6 4 6 1 6 52
Total: 23 9 35 20 28 35 29 22 31 232
Enrichment Strategies
Code Search 0 51 0 29 33 4 0 12 0 129
Testing 36 0 34 14 5 37 30 22 45 223
Todo Listing 1 1 0 1 1 2 0 0 5 11
Seek Help-Search 0 4 0 0 0 0 0 0 0 4
Total: 37 56 34 44 39 43 30 34 49 366
Overall Total: 95 128 84 123 115 107 128 90 122 992

Table 7. Usage (segment counts) of each strategy during
foraging. Gray cells indicate the maximum frequency by

participant and by strategy category. Although participants
foraged in a total of 660 segments, the overall total of strategy
segments (992) is greater because participants used multiple

strategies during some segments.

Strategy
How
many

used it?

Top strategy for...
... which

participants
... which
IFT cate-

gory

... which
Goal
Type

... which
Patterns

Within-Patch Strategies
Spatial all 9 P9 Within 2-Build Pyramid
Code
Inspect.

all 9 - - - -

Between-Patch Strategies
Control
Flow

all 9 - Between - Restart

Feedback
Follow.

all 9 - - - -

Enrichment Strategies
Code
Search

5 P3, P6, P7 - 1-initial Repeat,
Oscillate,
Stairstep

Testing 8 P2, P5, P8,
P10, P11

Enrich. 3-group,
4-groups

-

Table 8. These 6 strategies (out of 12) stood out. Each of these
was used by everyone, was at least one person’s most-used

strategy, or was the top strategy for an IFT category.

Explorer view (a patch containing hundreds of lines),
looking for a Java class on which to focus:

P6: “I keep thinking this menu package gotta be involved
somehow.” [P6 scans down the list of Java classes inside the
menu package in Eclipse’s Package Explorer view.]

P3, on the other hand, applied Code Search to search the

6468 methods for code related to deleting lines in jEdit:

P3: “I would imagine that I would look for the word ‘delete’
perhaps, especially given that that’s the term that’s used in the
menu.” [Executes a search for delete.]

Participants tended toward different strategies for the Type
2–4 goals, which express progressively deeper relationships
among code entities. For example, Figure 2 shows the shift
away from Code Search and Spatial, and toward Code
Inspection (c) and Control Flow (d) for Type 2-build and
Type 3-group goals. Testing in particular (e) increased
markedly from Type 2-build to Type 4-groups goals.

Considering participants’ goal patterns in the context of
their strategies (summarized in Table 10) sheds additional
light on why the patterns emerged.

Pattern Repeat: Constant Goal Type, Constant Strategies
Pattern Repeat, repeated pursuit of a single goal type, was
also characterized by repeated participant use of a constant
handful of strategies. The Repeat instances occurred in two
cases. In one case, participants’ debugging strategies were
producing the desired goals efficiently, i.e., at such low cost
to the participants that staying with that goal type and strat-
egy was a good way to optimize their costs. In the other
case, their strategy for that goal type was so ineffective,
they needed a long time to fulfill that type of dietary need.

As an example of the first case, P7 followed the Repeat
pattern on Type 2-build goals using three strategies contin-
uously: Spatial, Code Inspection, and Control Flow. Eclipse
supports all three with low-cost navigation tools, such as

Strategy Information Goal Type Total
1-initial 2-build 3-group 4-groups

Within-Patch Strategies
Spec Checking 24 0 0 0 24
Spatial 92 62 23 8 185
Code Inspection 13 56 20 4 93
File Inspection 10 0 0 0 10
Seeking Help-Docs 2 0 0 0 2
Total: 141 118 43 12 314
Between-Patch Strategies
Control Flow 21 46 14 9 90
Dataflow 1 4 3 1 9
Feedback Following 13 15 7 1 36
Total: 35 65 24 11 135
Enrichment Strategies
Code Search 104 47 2 1 154
Testing 25 26 26 30 107
To-Do Listing 1 4 1 3 9
Seeking Help-Search 0 0 0 0 0
Total: 130 77 29 34 270
Overall Total: 306 260 96 57 719

Table 9. Strategy usage by goal types. Gray highlights the
maximum strategy usage for each goal type. The overall total
(719) is greater than the total foraging segments (660) because

some segments contained multiple strategies. The total for
Seeking Help-Search was 0 because none of the strategy’s 4

instances co-occurred with a goal statement.

