

End-User Development
in Internet of Things: We the People

Abstract
This position paper considers people aspects of end-
user development in the Internet of Things.

Author Keywords
End-User Development, End-User Programming,
End-User Software Engineering, Gender HCI,
Internet of Things

ACM Classification Keywords
H.5.m. Information interfaces and presentation (e.g.,
HCI): Miscellaneous.

Introduction
The Internet of Things is inherently about people—
helping to improve their safety or their experiences in
their homes, jobs, and in the world. For example, we
can warn people of dangerous situations near their
current location, recommend the next painting to look
at in a museum, or enable them to remotely “program”
objects in their smart homes to talk to each other.

My interest is in the “programming” aspect of this,
specifically: (1) how we can enable ordinary users to
customize, control, and “fix” Internet of Things
applications that are trying to help them, and (2) doing
so in ways that allow IoT systems to be inclusive to
both males and females.

Paste the appropriate copyright/license statement here. ACM now
supports three different publication options:

• ACM copyright: ACM holds the copyright on the work. This is the
historical approach.

• License: The author(s) retain copyright, but ACM receives an
exclusive publication license.

• Open Access: The author(s) wish to pay for the work to be open
access. The additional fee must be paid to ACM.

This text field is large enough to hold the appropriate release statement
assuming it is single-spaced in Verdana 7 point font. Please do not
change the size of this text box.
Every submission will be assigned their own unique DOI string to be
included here.

Margaret Burnett
Oregon State University
Corvallis, OR 97331 USA
burnett@eecs.oregonstate.edu

Todd Kulesza
Oregon State University
Corvallis, OR 97331 USA
kuleszto@eecs.oregonstate.edu

Meet “Grandma”
Imagine “Grandma”. Grandma has lived in the same
small town and even the same house for her entire
adult life. Even though she is advancing in years, she
does not want to leave her home to live with relatives
or in a nursing home.

Her granddaughter, Mary, would be happy to have
Grandma come live with her in Los Angeles (about 100
miles from Grandma’s home), but Grandma will have
nothing to do with this plan. She used to be a teacher,
and her former students still recognize her when they
run into her at the neighborhood grocery or library.
She is very involved in her church, her neighborhood,
and her community. In short, she feels like she is
where she belongs, and moving would make her feel
like she was giving up most of what she cares about.

Together, they decide on an aging-in-place solution,
which uses IoT technology. Using this approach, smart
technologies around Grandma’s home can alert Mary
when Grandma’s activities seem abnormal, or when
safety issues around the house arise, like water
overflowing from a forgotten faucet, smoke, possible
trespassers, and so on. Mary can even control some of
the technologies remotely, like turning off the faucet.

End-User Customization, Control, and
“Fixing” of IoT Mis-steps
However, smart technologies are never 100% correct,
and some of the mistakes the system makes can be

very costly to Mary, and even dangerous to Grandma.
For example, Mary does not want a lot of false positives
from the system, because this will mean a 100-mile
drive one-way to Grandma’s, only to find out, for
example, that the system’s warnings of intruders
oftentimes are just branches blowing against the
house. And Mary does not want false negatives,
because she cannot risk leaving Grandma in a
precarious or dangerous situation simply because the
system thinks the situation matches patterns it has
seen before.

Mary needs to fix such false positives and negatives,
but how? Grandma’s data is in many ways unique to
Grandma, so Mary cannot rely on other grandmas’ data
to train the system better. She needs some amount of
direct control.

We have been working on an approach to help Mary
exert this kind of control. We call the approach
“Explanatory Debugging” [5]. The approach aims to
enable end users like Mary to efficiently influence the
predictions that machine learning systems make on
their behalf, such as the system powering Grandma’s
house. This paper presents an overview of Explanatory
Debugging, an interactive machine learning approach in
which the system explains to users like Mary how it
made each of its predictions, and the user (Mary) then
explains any necessary corrections back to the learning
system.

The Explanatory Debugging approach presents
explanations that people like Mary can then act upon.
These explanations need to honor two sets of
principles: a set of Explainability principles and a set of
Correctibility principles:

• Explainability:
o Principle 1.1: Be iterative, so that the user can

learn in increments via many interactions.
o Principle 1.2: Be sound; explain the system

truthfully.
o Principle 1.3: Be complete; explain how the entire

system operates.
o Principle 1.4: But don’t overwhelm; if the system is

too complex to explain, perhaps a different
machine-learning model would be more
appropriate.

