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Abstract 
This position paper considers people aspects of end-
user development in the Internet of Things. 
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Introduction 
The Internet of Things is inherently about people— 
helping to improve their safety or their experiences in 
their homes, jobs, and in the world.  For example, we 
can warn people of dangerous situations near their 
current location, recommend the next painting to look 
at in a museum, or enable them to remotely “program” 
objects in their smart homes to talk to each other.   

My interest is in the “programming” aspect of this, 
specifically: (1) how we can enable ordinary users to 
customize, control, and “fix” Internet of Things 
applications that are trying to help them, and (2) doing 
so in ways that allow IoT systems to be inclusive to 
both males and females. 
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Meet “Grandma” 
Imagine “Grandma”.  Grandma has lived in the same 
small town and even the same house for her entire 
adult life. Even though she is advancing in years, she 
does not want to leave her home to live with relatives 
or in a nursing home.   

Her granddaughter, Mary, would be happy to have 
Grandma come live with her in Los Angeles (about 100 
miles from Grandma’s home), but Grandma will have 
nothing to do with this plan. She used to be a teacher, 
and her former students still recognize her when they 
run into her at the neighborhood grocery or library.  
She is very involved in her church, her neighborhood, 
and her community. In short, she feels like she is 
where she belongs, and moving would make her feel 
like she was giving up most of what she cares about. 

Together, they decide on an aging-in-place solution, 
which uses IoT technology.  Using this approach, smart 
technologies around Grandma’s home can alert Mary 
when Grandma’s activities seem abnormal, or when 
safety issues around the house arise, like water 
overflowing from a forgotten faucet, smoke, possible 
trespassers, and so on.  Mary can even control some of 
the technologies remotely, like turning off the faucet.  

End-User Customization, Control, and 
“Fixing” of IoT Mis-steps 
However, smart technologies are never 100% correct, 
and some of the mistakes the system makes can be 

very costly to Mary, and even dangerous to Grandma.  
For example, Mary does not want a lot of false positives 
from the system, because this will mean a 100-mile 
drive one-way to Grandma’s, only to find out, for 
example, that the system’s warnings of intruders 
oftentimes are just branches blowing against the 
house.  And Mary does not want false negatives, 
because she cannot risk leaving Grandma in a 
precarious or dangerous situation simply because the 
system thinks the situation matches patterns it has 
seen before. 

Mary needs to fix such false positives and negatives, 
but how?  Grandma’s data is in many ways unique to 
Grandma, so Mary cannot rely on other grandmas’ data 
to train the system better.  She needs some amount of 
direct control.   

We have been working on an approach to help Mary 
exert this kind of control.  We call the approach 
“Explanatory Debugging” [5].  The approach aims to 
enable end users like Mary to efficiently influence the 
predictions that machine learning systems make on 
their behalf, such as the system powering Grandma’s 
house.  This paper presents an overview of Explanatory 
Debugging, an interactive machine learning approach in 
which the system explains to users like Mary how it 
made each of its predictions, and the user (Mary) then 
explains any necessary corrections back to the learning 
system.  



 

The Explanatory Debugging approach presents 
explanations that people like Mary can then act upon.  
These explanations need to honor two sets of 
principles: a set of Explainability principles and a set of 
Correctibility principles: 

• Explainability: 
o Principle 1.1: Be iterative, so that the user can 

learn in increments via many interactions. 
o Principle 1.2: Be sound; explain the system 

truthfully. 
o Principle 1.3: Be complete; explain how the entire 

system operates. 
o Principle 1.4: But don’t overwhelm; if the system is 

too complex to explain, perhaps a different 
machine-learning model would be more 
appropriate. 

• Correctibility: 
o Principle 2.1: Be actionable. 
o Principle 2.2: Be reversible. 
o Principle 2.3: Always honor user feedback. 
o Principle 2.4: Incremental changes matter. 

For example, Grandma does not like the sensors in the 
bathroom to be on when she is actually in there, so she 
covers them up with a swatch of dark material when 
she uses it.  This causes the system to raise alarms, 
but Mary and Grandma talk it over, and Mary decides 
that as long as the bathroom sensors are not “dead” for 
more than 30 minutes, she will not worry about it.   

She needs to explain this to the system in terms that 
will not work at cross-purposes to the system’s ways of 
reasoning; this is where Principles 1.2 – 1.4 are 
especially important. (If the system does not clearly 
explain how it is working, how can Mary understand 

how to correct its behavior?) Further, she needs to 
know what pieces of the explanation she should change 
(Principle 2.1), be able to tell whether her corrections 
are on the way to producing the right behaviors 
(Principles 1.1, 2.3, and 2.4), and be able to undo 
corrections that did not work out well (Principle 2.2).   

 
Figure 1: An Explanatory Debugging [5] “why” explanation: It 
tells users how features and folder size were used to predict 
each message’s topic. 



 

One example of Principles 1.2 – 1.4 in a “baseball vs. 
hockey” text classifier is shown in Figure 1 [5]. 

Gender Inclusiveness 
Mary is, obviously, a female. Will the emergent Internet 
of Things systems fit her style of working and problem-
solving as well as they fit that of male adult caregivers 
with aging-in-place grandmothers? 

Judging from the recent past, the answer is likely to be 
no. Recent research has shown that the way people use 
software often differs by gender, and further, that 
many software features are inadvertently designed 
around the way males tend to work and problem-solve 
with software [1, 2, 3, 4, 6, 7].   

These findings show the importance of taking gender 
differences into account when designing software for 
solving problems, such as the software Mary is using in 
the example above. Fortunately, design remedies are 
emerging to overcome gender-inclusiveness issues, and 
such changes need not trade off one gender against the 
other. In fact, researchers have shown that taking 
gender differences into account in designing software 
features can benefit both genders.  For example, Tan et 
al. showed that displaying optical flow cues benefited 
both females and males in virtual world navigation [7], 
and Grigoreanu et al. showed that changes to 
spreadsheet features relating to confidence and feature 
support reduced gender gaps while improving both 
genders’ attitudes and feature usage [3].  

Conclusion: Don’t Forget the People 
We hope that this new generation of software powering 
the Internet of Things will be as helpful to ordinary 

people as it is to corporate interests, engineers and 
tech-geeks, and equally inclusive to females and males. 
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