0.0%$

10.0%$

20.0%$

30.0%$

40.0%$

50.0%$

60.0%$

70.0%$

80.0%$

90.0%$

100.0%$

1.ini1al$ 2.build$ 3.group$ 4.groups$

Seeking$Help$
(Search)$
To.Do$Lis1ng$

Tes1ng$

Code$Search$

Feedback$
Following$
Dataflow$

Control$Flow$

Seeking$Help$
(Docs)$
File$
Inspec1on$
Code$
Inspec1on$
Spa1al$

Spec$
Checking$

a$

b$

c$

d$

e$

Figure 2: Strategy proportions by goal type. Strategies are
color-coded, with black bars separating the IFT categories.

Red: Within-Patch. Green: Between-Patch. Blue: Enrichment.

Pattern Participant
Strategy

Within-Patch Between-Patch Enrichment
Repeat(1) P3 70% 6% 71%
 P6 75% 0% 75%
Repeat(2) P7 83% 72% 48%
 P10 50% 38% 63%
Repeat(4) P2 40% 10% 80%
 P11 30% 40% 90%
 Median: 60% 24% 73%
Oscillate(1,2) P6 79% 8% 63%
 P7 74% 57% 60%
Oscillate(3,2) P10 40% 47% 73%
 P11 100% 48% 62%
 Median: 77% 47% 62%
Pyramid P6 62% 57% 76%

P8 53% 53% 88%
P9 100% 21% 7%
P10 53% 29% 76%
Median: 57% 41% 76%

Restart P6 61% 57% 70%
Stairstep P6 62% 57% 76%
Table 10. Percentage of goal-pattern segments that co-occurred
with each category of strategy. Recall that multiple strategies

were allowed per segment. Gray denotes the maximum catego-
ry for each pattern.

one-click navigation to the declaration of any class, method,
or variable. P7 used these features to efficiently fulfill his
Type 2-build goals, and fulfilled multiple goals, often build-
ing from one goal to the next using the same strategies.

When participants followed the Repeat pattern on goals of
Type 1-initial or of Type 4-groups, their strategies were still
constant, but not as fruitful. In the cases involving Type 1-
initial, participants used Code Search (Enrichment) and
Spatial (Within-Patch) extensively, but not particularly
fruitfully, looking for a place to start. For example, Figure 3
shows P3 repeatedly using Code Search to find an initial
starting point. Likewise, in P11’s use of Repeat on his Type
4-groups goals, he used Testing across numerous segments
of the pattern, trying to understand the relationship between
changes he had made and the rest of jEdit’s functionality.
He pieced the information together by laboriously gathering
it in small bits, one execution of the program at a time.

Pattern Oscillate: Changing Strategies to Dig Deeper
For the participants who followed the Oscillate pattern on
Type 1-initial and 2-build goals, the story was similar to
Repeat on Type 1-initial, except the oscillators tended to
seek additional information from their search results. In
particular, the oscillating participants would typically do a
code search, explore the results a bit, decide they were on
the wrong track, and return to searching. Unlike the Repeat
pattern, the participants we observed within the Oscillate
pattern switched strategies rapidly along with their goals.
Figure 4 illustrates this behavior for P6.

Patterns for Enrichment and Goal Switching
Table 10 suggests that Enrichment tended to drive the inter-
related Pyramid (up then down the stairs), Restart (stairs
followed by starting again), and Stairstep (climb the stairs)
patterns. Participants following the Pyramid pattern used
the Enrichment strategies of Code Search and Testing
equally often, but P6’s instances of Stairstep and Repeat
were characterized by almost exclusive use of the Code
Search strategy. (Only P6 followed these two patterns.)

All three patterns were characterized by rapid goal fulfill-
ment followed by a rapid switch to the next goal. This rapid
fulfillment and initiation of the next goal type is consistent
with our previous findings pointing to the reactiveness of
foraging in this domain [13,16].

The Most-Used Strategies’ Strengths
This brings us to the particular strengths of different strate-
gies. Refer back to Table 8; the rightmost (shaded) columns
include the goal types and patterns we have just discussed
for the most-used foraging strategies. As the table shows,
certain classic debugging strategies were used heavily in
foraging but often were concentrated into dietary niches.
For example, Code Inspection and Feedback Following
were generalists—used by everyone, but not the top in any
particular IFT category, any goal type, or any pattern. In
contrast, Code Search was a specialist, dominating some of

the patterns and one of the goal types, but still used by only
half the participants.