• Correctibility:
o Principle 2.1: Be actionable.
o Principle 2.2: Be reversible.
o Principle 2.3: Always honor user feedback.
o Principle 2.4: Incremental changes matter.

For example, Grandma does not like the sensors in the
bathroom to be on when she is actually in there, so she
covers them up with a swatch of dark material when
she uses it. This causes the system to raise alarms,
but Mary and Grandma talk it over, and Mary decides
that as long as the bathroom sensors are not “dead” for
more than 30 minutes, she will not worry about it.

She needs to explain this to the system in terms that
will not work at cross-purposes to the system’s ways of
reasoning; this is where Principles 1.2 – 1.4 are
especially important. (If the system does not clearly
explain how it is working, how can Mary understand

how to correct its behavior?) Further, she needs to
know what pieces of the explanation she should change
(Principle 2.1), be able to tell whether her corrections
are on the way to producing the right behaviors
(Principles 1.1, 2.3, and 2.4), and be able to undo
corrections that did not work out well (Principle 2.2).

Figure 1: An Explanatory Debugging [5] “why” explanation: It
tells users how features and folder size were used to predict
each message’s topic.

One example of Principles 1.2 – 1.4 in a “baseball vs.
hockey” text classifier is shown in Figure 1 [5].

Gender Inclusiveness
Mary is, obviously, a female. Will the emergent Internet
of Things systems fit her style of working and problem-
solving as well as they fit that of male adult caregivers
with aging-in-place grandmothers?

Judging from the recent past, the answer is likely to be
no. Recent research has shown that the way people use
software often differs by gender, and further, that
many software features are inadvertently designed
around the way males tend to work and problem-solve
with software [1, 2, 3, 4, 6, 7].

These findings show the importance of taking gender
differences into account when designing software for
solving problems, such as the software Mary is using in
the example above. Fortunately, design remedies are
emerging to overcome gender-inclusiveness issues, and
such changes need not trade off one gender against the
other. In fact, researchers have shown that taking
gender differences into account in designing software
features can benefit both genders. For example, Tan et
al. showed that displaying optical flow cues benefited
both females and males in virtual world navigation [7],
and Grigoreanu et al. showed that changes to
spreadsheet features relating to confidence and feature
support reduced gender gaps while improving both
genders’ attitudes and feature usage [3].

Conclusion: Don’t Forget the People
We hope that this new generation of software powering
the Internet of Things will be as helpful to ordinary

people as it is to corporate interests, engineers and
tech-geeks, and equally inclusive to females and males.

Acknowledgments
This work was supported in part by NSF #1240957 and
#1314384.

References
[1] Burnett, M., Fleming, S., Iqbal, S., Venolia, G.,
Rajaram, V., Farooq, U., Grigoreanu, V., Czerwinski, M.
Gender differences and programming environments:
across programming populations. ACM-IEEE Empirical
Software Engineering and Measurement (ESEM)
(2010), Article no. 28, 10 pages.

[2] Chang, S., Kumar, V., Gilbert, E., Terveen. L.
Specialization, homophily, and gender in a social
curation site: Findings from Pinterest, In Proc.
Computer Supported Cooperative Work & Social
Computing, ACM Press (2009), 674–686.

[3] Grigoreanu, V., Cao, J., Kulesza, T., Bogart, C.,
Rector, K., Burnett, M., Wiedenbeck, S. Can feature
design reduce the gender gap in end-user software
development environments? IEEE Symposium on Visual
Languages and Human-Centric Computing (2008),
149–156.

[4] Kulesza, T., Stumpf, S., Wong, W., Burnett, M.,
Perona, S., Ko, A., Oberst, I. Why-oriented end-user
debugging of naïve bayes text classification. ACM
Transactions on Interactive Intelligent Systems, 1(1)
(2011).

[5] Kulesza, T., Burnett, M., Wong, W.-K., Stumpf, S.
Principles of explanatory debugging to personalize
interactive machine learning, Proc. IUI, ACM (2015).

[6] Piazza Blog, STEM Confidence Gap (2015).
http://blog.piazza.com/stem-confidence-gap/

[7] Tan, D., Czerwinski, M., Robertson, G. Women go
with the (optical) flow, In Proc. CHI, ACM Press (2003),
209–215.