DISCUSSION

Generalizability
As in any empirical study, our results may have been influ-
enced by the environment the participants used, the tools
available to them, the task they worked on, etc. Issues like

24:30: Let me try to look for ‘delete’ again. [Searches for ‘delete’].
27:00: If I could search across the text—I’m sorry, search through all

the source code and found out delete lines, then I would be able to
—I should be able to find where and what that function is called.

31:00: Let’s just look for ‘delete’ again. [Searches for ‘delete’].
37:00: I am going to look for references show me all references to

deleteLineLabel. [Search for references to deleteLineLabel].

6:30: [Searches]. Java search, in the workspace, a method including
‘delete.’

9:00: So one of the things I’m looking to do is open a fold, so if I
ask for methods about methods can methods involving folds or
even better, opening a fold.

18:00: I would imagine that I would look for the word delete
perhaps, especially given that that’s the terms that’s used in the
menu, but I um I think I’ll try again. [Searches for ‘delete’].

----- ------ --- ---- -- ---- -- - ------ --- -

Figure 3. P3 continuously used Code Search (underlined) to find
code relevant to deleting lines of text. He often complemented it

with Spatial (dots). The beige background denotes foraging;
white is non-foraging and the numbers indicate the minutes in

the session.

25:00: So whose subclass is this? How can I figure that out?
26:00: I am looking for a concrete class, not a abstract class

(EditAction).
27:00: If I look for references to the abstract class it will show me

someone who implements this class. [Searches for references
to EditAction].

28:00: So I don’t think that search helped me understand who
implements the EditAction class. Well I guess I could start
with main and start debugging from that.

28:30: [Searches]. Find method, “main.” Search.

32:30: Let’s look and see the references to this constructor.
[Searches References to main].
33:30: There are no references for the constructor for the
main class what does this mean?!
34:00: There must be some public methods here. So, let’s
search for public. [Searches for ‘public’].
35:00: [Scanning results]. “public static void main” Oh,
there it is.

. -- - -- -

Figure 4. The Oscillate pattern for P6. The abandonment of

goals is highlighted in bold. The underlines are segments with
Code Search. The dots are segments with Spatial. Note that

strategies alternate with the goal types.

these can be resolved only through additional studies. How-
ever, our methodology was designed to strengthen generali-
zability through the use of code sets and methodological
conventions from other pertinent studies (e.g., [7,8,22]),
and through the use of realistic elements: The software pro-
ject was a real open source project; the bug was from a real
bug report; the participants were experienced professionals
(not students) using a popular IDE; and the participants
worked alone on fairly long tasks (similar to what they
would encounter professionally, even in a team context).

Diet Whats: The Long Tail
Participants' dietary needs varied greatly. This variety was
not only between participants, but also within each partici-
pant’s session from one moment to the next.

Our participants’ diverse diets are reminiscent of the highly
varied and personal diets reported by the Evans/Card study
[4]. Evans and Card attributed this finding to a “long tail”
demand curve, in which an abundance of available infor-
mation makes it possible for people to satisfy their own
individual, even quirky, desires for information. However,
in the Evans/Card study, people foraged as part of their own
individual tasks. Interestingly, we saw the same phenome-
non with our participants, even though they all had the
same overall goal (to fix the bug).

The participants’ sometimes stubborn pursuit of particular
information goals—tolerating very high costs even when
their efforts showed only meager promise of delivering the
needed dietary goal—highlights an important difference in
the software domain versus other foraging domains: Pro-
grammers’ dietary needs are often very specific. For an
information forager on the Web, one dictionary page is of-
ten as good as another. But for a programmer trying to fix a
bug, only very particular information about very specific
code locations will help them in their task. This high dietary
selectiveness in this domain may explain the high costs
programmers were sometimes willing to pay.

Whats Meet Hows: Diet-Specific Strategies
Our results identified particular strategies that participants
preferred for certain information goals. Of the 12 strategies
we coded, 6 dominated, but in different ways.

Among the Within-Patch strategies, two strategies, Spatial
(scanning lists) and Code Inspection (reading code),
showed distinct associations to particular goal types. Spatial
was ubiquitous across all goal types—it seemed that there
was almost always some patch of information that a partici-
pant could scan. In contrast, Code inspection was particu-
larly tied to Type 2-build and 3-group goals. Apparently,
participants tended not to read code in detail when looking
for an initial place to start (1-initial) or when trying to un-
derstand more complex relationships among groups of enti-
ties (4-groups). Instead, they dug into the code only when
they needed information about more basic relationships (2-
build and 3-group).

Turning to the Between-Patch strategies, participants ap-
plied Control Flow (following control dependencies) for all
goals that involved understanding relationships between
code entities (i.e., goal types 2–4). The proportion of partic-
ipants who used the strategy relative to other strategies held
steady, whether they were building up a basic understand-
ing about a code entity (2-build) or understanding complex
inter-relationships among groups of entities (4-groups).

Participants used the two most frequently used Enrichment
strategies, Code Search (via a search utility) and Testing
(running code), for different purposes. They used Code
Search heavily for finding initial starting places and build-
ing upon them (Types 1 and 2). In contrast, they favored
Testing for acquiring more complex information about the
relationships between entities and between groups of enti-
ties (Types 3 and 4).

Participants’ goal patterns reveal a close relationship be-
tween these Enrichment strategies and many of the goal
patterns in Table 2. For example, participants who followed
Repeat on Type 1-initial goals and who followed Oscillate
on Type 1-initial and 2-build goals were generally using
Code Search (Enrichment) repetitively (expending much
effort with little success), looking for code relevant to the
bug to investigate in more depth. Similarly, participants
who used Repeat on Type 4-groups goals were generally
Testing (Enrichment) by repetitively stepping through exe-
cutions of the program over and over to build up infor-
mation about the program’s internal execution state. Over-
all, Enrichment strategies were heavily used in all patterns.

CONCLUSION
In this paper, we considered what programmers want in
their diets and how they forage to fulfill each of their die-
tary needs. Some results this diet perspective revealed were:

RQ1 (whats):
• Diversity: Even though all participants were pursuing the

same overall goal (the bug), they sought highly diverse
diets. This suggests a need for debugging tools to support
“long tail” demand curves of programmer information.

• Dietary patterns: Most foraging fell into distinct dietary
patterns—including 78% in a new pattern not previously
proposed in the literature.

RQ2 (hows):
• Foraging strategies: Participants spent only 24% of their

time following between-patch foraging strategies, but be-
tween-patch foraging has received most of the research
attention. This suggests a need for more research on how
to support within-patch and enrichment foraging.

• Search unpopularity: Search was not a very popular strat-
egy, accounting for less than 15% of participants’ infor-
mation foraging—and not used at all by 4 of our 9 partic-
ipants—suggesting that tool support is still critical for
non-search strategies in debugging.

RQ3 (what meets how):
• Strategies’ diet-specificity: Some foraging strategies were

of general use across information goal types, but others
were concentrated around particular dietary niches. This
suggests tool opportunities; for example, tools aimed at
supporting a particular strategy may be able to improve
performance by focusing on the strategy’s dietary niche.

• Cost of selectivity: Participants stubbornly pursued par-
ticular information in the face of high costs and meager
returns. This emphasizes a key difference between soft-
ware development and other foraging domains: the highly
selective nature of programmers’ dietary needs.

As Evans and Card summarize from Simon: “For an infor-
mation system to be useful, it must reduce the net demand
on its users’ attention” [4]. Our results suggest that the diet
perspective can help reveal when programming tools help
to reduce this net demand—and when they do not—during
the 50% of debugging time programmers spend foraging.

REFERENCES
1. Anderson, J. The Adaptive Character of Thought. Law-

rence Erlbaum Associates, 1990.
2. Brandt, J., Dontcheva, M., Weskamp, M., Klemmer, S.

Two studies of opportunistic programming: Interleaving
web foraging, learning and writing code. Proc. CHI,
ACM (2009), 1589-1598.

3. Chi, E., Pirolli, P., Chen, K., and Pitkow, J. Using infor-
mation scent to model user information needs and ac-
tions on the web. Proc. CHI, ACM (2001), 490–497.

4. Evans, B. and Card, S. Augmented information assimi-
lation: Social and algorithmic web aids for the in-
formation long tail. Proc. CHI, ACM (2008), 989–998.

5. Fritz, T. and Murphy, G. Using information fragments
to answer the questions developers ask. Proc. ICSE.
ACM/IEEE (2010), 175–184.

6. Fu, W.-T. and Pirolli, P. SNIF-ACT: A cognitive model
of user navigation on the World Wide Web. Human-
Computer Interaction 22, 4 (2007). 355–412.

7. Grigoreanu, V., Burnett, M. and Robertson, G. A strat-
egy-centric approach to the design of end-user debug-
ging tools. Proc CHI, ACM (2010), 713–722.

8. Grigoreanu, V., Burnett, M., Wiedenbeck, S., Cao, J.,
Rector, K., Kwan, I. End-user debugging strategies: A
sensemaking perspective, ACM Trans. Comp.-Human
Interaction 19, 1, Article 5, (2012), 28 pages.

9. Hearst, M. User interfaces for search, In Modern Infor-
mation Retrieval, 2nd Edition, ACM Press, (2011).

10. Ko, A., Myers B., Coblenz, M., Aung, H. An explora-
tory study of how developers seek, relate, and collect
relevant information during software maintenance tasks.
IEEE Trans. Soft. Eng. 33, (2006), 971–987.

11. LaToza, T. and Myers, B. Visualizing call graphs. Proc.
VL/HCC, IEEE (2011), 117–124.

12. Lawrance, J., Bellamy, R., Burnett, M., and Rector, K.
Using information scent to model the dynamic foraging
behavior of programmers in maintenance tasks, Proc.
CHI, ACM (2008), 1323–1332.

13. Lawrance, J., Burnett, M., Bellamy, R., Bogart, C. and
Swart, C. Reactive information foraging for evolving
goals. Proc. CHI, ACM (2010), 25–34.

14. Lawrance, J., Bogart, C., Burnett, M., Bellamy, R., Rec-
tor, K., Fleming, S. How programmers debug, revisited:
An information foraging theory perspective, IEEE
Trans. Soft. Eng. (2013), [DOI: 10.1109/TSE.2010.111].

15. Niu N., Mahmoud, A. and Bradshaw, G. Information
foraging as a foundation for code navigation. Proc.
ICSE, ACM/IEEE (2011), 816–819.

16. Piorkowski, D., Fleming, S., Scaffidi, C., Bogart, C.,
Burnett, M., John, B., Bellamy, R. and Swart, C. Reac-
tive information foraging: An empirical investigation of
theory-based recommender systems for programmers.
Proc. CHI, ACM (2012), 1471–1480.

17. Piorkowski, D., Fleming, S., Kwan, I., Burnett, M.,
Scaffidi, C., Bellamy, R., Jordhal J. The whats and hows
of programmers’ foraging diets, Oregon State Univ.
Tech Report. http://hdl.handle.net/1957/36082. Jan.
2013.

18. Pirolli, P. Computational models of information scent-
following in a very large browsable text collection.
Proc. CHI, ACM (1997), 3–10.

19. Pirolli, P. and Card, S. Information foraging. Psycholog-
ical Review 106, (1999), 643–675.

20. Pirolli, P. and Card, S. The sensemaking process and
leverage points for analyst technology as identified
through cognitive task analysis. Proc. Int’l. Conf. Intel-
ligence Analysis. MITRE Corp. (2005).

21. Pirolli, P. and Fu, W-T. SNIF-ACT: A model of infor-
mation foraging on the world wide web. Proc. User
Modeling, LNCS. Springer-Verlag Berlin. (2003).

22. Romero, P., du Boulay, B., Cox, R., Lutz, R., and Bry-
ant, S. Debugging strategies and tactics in a multi-repre-
sentation software environment. Int’l J. Hum.-Comp.
Studies 65, Academic Press, (2007).

23. Sillito, J., Murphy, G. and De Volder, K. Questions pro-
grammers ask during software evolution tasks. Proc.
FSE, ACM (2006), 23–34.

24. Spool, J., Profetti, C. and Britain, D. Designing for the
scent of information, User Interface Eng., (2004).

25. Teo, L., John, B., Blackmon, M. CogTool-Explorer: A
model of goal-directed user exploration that considers
information layout, Proc. CHI, ACM (2012).

